Solutions for the Final Exam, Math 291 Fall 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

December 21, 2017

Material from Part 1 of the Course:

1: (a) Let $\mathbf{a}=(2,-2,3)$ and $\mathbf{b}=(2,-1,2)$. Find a right-handed orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ of \mathbb{R}^{3} such that \mathbf{u}_{1} is orthogonal to both \mathbf{a} and \mathbf{b}, and \mathbf{u}_{2} is orthogonal to \mathbf{b}. How many such bases are there?
(b) Find an equation for the plane through the origin that is spanned by \mathbf{a} and \mathbf{b}; i.e., the plane parameteried by $\mathbf{x}(s, t)=s \mathbf{a}+t \mathbf{b},(s, t) \in \mathbb{R}^{2}$. Also, compute the distance between $(1,1,1)$ and this plane.
(c) Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be any orthonormal set of vectors. Compute the distance between the lines parameterized by $\mathbf{x}(s)=\mathbf{v}_{1}+s \mathbf{v}_{2}$ and $\mathbf{y}(t)=\mathbf{v}_{2}+t \mathbf{v}_{3}$. This does not require any long computations!

SOLUTION (a) We conpute $\mathbf{a} \times \mathbf{b}=(-1,2,2)$ hence we must take

$$
\mathbf{u}_{1}= \pm \frac{1}{3}(-1,2,2) .
$$

Then since \mathbf{u}_{2} is required to be orthogonal to \mathbf{u}_{1} and \mathbf{b}, it must be a multiple of $(-1,2,2) \times$ $(2,-1,2)=(6,6,-3)$, and hence we must take

$$
\mathbf{u}_{2}:= \pm \frac{1}{3}(2,2,-1) .
$$

Hence there are 4 choices for the pair $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Once there are made, the requirement that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be right handed forces $\mathbf{u}_{3}=\mathbf{u}_{1} \times \mathbf{u}_{2}$. Hence there are exactly 4 such bases. Choosing the + signs above, we get

$$
\mathbf{u}_{1}=\frac{1}{3}(-1,2,2), \quad \mathbf{u}_{2}:=\frac{1}{3}(2,2,-1), \quad \mathbf{u}_{3}:=\frac{1}{3}(-2,1,-2) .
$$

(b) The equation can be written in the form $\mathbf{u} \cdot \mathbf{x}=0$, where \mathbf{u} is a unit vector that is orthogonal to \mathbf{a} and \mathbf{b}. We have seen that \mathbf{u}_{1} formn part (a) is such a vector. Hence the equation is $\mathbf{u}_{1} \cdot \mathbf{x}=0$ which simplified to

$$
-x+2 y+2 z=0 .
$$

The distance form $(1,1,1)$ to this plane is $\left|\mathbf{u}_{1} \cdot(1,1,1)\right|=1$.
(c) We compute

$$
\|\mathbf{x}(s)-\mathbf{y}(t)\|^{2}=\left\|\left(\mathbf{v}_{1}+s \mathbf{v}_{2}\right)-\left(\mathbf{v}_{2}+t \mathbf{v}_{3}\right)\right\|^{2}=\left\|\mathbf{v}_{1}+(s-1) \mathbf{v}_{2}+t \mathbf{v}_{3}\right\|^{2}=1+(s-1)^{2}+t^{2}
$$

[^0]This is evidently minimized by choosing $s=1$ and $t=0$, and then the distance is 1 .
2: Let $\mathbf{x}(t)$ be the parameterized curve given by

$$
\mathbf{x}(t)=(2 \cos t-2 \sin t, 4 \cos t+2 \sin t,-4 \cos t+\sin t) .
$$

(a) Compute curvature $\kappa(t)$ and torsion $\tau(t)$ as a function of t.
(b) Find the minimum and maximum values of the curvature and the times t at which they occur.
(c) Compute $\mathbf{T}(0) \cdot \mathbf{x}(t), \mathbf{N}(0) \cdot \mathbf{x}(t)$, and $\mathbf{B}(0) \cdot \mathbf{x}(t)$. Find a system of equations that specifries the curve. What kind of curve is it?

