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Material from Part 1 of the Course:

1: (a) Let a = (2,−2, 3) and b = (2,−1, 2). Find a right-handed orthonormal basis {u1,u2,u3} of

R3 such that u1 is orthogonal to both a and b, and u2 is orthogonal to b. How many such bases

are there?

(b ) Find an equation for the plane through the origin that is spanned by a and b; i.e., the plane

parameteried by x(s, t) = sa + tb, (s, t) ∈ R2. Also, compute the distance between (1, 1, 1) and

this plane.

(c) Let {v1,v2,v3} be any orthonormal set of vectors. Compute the distance between the lines

parameterized by x(s) = v1+sv2 and y(t) = v2+tv3. This does not require any long computations!

SOLUTION (a) We conpute a× b = (−1, 2, 2) hence we must take

u1 = ±1

3
(−1, 2, 2) .

Then since u2 is required to be orthogonal to u1 and b, it must be a multiple of (−1, 2, 2) ×
(2,−1, 2) = (6, 6,−3), and hence we must take

u2 := ±1

3
(2, 2,−1) .

Hence there are 4 choices for the pair {u1,u2}. Once there are made, the requirement that

{u1,u2,u3} be right handed forces u3 = u1 × u2. Hence there are exactly 4 such bases. Choosing

the + signs above, we get

u1 =
1

3
(−1, 2, 2) , u2 :=

1

3
(2, 2,−1) , u3 :=

1

3
(−2, 1,−2) .

(b ) The equation can be written in the form u ·x = 0, where u is a unit vector that is orthogonal

to a and b. We have seen that u1 formn part (a) is such a vector. Hence the equation is u1 ·x = 0

which simplified to

−x+ 2y + 2z = 0 .

The distance form (1, 1, 1) to this plane is |u1 · (1, 1, 1)| = 1.

(c) We compute

‖x(s)− y(t)‖2 = ‖(v1 + sv2)− (v2 + tv3)‖2 = ‖v1 + (s− 1)v2 + tv3‖2 = 1 + (s− 1)2 + t2 .

1 c© 2017 by the author.
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This is evidently minimized by choosing s = 1 and t = 0, and then the distance is 1.

2: Let x(t) be the parameterized curve given by

x(t) = (2 cos t− 2 sin t, 4 cos t+ 2 sin t,−4 cos t+ sin t) .

(a) Compute curvature κ(t) and torsion τ(t) as a function of t.

(b) Find the minimum and maximum values of the curvature and the times t at which they occur.

(c) Compute T(0) ·x(t), N(0) ·x(t), and B(0) ·x(t). Find a system of equations that specifries the

curve. What kind of curve is it?

SOLUTION (a) We compute

x′(t) = (−2 sin t− 2 cos t,−4 sin t+ 2 cos t, 4 sin t+ cos t)

and

x′′(t) = (−2 cos t+ 2 sin t,−4 cos t− 2 sin t, 4 cos t− sin t) .

Then x′(t) · x′(t) = 9(4− 3 cos2 t) so that v(t) = 3
√

4− 3 cos2 t. Thus

T(t) =
1

3
√

4− 3 cos2 t
(−2 sin t− 2 cos t,−4 sin t+ 2 cos t, 4 sin t+ cos t) .

We next compute

x′(t)× x′′(t) = (12, 6, 12) = 6(2, 1, 2) .

But x′(t)× x′′(t) = v3(t)κ(t)B(t) and so v3(t)κ(t) = 18 and hence

κ(t) =
2

3(4− 3 cos2 t)3/2
.

From this same computation, we see thar B(t) is constant, so that τ(t) = 0.

(b) The curvature is maximal when 4−3 cos2 t is minimal, which is when cos t = ±1, so this means

t = kπ, k and integer.

(c) We have seen above that x′(0) = (−2, 2, 1), and so T(0) = 1
3(−2, 2, 1). We have seen that

B(0) = 1
3(2, 1, 2). Finally, N(0) = B(0)×T(0) = 1

3(−1,−2, 2). Then

T(0) · x(t) = 3 sin t , N(0) · x(t) = 6 cos t , B(0) · x(t) = 0 ,

and hence

x(t) = 3 sin tT(0) + 6 cos tN(0) .

