# Homework 10, Math 291, Fall 2017 

Eric A. Carlen ${ }^{1}$<br>Rutgers University

December 1, 2017

1. Let $\mathcal{D} \subset \mathbb{R}^{2}$ be the region that is to the left of the parabola $x=y(2-y)$ and below the line $x-2 y+4=0$. Let $\mathcal{C}$ be its boundary given the outward normal orientation. Let $\mathbf{F}(x, y)=$ $(-2 x y, 4 y+x y)$ Calculate the flux integral $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} s$ both directly, and by making use of the Divergence Theorem.
2. Let $\mathcal{C}$ be the oriented curve in the plane that starts at $(0,0)$, and moves along straight line segments form this point to $(1,2)$, then from this point to $(-1,4)$, then from this point to $(-3,2)$, and finally then from this point to $(-2,0)$. Let $\mathbf{F}(x, y)=\left(x^{3} y+y^{2} x^{2}, x+y+x^{2} y+y^{2} x\right)$. Compute the flux integral $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} s$.

It is not a lot more work to parameterize the four legs of $\mathcal{C}$ and compute the flux directly, but it is a good idea to use the Divergence Theorem for practice with setting up the multiple integrals. 3: Let $\mathcal{S}$ be the part of the surface in $\mathbb{R}^{3}$ given by $\sqrt{x^{2}+y^{2}}=8-z$ that lies inside the cylinder $x^{2}+y^{2}=4$. With $\mathbf{F}=\left(2 y z-y^{2}, x^{2} z-2 x, x^{2} y\right)$, compute the flux

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S
$$

where $\mathbf{N}$ is taken to point outward from the $z$-axis.
4: Let $\mathcal{V}$ be the region in $\mathbb{R}^{3}$ that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$, and above the graph of $z=1 / \sqrt{x^{2}+y^{2}}$. Let $\mathbf{F}=\left(y+z^{2}, x+z^{2}, 2 z(x+y)\right)$ and let $\mathbf{N}$ be the outward normal to $\mathcal{S}$, the boundary of $\mathcal{V}$. Compute the total flux

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S
$$

5: Consider the two vector fields

$$
\mathbf{F}=\left(y z^{2}-2 x y, x z^{2}-x^{2}, 2 x y z\right) \quad \text { and } \quad \mathbf{G}=\left(z^{2}, y, x\right)
$$

(a) Compute the divergence of $\mathbf{F}$ and $\mathbf{G}$.

[^0](b) Let $\mathcal{S}$ be the unit sphere, and $\mathbf{N}$ its outward normal. Compute
$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S \quad \text { and } \quad \int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N} \mathrm{d} S
$$

Justify your answers to receive credit.
6: Consider the two vector fields

$$
\mathbf{F}=\left(y+z^{2}, x+z^{2}, 2 z x+2 z y\right) \quad \text { and } \quad \mathbf{G}=\left(y+z^{2}, x+z^{2}, 2 x+2 y\right) .
$$

(a) Compute the divergence $\mathbf{F}$ and $\mathbf{G}$.
(b) Let $\mathcal{V}$ be the intersection of the ball of radius 1 centered at the origin, and the ball of radius 1 centered at $(1,0,0)$. Let $\mathcal{S}$ be the boundary of $\mathcal{V}$ oriented with the outward unit normal N . Compute

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S \quad \text { and } \quad \int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N} \mathrm{d} S
$$

7: As in Exercise 3, let $\mathcal{S}$ be the part of the surface in $\mathbb{R}^{3}$ given by $\sqrt{x^{2}+y^{2}}=8-z$ that lies inside the cylinder $x^{2}+y^{2}=4$. With $\mathbf{F}=\left(2 y z-y^{2}, x^{2} z-2 x, x^{2} y\right)$, Use Stokes' Theorem evaluate the flux

$$
\int_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S
$$

where $\mathbf{N}$ is taken to point outward from the $z$-axis, by computing a line integral.
8: Consider the two vector fields

$$
\mathbf{F}=\left(y z^{2}-2 x y, x z^{2}-x^{2}, 2 x y z\right) \quad \text { and } \quad \mathbf{G}=\left(z^{2}, y, x\right) .
$$

(a) Compute the curls of $\mathbf{F}$ and $\mathbf{G}$.
(b) Let $\mathcal{S}$ be the part of the centered sphere of radius 2 that lies above the plane $x+y+z=1$, oriented with its unit normal $\mathbf{N}$ pointing upwards. Let $\mathcal{C}$ be the bounding curve with the consistent orientation. Compute

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \mathrm{d} s \quad \text { and } \quad \int_{\mathcal{C}} \mathbf{G} \cdot \mathbf{T} \mathrm{d} s .
$$

Justify your answers to receive credit.
(c) One of these vector fields is conservative. Identify the conservative vector field, and a potential function for it.

9: Consider the two vector fields

$$
\mathbf{F}=\left(y+z^{2}, x+z^{2}, 2 z x+2 z y\right) \quad \text { and } \quad \mathbf{G}=\left(y+z^{2}, x+z^{2}, 2 x+2 y\right)
$$

(a) Compute the curl of $\mathbf{F}$ and $\mathbf{G}$.
(b) Let $\mathcal{S}$ be the part of the ellipsoidal surface

$$
x^{2}+\frac{1}{2} y^{2}+\frac{1}{4} z^{2}
$$

above the plane $z=1$, oriented so the unit normal $\mathbf{N}$ points upwards. Let $\mathcal{C}$ be the bounding curve with the consistent orientation. Compute

$$
\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} d s \quad \text { and } \quad \int_{\mathcal{C}} \mathbf{G} \cdot \mathbf{T} d s
$$

(c) One of these vector fields is conservative. Identify the conservative vector field, and a potential function for it.


[^0]:    ${ }^{1}$ 2017 by the author.