SOLUTION (a) We compute

$$
\mathbf{x}^{\prime}(t)=(-2 \sin t-2 \cos t,-4 \sin t+2 \cos t, 4 \sin t+\cos t)
$$

and

$$
\mathrm{x}^{\prime \prime}(t)=(-2 \cos t+2 \sin t,-4 \cos t-2 \sin t, 4 \cos t-\sin t) .
$$

Then $\mathbf{x}^{\prime}(t) \cdot \mathbf{x}^{\prime}(t)=9\left(4-3 \cos ^{2} t\right)$ so that $v(t)=3 \sqrt{4-3 \cos ^{2} t}$. Thus

$$
\mathbf{T}(t)=\frac{1}{3 \sqrt{4-3 \cos ^{2} t}}(-2 \sin t-2 \cos t,-4 \sin t+2 \cos t, 4 \sin t+\cos t)
$$

We next compute

$$
\mathbf{x}^{\prime}(t) \times \mathbf{x}^{\prime \prime}(t)=(12,6,12)=6(2,1,2) .
$$

But $\mathbf{x}^{\prime}(t) \times \mathbf{x}^{\prime \prime}(t)=v^{3}(t) \kappa(t) \mathbf{B}(t)$ and so $v^{3}(t) \kappa(t)=18$ and hence

$$
\kappa(t)=\frac{2}{3\left(4-3 \cos ^{2} t\right)^{3 / 2}} .
$$

From this same computation, we see thar $\mathbf{B}(t)$ is constant, so that $\tau(t)=0$.
(b) The curvature is maximal when $4-3 \cos ^{2} t$ is minimal, which is when $\cos t= \pm 1$, so this means $t=k \pi, k$ and integer.
(c) We have seen above that $\mathbf{x}^{\prime}(0)=(-2,2,1)$, and so $\mathbf{T}(0)=\frac{1}{3}(-2,2,1)$. We have seen that $\mathbf{B}(0)=\frac{1}{3}(2,1,2)$. Finally, $\mathbf{N}(0)=\mathbf{B}(0) \times \mathbf{T}(0)=\frac{1}{3}(-1,-2,2)$. Then

$$
\mathbf{T}(0) \cdot \mathbf{x}(t)=3 \sin t, \quad \mathbf{N}(0) \cdot \mathbf{x}(t)=6 \cos t, \quad \mathbf{B}(0) \cdot \mathbf{x}(t)=0,
$$

and hence

$$
\mathbf{x}(t)=3 \sin t \mathbf{T}(0)+6 \cos t \mathbf{N}(0) .
$$

The curve is an ellipse; a system of equations for the ellipse is

$$
\begin{aligned}
(2 \mathbf{T}(0) \cdot \mathbf{x})^{2}+(\mathbf{N}(0) \cdot \mathbf{x})^{2} & =36 \\
\mathbf{B}(0) \cdot \mathbf{x} & =0
\end{aligned}
$$

3: Let $f(x, y)=2 x^{2} y+y^{2} x-\frac{1}{2} x^{4}$.
(a) Find all of the critical points of f, and find the value of f at each of the critical points.
(b) Find all points on the curve given by $f(x, y)=-\frac{3}{2}$ that lie in the right half plane and at which the tangent line is vertical.
(c) Are there any points on the curve given by $f(x, y)=-\frac{3}{2}$ where this curve crosses itself? If so, find them. If not, explain why not.
(d) For which unit vector \mathbf{u} is $\left.\frac{\mathrm{d}}{\mathrm{d} t} f((1,1)+t \mathbf{u})\right|_{t=0}$ the largest?

SOLUTION (a) We compute

$$
\nabla f(x, y)=\left(-2 x^{3}+4 x y+y^{2}, 2 x^{2}+2 x y\right) .
$$

The critical points are the solutions of

$$
\begin{aligned}
-2 x^{3}+4 x y+y^{2} & =0 \\
2 x(x+y) & =0
\end{aligned}
$$

From the second equation, we see that either $x=0$ or $x+y=0$. If $x=0$, the first equation reduces to $y^{2}=0$, which gives the critical point $\mathbf{x}_{1}:=(0,0)$. If $y=-x$, the first equation becomes $-2 x^{3}-4 x^{2}+x^{2}=0$, or $2 x^{3}+3 x^{2}=0$, and the non-zero root is $x=-3 / 2$. This give the critical point $\mathbf{x}_{2}=(-3 / 2,3 / 2)$. Then $f\left(\mathbf{x}_{1}\right)=0$ and $f\left(\mathbf{x}_{2}\right)=\frac{27}{32}$.
(b) The tangent line is vertical at points (x, y) where $\nabla f(x, y)=(c, 0)$ for some c. From the computations in part (a), this can only happen if $x(x+y)=0$. Since we wnat solutions in the open right half plane, $x=0$ is inadmissible, we need only consider $y=-x$. For $y=-x$, the equation $f(x, y)=-\frac{3}{2}$ reduces to $-x^{3}-\frac{1}{2} x^{4}=-\frac{3}{2}$. This has one obvious root, namely $x=1$. Let $p(x):=-x^{3}-\frac{1}{2} x^{4}$. Then $p^{\prime \prime}(x)=-6\left(x+x^{2}\right)$ which is negative for $x>0$. Hence $p(x)$ is concave on $x>0$, and can only cross the x-axis once. Thus, $x=1$ is the only solution, and since $y=-x$, the only such point is $(1,-1)$.
(c) There are no such points; the curve an only cross itself at critical points, and $-\frac{3}{2}$ is not the value of f at either critical point.
(d) Since $\nabla f(1,1)=(3,4), \mathbf{u}=\|\nabla f(1,1)\|^{-1} \nabla f(1,1)=\frac{1}{5}(3,4)$.