The curve is an ellipse; a system of equations for the ellipse is

(2T(0) · x)2 + (N(0) · x)2 = 36

B(0) · x = 0 .

3: Let f(x, y) = 2x2y + y2x− 1

2
x4.

(a) Find all of the critical points of f , and find the value of f at each of the critical points.
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(b) Find all points on the curve given by f(x, y) = −3
2 that lie in the right half plane and at which

the tangent line is vertical.

(c) Are there any points on the curve given by f(x, y) = −3
2 where this curve crosses itself? If so,

find them. If not, explain why not.

(d) For which unit vector u is
d

dt
f
(
(1, 1) + tu

)∣∣∣∣
t=0

the largest?

SOLUTION (a) We compute

∇f(x, y) = (−2x3 + 4xy + y2, 2x2 + 2xy) .

The critical points are the solutions of

−2x3 + 4xy + y2 = 0

2x(x+ y) = 0 .

From the second equation, we see that either x = 0 or x + y = 0. If x = 0, the first equation

reduces to y2 = 0, which gives the critical point x1 := (0, 0). If y = −x, the first equation becomes

−2x3 − 4x2 + x2 = 0, or 2x3 + 3x2 = 0, and the non-zero root is x = −3/2. This give the critical

point x2 = (−3/2, 3/2). Then f(x1) = 0 and f(x2) = 27
32 .

(b) The tangent line is vertical at points (x, y) where ∇f(x, y) = (c, 0) for some c. From the

computations in part (a), this can only happen if x(x + y) = 0. Since we wnat solutions in the

open right half plane, x = 0 is inadmissible, we need only consider y = −x. For y = −x, the

equation f(x, y) = −3
2 reduces to −x3 − 1

2x
4 = −3

2 . This has one obvious root, namely x = 1. Let

p(x) := −x3 − 1
2x

4. Then p′′(x) = −6(x + x2) which is negative for x > 0. Hence p(x) is concave

on x > 0, and can only cross the x-axis once. Thus, x = 1 is the only solution, and since y = −x,

the only such point is (1,−1).

(c) There are no such points; the curve an only cross itself at critical points, and −3
2 is not the

value of f at either critical point.

(d) Since ∇f(1, 1) = (3, 4), u = ‖∇f(1, 1)‖−1∇f(1, 1) = 1
5(3, 4).

Material from Part 2 of the Course:

4: Let f(x, y) = 2x2y + y2x− 1

2
x4, as in problem 3.

(a) Compute the Hessian of f at each critical point and determine whether each critical point is a

local minimum, a local maximum, a saddle point, or if it cannot be classified through a computation

of the Hessian.

(b) Sketch a contour plot of f near each critical point of determined type.

(c) For which unit vectors u is
d2

dt2
f((−3/2, 3/2) + tu)

∣∣∣∣
t=0

the largest? For which is it smallest?

SOLUTION (a) We compute [Hessf (x, y)] =

[
4y − 6x2 2y + 4x

2y + 4x 2x

]
. We have already found

that the critical points are x1 = (0, 0) and x2 = (−3/2, 3/2). We then compute

[Hessf (0, 0)] =

[
0 0

0 0

]
and [Hessf (−3/2, 3/2)] = −3

[
5 2

2 2

]
.
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[Hessf (0, 0)] is degenerate, so the nature of this critical point is not determined by the Hessian.

(For (x, y) ≈ (0, 0), the cubic terms are dominant and the “best cubic approximation to f near

(0, 0) is given by h(x, y) = (2x+ y)xy. Note that h(x, y) = 0 all along the three lines x = 0, y = 0

and 2x + y = 0. These three lines divide the plane into 6 sectors meeting at (0, 0), one being the

usual posiitve quadrant. The function h(x, y) is positive in the positive quadrant, and changes sign

each time a line is crossed. Hence it is positive in 3 of the sectors and negative in the other three.

The graph of x = h(x, y) is called a “monkey saddle”, since it curves downward in 3 directions, two

for the two legs and one for the tail of the monkey. This was not a required part of the answer,

but going beyond the best quadratic approximation, one can get a pretty good picture of what is

happening at the this degenerate crtical point.)