Material from Part 2 of the Course:

4: Let $f(x, y)=2 x^{2} y+y^{2} x-\frac{1}{2} x^{4}$, as in problem 3.
(a) Compute the Hessian of f at each critical point and determine whether each critical point is a local minimum, a local maximum, a saddle point, or if it cannot be classified through a computation of the Hessian.
(b) Sketch a contour plot of f near each critical point of determined type.
(c) For which unit vectors \mathbf{u} is $\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} f((-3 / 2,3 / 2)+t \mathbf{u})\right|_{t=0}$ the largest? For which is it smallest?

SOLUTION (a) We compute $\left[\operatorname{Hess}_{f}(x, y)\right]=\left[\begin{array}{cc}4 y-6 x^{2} & 2 y+4 x \\ 2 y+4 x & 2 x\end{array}\right]$. We have already found that the critical points are $\mathbf{x}_{1}=(0,0)$ and $\mathbf{x}_{2}=(-3 / 2,3 / 2)$. We then compute

$$
\left[\operatorname{Hess}_{f}(0,0)\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad\left[\operatorname{Hess}_{f}(-3 / 2,3 / 2)\right]=-3\left[\begin{array}{cc}
5 & 2 \\
2 & 2
\end{array}\right]
$$

$\left[\operatorname{Hess}_{f}(0,0)\right]$ is degenerate, so the nature of this critical point is not determined by the Hessian. (For $(x, y) \approx(0,0)$, the cubic terms are dominant and the "best cubic approximation to f near $(0,0)$ is given by $h(x, y)=(2 x+y) x y$. Note that $h(x, y)=0$ all along the three lines $x=0, y=0$ and $2 x+y=0$. These three lines divide the plane into 6 sectors meeting at $(0,0)$, one being the usual posiitve quadrant. The function $h(x, y)$ is positive in the positive quadrant, and changes sign each time a line is crossed. Hence it is positive in 3 of the sectors and negative in the other three. The graph of $x=h(x, y)$ is called a "monkey saddle", since it curves downward in 3 directions, two for the two legs and one for the tail of the monkey. This was not a required part of the answer, but going beyond the best quadratic approximation, one can get a pretty good picture of what is happening at the this degenerate crtical point.)
(b) Let $A:=\left[\operatorname{Hess}_{f}(-3 / 2,3 / 2)\right]=-3\left[\begin{array}{ll}5 & 2 \\ 2 & 2\end{array}\right]$. Then $\operatorname{det}(A)=9(10-4)>0$, and the upper-left entry is negative. Thus, by Sylvester's criterion, both eigenvalues are negative, and ($-3 / 2,3 / 2$) is a local maximum.
(c) We only need to deal with $\mathbf{x}_{2}=(-3 / 2,3 / 2)$. We compute that $\operatorname{det}\left(\left[\operatorname{Hess}_{f}(-3 / 2,3 / 2)\right]-t I_{3 \times 3}\right)=$ $t^{2}-\frac{21}{2} t+\frac{27}{2}$. Therefore, the eigenvalues are

$$
\mu_{1}=-\frac{3}{2} \quad \text { and } \quad \mu_{2}=-9
$$

Then $\left[\operatorname{Hess}_{f}(-3 / 2,3 / 2)\right]+\frac{3}{2} I_{3 \times 3}=-\frac{3}{2}\left[\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right]$. Therefore,

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{5}}(-1,2) \quad \text { and } \quad \mathbf{u}_{2}=\frac{1}{\sqrt{5}}(2,1) .
$$

It follows that for $(u, v) \approx(0,0)$,

$$
f\left(\mathbf{x}_{2}+u \mathbf{u}_{1}+v \mathbf{u}_{2}\right)=\frac{27}{32}-\frac{3}{2} u^{2}-9 v^{2}
$$

The level curves of the right hand side are ellipses in the u, v-plane, and the major axis runs along the u-axis. The ratio of the major ot minor axis lengths is $\sqrt{6}$, and the ellipse must show this strong ecentricity to get any credit. The sketch should then show such ellipses centered on the point ($-3 / 2,3 / 2$) and with hte major axis running along the line through the origin and \mathbf{u}_{1}; i.e., the line $y=\frac{1}{2} x$.
(c) By what we have computed in part (b), and by the meaning of the eigenvectors of the Hessian, $\mathbf{u}= \pm \mathbf{u}_{1}$ give the maximum, and $\mathbf{u}= \pm \mathbf{u}_{2}$ give the minimum.
5: (a) Let $f(x, y)=(x+y)^{4}+(x-y)^{2}$. Find the minimum and maximum values of f on the unit circle $x^{2}+y^{2}=1$, and all of the places on the circle at which f takes on these values.
(b) Let \mathcal{S} be closed upper hemisphere of the unit sphere in \mathbb{R}^{3}. Let $f(x, y, z)=x y z$. Find the minimum and maximum values of f on \mathcal{S}, and all of the points at which f takes on these values. Explain how you are taking into account both of the constraints $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$.

SOLUTION (a) Define $g(x, y)=x^{2}+y^{2}$, and then the constraint equation is $g(x, y)=1$. Lagrange's method gives the equations

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{c}
\nabla f \\
\nabla g
\end{array}\right]\right)=8(x+y)^{3}(y-x)+2(x-y)(y+x) & =0 \\
x^{2}+y^{2} & =1
\end{aligned}
$$

If $y=x$, then $x=y= \pm 1 / \sqrt{2}$, where $f(x, y)=(2 / \sqrt{2})^{4}=4$. If $y \neq x$, then we can divide by $y-x$ and 2 to get $4(x+y)^{3}-(x+y)=0$. If $y=-x$ then $y=-x= \pm 1 / \sqrt{2}$, where $f(x, y)=(2 / \sqrt{2})^{2}=2$.

If $y \neq-x$ we can divide further by $x+y$, to get $4(x+y)^{2}-1=0$. Then $x+y= \pm 1 / 2$, $x^{2}+((\pm 1 / 2)-x)^{2}=1,2 x^{2} \pm x-(3 / 4)=0, x=(\pm 1 \pm \sqrt{7}) / 4, y=(\pm 1 \mp \sqrt{7}) / 4, x-y= \pm \sqrt{7} / 2$, $f(x, y)=(1 / 16)+(7 / 4)=29 / 16$.

The maximizers are $\pm(1 / \sqrt{2}, 1 / \sqrt{2})$ with the maximum value 4 .
The minimizers are $\pm((1 \pm \sqrt{7}) / 4,(1 \mp \sqrt{7}) / 4)$ with the minimum value 29/16.
(b) The constraint set is a closed "inverted bowl". In particular, it is compact so there exist maximizers and minimizers. The Lagrange method applied to the hemispherical $x^{2}+y^{2}+z^{2}=1$ will give all possible maximizers and minimizers except possibly on the circular rim $x^{2}+y^{2}=1$, $z=0$, where a separate analysis should be used. The separate analysis is easy, since $x y z=0$ on the circular rim. However, at suitable points of the bowl, xyz will positive, and at other points, $x y z$ will be negative, so we can ignore the circular rim as well as any point where $x y z=0$.

On the hemisphere we use Lagrange multipliers, and solve

$$
\nabla(x y z)=\lambda \nabla\left(x^{2}+y^{2}+z^{2}\right) \text { and } x^{2}+y^{2}+z^{2}=1, z>0 .
$$

This yields

$$
\begin{aligned}
y z & =2 \lambda x \\
x z & =2 \lambda y \\
x y & =2 \lambda z \\
x^{2}+y^{2}+z^{2} & =1
\end{aligned}
$$

Since we can ignore points where x, y, or z is 0 , we can divide by x, y, and z if we wish. This gives $y z / x=2 \lambda=x z / y=x y / z$. Therefore $y / x=x / y$ and $z / y=y / z$. So $x^{2}=y^{2}=z^{2}$. Substituting in the constraint equation, $x^{2}=y^{2}=z^{2}=1 / 3, z=1 / \sqrt{3}$. There are four candidates: $(\pm 1 / \sqrt{3}, \pm 1 / \sqrt{3}, 1 / \sqrt{3})$. The maximizers are $(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})$ and $(-1 / \sqrt{3},-1 / \sqrt{3}, 1 / \sqrt{3})$, where $x y z=1 / 3 \sqrt{3}$. The other two candidates are minimizers, with $x y z=-1 / 3 \sqrt{3}$.
6: (a) Let D be the set in the positive quadrant of \mathbb{R}^{2} that bounded by

$$
x^{2}+9 y^{2}=10 \quad \text { and } \quad x y=1 .
$$

Let $f(x, y)=x y$. Compute $\int_{D} f(x, y) \mathrm{d} A$.
(b) Let D be the set in \mathbb{R}^{2} that is given by

$$
x^{2} \leq y \leq 2 x^{2} \quad \text { and } \quad x^{3} \leq y \leq 2 x^{3} .
$$

Let $f(x, y)=\frac{x}{y}$. Compute $\int_{D} f(x, y) \mathrm{d} A$.
SOLUTION (a) Substituting $y=1 / x$ into $x^{2}+9 y^{2}=10$ and multiplying through by x^{2} gives $x^{4}+9=10 x^{2}$, or $\left(x^{2}-5\right)=25-9=16$. Hence $x^{3}=5 \pm 4$, and since $x>0, x=1$ or $x=3$. Hence the regoing consists of the points (x, y) satisfying

$$
1 \leq x \leq 3 \quad \text { and } \quad 1 / x \leq y \leq \frac{1}{3} \sqrt{10-x^{2}}
$$

Therefore,

$$
\begin{aligned}
\int_{D} f(x, y) \mathrm{d} A & =\int_{1}^{3}\left(\int_{1 / x}^{\frac{1}{3} \sqrt{10-x^{2}}} y \mathrm{~d} y\right) x \mathrm{~d} x \\
& =\frac{1}{2} \int_{1}^{3}\left(\frac{10 x-x^{3}}{9}-1 / x\right) \mathrm{d} x \\
& =\frac{10}{9}-\frac{1}{2} \ln (3)
\end{aligned}
$$

(b) Introduce the variables $u=y / x^{2}$ and $v=y / x^{3}$. Then $x=u / v$ and $y=u^{3} / v^{2}$, and

$$
\left[D_{\mathbf{x}}(u, v)\right]\left[\begin{array}{cc}
1 / v & -u / v^{2} \\
3 u^{2} / v^{2} & -2 u^{3} / v^{3}
\end{array}\right]
$$

and hence

$$
\mathrm{d} x \mathrm{~d} y=\frac{u^{3}}{v^{4}} \mathrm{~d} u \mathrm{~d} v .
$$

Then we have $f(x(u, v), y(u, v))=v / u^{2}$ and $1 \leq u, v \leq 2$. Hence

$$
\int_{D} f(x, y) \mathrm{d} A=\int_{1}^{2}\left(\int_{1}^{2} \frac{v}{u^{2}} \frac{u^{3}}{v^{4}} \mathrm{~d} u\right) \mathrm{d} v=\left(\int_{1}^{2} u \mathrm{~d} u\right)\left(\int_{1}^{2} \frac{1}{v^{3}} \mathrm{~d} v\right)=\frac{3}{2} \frac{3}{8}=\frac{9}{16} .
$$

7: Let \mathcal{S} be the triangle in \mathbb{R}^{3} with vertices $(0,4,1),(1,0,2)$ and $(0,0,3)$.
(a) Find a parameterization of the surface \mathcal{S}.
(b) Let $f(x, y, z)=x y z$. Compute $\int_{\mathcal{S}} f \mathrm{~d} S$.

SOLUTION (a) Taking $(0,0,3)$ as a base point, the the two edges of the triangle meeting at $(0,0,3)$ are the segments running from $(0,0,3)$ to $(0,4,1)$ and from $(0,0,3)$ to $(1,0,2)$ respectively. Let $\mathbf{x}_{0}=(0,0,3), \mathbf{v}=(0,4,-2)$ and $\mathbf{w}=(1,0,-1)$. Let $0 \leq t \leq 1$, and let $\mathbf{x}_{1}(t)=\mathbf{x}_{0}+t \mathbf{v}$ and $\mathbf{x}_{2}(t)=\mathbf{x}_{0}+t \mathbf{w}$. These segments trace out two sides of the tirangle. To get the triangle, joint them up with a segment parameterized by $0 \leq s \leq 1$:

$$
\mathbf{X}(s, t)=(1-s) \mathbf{x}_{1}(t)+s \mathbf{x}_{2}(t)=\mathbf{x}_{0}+(1-s) t \mathbf{v}+s t \mathbf{w}=(s t, 4(1-s) t, 3-2 t+s t),
$$

with $0 \leq s, t \leq 1$.
We can also get a parameterization from the equation of the plane that contains the triangle. Since $\mathbf{v} \times \mathbf{w}=-2(2,1,2)$, the equation is $(2,1,2) \cdot(x, y, z-3)=0$, which is $2 x+y+2 z=6$, or $z=3-x-\frac{y}{2}$. The triangle is the graph of $z=3-x-\frac{y}{2}$ for x, y belonging to D, the triangle in
the x, y plane that has vertices $(0,4),(1,0)$, and $(0,0)$. The bounding lines are $x=0, y=0$ and $y=4-4 x$, and D is givne by

$$
0 \leq x \leq 1 \quad \text { and } \quad 0 \leq y \leq 4(1-x) .
$$

(b) The limits are simplest for the first paprameterization, so we use this first: Then we have $0 \leq s, t \leq 1$, and

$$
\mathbf{X}_{s}(s, t)=(t,-4 t, t) \quad \text { and } \quad \mathbf{X}_{t}(s, t)=(s, 4(1-s), s-2) .
$$

Therefore,

$$
\mathbf{X}_{s} \times \mathbf{X}_{t}=2 t(2,1,2)
$$

and hence $\left\|\mathbf{X}_{s} \times \mathbf{X}_{t}\right\|=6 t$, and then $\mathrm{d} S=6 \mathrm{~d} s \mathrm{~d} t$. Finally, $f(\mathbf{X}(s, t))=4 s(1-s) t^{2}(3-2 t+s t)$. Hence

$$
\int_{\mathcal{S}} f \mathrm{~d} S=6 \int_{0}^{1}\left(\int_{0}^{1} 4 s(1-s) t^{3}(3-2 t+s t) \mathrm{d} s\right) \mathrm{d} t=\int_{0}^{1}\left(12 t^{3}-6 t^{4}\right) \mathrm{d} t=\frac{9}{5}
$$

We now do the integral using the second paprameterization $\mathbf{X}(x, y)=\left(x, y, 3-x-\frac{y}{2}\right)$. We obtain

$$
\mathbf{X}_{x} \times \mathbf{X}_{y}=(1,0,-1) \times\left(0,1,-\frac{1}{2}\right)=\left(1, \frac{1}{2}, 1\right)
$$

so $\left\|\mathbf{X}_{x} \times \mathbf{X}_{y}\right\|=\frac{3}{2}$ is constant. Then

$$
\begin{aligned}
\int_{\mathcal{S}} x y z \mathrm{~d} S=\int_{D} x y\left(3-x-\frac{y}{2}\right) \frac{3}{2} \mathrm{~d} A & =\int_{0}^{1}\left(\int_{0}^{4-4 x} \frac{18 x y-6 x^{2} y-3 x y^{2}}{4} \mathrm{~d} y\right) \mathrm{d} x \\
& =4 \int_{0}^{1}\left(x(x+5)(x-1)^{2}\right) \mathrm{d} x=\frac{9}{5}
\end{aligned}
$$

as we found before.

Material from Part 3 of the Course:

8: Consider the two vector fields

$$
\mathbf{F}=\left(2 x y z-y^{2}, x^{2} z-2 x y, x^{2} y\right) \quad \text { and } \quad \mathbf{G}=\left(2 y z-y^{2}, x^{2} z-2 x, x^{2} y\right)
$$

(a) Compute the divergence and curl of \mathbf{F} and \mathbf{G}.
(b) Let \mathcal{S} be the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the x, y plane. Compute

$$
\int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N} \mathrm{d} S
$$

(c) One of the vector fields \mathbf{F} and \mathbf{G} is equal to $\nabla \varphi$ for some potential function φ. Which one is it? Find such a potential function.
(d) One of the vector fields \mathbf{F} and \mathbf{G} is equal to curl \mathbf{A} for some vector potential \mathbf{A}. Which one is it? Find such a vector potential.
(e) Let C be the curve that is parametrized by

$$
\mathbf{x}(t)=\left(t^{3}-2 t^{2}, t-4 t^{2}, t+t^{3}\right) \quad \text { for } \quad 0 \leq t \leq 1
$$

Compute $\int_{C} \mathbf{F} \cdot \mathbf{T} \mathrm{~d} s$, giving the exact numerical value.
SOLUTION (a) We compute

$$
\operatorname{curl} \mathbf{F}(x, y, z)=\mathbf{0} \quad \text { and } \quad \operatorname{div} \mathbf{F}(x, y, z)=2 y z-2 x,
$$

and also

$$
\operatorname{curl} \mathbf{G}(x, y, z)=(0,-2 x y+2 y, 2 x z+2 y-2 z-2) \quad \text { and } \quad \operatorname{div} \mathbf{G}(x, y, z)=0,
$$

(b) Let $\widetilde{\mathcal{S}}$ be the unit disk in the x, y plane. Then $\mathcal{S} \cup \widetilde{\mathcal{S}}$ bound \mathcal{V}, the set of points (x, y, z) that lies above the x, y plane and be low the grapho of $z=1-x^{2}-y^{2}$. By the Divergence Theorem,

$$
\int_{\mathcal{V}} \operatorname{div} \mathbf{G}(\mathbf{x}) \mathrm{d} V=\int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N}(\mathbf{x}) \mathrm{d} S+\int_{\tilde{\mathcal{S}}} \mathbf{G} \cdot \mathbf{N}(\mathbf{x}) \mathrm{d} S .
$$

Since $\operatorname{div} \mathbf{G}(x, y, z)=0$,

$$
\int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N}(\mathbf{x}) \mathrm{d} S=-\int_{\tilde{\mathcal{S}}} \mathbf{G} \cdot \mathbf{N}(\mathbf{x}) \mathrm{d} S
$$

On $\widetilde{\mathcal{S}}, z=0$ and hence $\mathbf{G}=\left(-y^{2},-2 x, x^{2} y\right)$. Morover, on $\widetilde{\mathcal{S}}$, the outward norm \mathbf{N} is the constant vector $(0,0,-1)$. Hence on $\widetilde{\mathcal{S}}, \mathbf{G} \cdot \mathbf{N}(\mathbf{x})=-x^{2} y$. Therefore, with D denoting the unit disk in the x, y plane,

$$
\int_{\tilde{\mathcal{S}}} \mathbf{G} \cdot \mathbf{N}(\mathbf{x}) \mathrm{d} S=-\int_{D} x^{2} y \mathrm{~d} A=0
$$

by symmetry - the integrand is an odd function of y. We conclude that $\int_{\mathcal{S}} \mathbf{G} \cdot \mathbf{N} \mathrm{d} S=0$.
(c) Since curl $\mathbf{F}=\mathbf{0}$, it is \mathbf{F}. Integrating, we find $\mathbf{F}(x, y, z)=\nabla \varphi(x, y, z)$ where $\varphi(x, y, z)=$ $x^{2} y z-y^{2} x$.
(d) Since $\operatorname{div} \mathbf{G}=0$, it is \mathbf{G}. Integrating, we find $\mathbf{G}(x, y, z)=\operatorname{curl} \mathbf{A}(x, y, z)$ where $\mathbf{A}(x, y, z)=$ $(F 9 x, y, z), 0 H(x, y, z))$ and

$$
\begin{aligned}
F(x, y, z) & =-\int_{0}^{y} R(x, t, z) \mathrm{d} t+\int_{0}^{z} Q(x, 0, t) \mathrm{d} t \\
& =-x^{2} \int_{0}^{y} t \mathrm{~d} t+\int_{0}^{z}\left(x^{2} t-2 x\right) \mathrm{d} t=\frac{x^{2}}{2}\left(z^{2}-y^{2}\right)-2 x z \\
H(x, y, z) & =\int_{0}^{y} P(x, t, z) \mathrm{d} t=\int_{0}^{y}\left(2 z t-t^{2}\right) \mathrm{d} t=y^{2} z-\frac{1}{3} y^{3} .
\end{aligned}
$$

Therefore,

$$
\mathbf{A}(x, y, z)=\left(\frac{1}{2} x^{2}\left(z^{2}-y^{2}\right)-2 x z, 0, y^{2} z-\frac{1}{3} y^{3}\right) .
$$

(d) Since $\mathbf{F}=\nabla \varphi$ where $\varphi(x, y, z)=x^{2} y z-y^{2} x$,

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} \mathrm{~d} s=\varphi(\mathbf{x}(1))-\varphi(\mathbf{x}(0))=\varphi(-1,-3,2)=3
$$

9: (a) Let \mathcal{S} be the part of the surface in \mathbb{R}^{3} given by $\sqrt{x^{2}+y^{2}}=10-z^{3}$ that lies inside the cylinder $x^{2}+y^{2}=4$. Let $\mathbf{F}=\left(2 y z-y^{2}, x^{2} z-2 x, z\right)$. Compute the flux

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S
$$

where \mathbf{N} is taken to point upward.
(b) Let C be the contour that runs from $(0,0,0)$ to $(0,1,2)$, and from there to $(2,3,2)$, and from there back to $(0,0,0)$. Let $\mathbf{G}=(z, x, y)$. Compute the total circulation

$$
\int_{C} \mathbf{G} \cdot \mathbf{T} \mathrm{~d} s
$$

SOLUTION (a) We compute $\operatorname{div} \mathbf{F}(x, y, z)=1$. Since this is quite simple, we can avoid parameterizing the surface.

The surface meets the cylinder when $\sqrt{4}=10-z^{3}$, so that $z=2$. Let \mathcal{V} be the region lying below the graph of $\sqrt{x^{2}+y^{2}}=10-z^{3}$ and above the plane $z=2$. Let $\widetilde{\mathcal{S}}$ be the part of this plane lying inside the cyliner, equipped with the downward unit notmal \mathbf{N}. Then $\mathcal{S} \cup \widetilde{\mathcal{S}}$ is the boundary of \mathcal{V}. By the Divergence Theorem and the fact that $\operatorname{div} \mathbf{F}(x, y, z)=1$,

$$
\int_{\mathcal{V}} \mathrm{d} V=\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S+\int_{\tilde{\mathcal{S}}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S
$$

To do the volume integral, note that in cylindrical coordinates,

$$
0 \leq \theta \leq 2 \pi, \quad 0<r<2 \quad \text { and } \quad 2 \leq z \leq(10-r)^{1 / 3}
$$

Hence

$$
\int_{\mathcal{V}} \mathrm{d} V=2 \pi \int_{0}^{2}\left((10-r)^{1 / 3}-2\right) r \mathrm{~d} r=2 \pi \int_{0}^{2}(10-r)^{1 / 3} r \mathrm{~d} r-8 \pi .
$$

Next, everyhere on $\widetilde{\mathcal{S}}, \mathbf{N}=(0,0,-1)$ and $z=2$. Therefore, everywhere on $\widetilde{\mathcal{S}}, \mathbf{F} \cdot \mathbf{N}=-2$. Since $\widetilde{\mathcal{S}}$ is a disk of radius 2 ,

$$
\int_{\widetilde{\mathcal{S}}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S=-8 \pi
$$

Hence

$$
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \mathrm{d} S=8 \pi+2 \pi \int_{0}^{2}(10-r)^{1 / 3} r \mathrm{~d} r-8 \pi=2 \pi \int_{0}^{2}(10-r)^{1 / 3} r \mathrm{~d} r=\frac{2 \pi}{7}\left(10^{1 / 3} 225-456\right) .
$$

If one does this directly, the surface is parameterized by

$$
\mathbf{X}(r, \theta)=\left(r \cos \theta, r \sin \theta,(10-r)^{1 / 3}\right), \quad 0 \leq \theta \leq 2 \pi, \quad 0<r<2 .
$$

Then

$$
\mathbf{X}_{r} \times \mathbf{X}_{\theta}(r, \theta)=\frac{1}{3}(10-r)^{-2 / 3}\left(r \cos \theta, r \sin \theta, 3 r(10-r)^{2 / 3}\right) .
$$

Then

$$
\mathbf{F}(\mathbf{X}(r, \theta))=\left(2 r \sin \theta(10-r)^{1 / 3}-r^{2} \sin ^{2} \theta, r^{2} \cos ^{2} \theta(10-r)^{1 / 3}-2 r \cos \theta,(10-r)^{1 / 3}\right) .
$$

Then, on \mathcal{S},

$$
\mathbf{F} \cdot \mathbf{N} \mathrm{d} S=\mathbf{F}(\mathbf{X}(r, \theta)) \cdot \mathbf{X}_{r} \times \mathbf{X}_{\theta}(r, \theta) \mathrm{d} r \mathrm{~d} \theta,
$$

and this is integrated over $0 \leq \theta \leq 2 \pi, \quad 0<r<2$. The integration in θ will eliminate all the terms that explicitly depend on θ since, e.g., $\int_{0}^{2 \pi} \sin \theta \cos \theta \mathrm{~d} \theta=0$. We are then left with

$$
\mathbf{F} \cdot \mathbf{N d} S=2 \pi \int_{0}^{2}(10-r)^{1 / 3} r \mathrm{~d} r=\frac{2 \pi}{7}\left(10^{1 / 3} 225-456\right),
$$

exactly as we found above.
(b) We compute $\operatorname{curl} \mathbf{G}(x, y, z)=(1,1,1)$. The curve bounds a triangle whose normal in the plane through the origin that is normal to $(0,1,2) \times(2,3,2)=(-4,4,-2)$. The curve goes around the triangle clockwise when viewed from above, so the normal that is consistent with this orientation is the downward normal, which is

$$
\mathbf{N}=\frac{1}{3}(-2,2,-1) .
$$

Hence curlG $\cdot \mathbf{N}=(1,1,1) \cdot \frac{1}{3}(-2,2,-1)=-\frac{1}{3}$ everywhere on the tirangle, and since the area of the triangle is $\frac{1}{2}\|(0,1,2) \times(2,3,2)\|=\|-2,2,-1\|=3$, we have by Stokes' Theorem that

$$
\int_{C} \mathbf{G} \cdot \mathbf{T} \mathrm{~d} s=-1 .
$$

[^0]: ${ }^{1}$ © 2017 by the author.