(b) Let A := [Hessf (−3/2, 3/2)] = −3

[
5 2

2 2

]
. Then det(A) = 9(10− 4) > 0, and the upper-left

entry is negative. Thus, by Sylvester’s criterion, both eigenvalues are negative, and (−3/2, 3/2) is

a local maximum.

(c) We only need to deal with x2 = (−3/2, 3/2). We compute that det([Hessf (−3/2, 3/2)]−tI3×3) =

t2 − 21
2 t+ 27

2 . Therefore, the eigenvalues are

µ1 = −3

2
and µ2 = −9 .

Then [Hessf (−3/2, 3/2)] + 3
2I3×3 = −3

2

[
4 2

2 1

]
. Therefore,

u1 =
1√
5

(−1, 2) and u2 =
1√
5

(2, 1) .

It follows that for (u, v) ≈ (0, 0),

f(x2 + uu1 + vu2) =
27

32
− 3

2
u2 − 9v2

The level curves of the right hand side are ellipses in the u, v-plane, and the major axis runs along

the u-axis. The ratio of the major ot minor axis lengths is
√

6, and the ellipse must show this

strong ecentricity to get any credit. The sketch should then show such ellipses centered on the

point (−3/2, 3/2) and with hte major axis running along the line through the origin and u1; i.e.,

the line y = 1
2x.

(c) By what we have computed in part (b), and by the meaning of the eigenvectors of the Hessian,

u = ±u1 give the maximum, and u = ±u2 give the minimum.

5: (a) Let f(x, y) = (x+ y)4 + (x− y)2. Find the minimum and maximum values of f on the unit

circle x2 + y2 = 1, and all of the places on the circle at which f takes on these values.

(b) Let S be closed upper hemisphere of the unit sphere in R3. Let f(x, y, z) = xyz. Find the

minimum and maximum values of f on S, and all of the points at which f takes on these values.

Explain how you are taking into account both of the constraints x2 + y2 + z2 = 1 and z ≥ 0.
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SOLUTION (a) Define g(x, y) = x2 + y2, and then the constraint equation is g(x, y) = 1.

Lagrange’s method gives the equations

det

([
∇f
∇g

])
= 8(x+ y)3(y − x) + 2(x− y)(y + x) = 0

x2 + y2 = 1

If y = x, then x = y = ±1/
√

2, where f(x, y) = (2/
√

2)4 = 4. If y 6= x, then we can divide

by y − x and 2 to get 4(x + y)3 − (x + y) = 0. If y = −x then y = −x = ±1/
√

2, where

f(x, y) = (2/
√

2)2 = 2.

If y 6= −x we can divide further by x + y, to get 4(x + y)2 − 1 = 0. Then x + y = ±1/2,

x2 + ((±1/2)− x)2 = 1, 2x2 ± x− (3/4) = 0, x = (±1±
√

7)/4, y = (±1∓
√

7)/4, x− y = ±
√

7/2,

f(x, y) = (1/16) + (7/4) = 29/16.

The maximizers are ±(1/
√

2, 1/
√

2) with the maximum value 4.

The minimizers are ±((1±
√

7)/4, (1∓
√

7)/4) with the minimum value 29/16.

(b) The constraint set is a closed “inverted bowl”. In particular, it is compact so there exist

maximizers and minimizers. The Lagrange method applied to the hemispherical x2 + y2 + z2 = 1

will give all possible maximizers and minimizers except possibly on the circular rim x2 + y2 = 1,

z = 0, where a separate analysis should be used. The separate analysis is easy, since xyz = 0 on

the circular rim. However, at suitable points of the bowl, xyz will positive, and at other points,

xyz will be negative, so we can ignore the circular rim as well as any point where xyz = 0.

On the hemisphere we use Lagrange multipliers, and solve

∇(xyz) = λ∇(x2 + y2 + z2) and x2 + y2 + z2 = 1, z > 0.

This yields

yz = 2λx

xz = 2λy

xy = 2λz

x2 + y2 + z2 = 1

Since we can ignore points where x, y, or z is 0, we can divide by x, y, and z if we wish. This

gives yz/x = 2λ = xz/y = xy/z. Therefore y/x = x/y and z/y = y/z. So x2 = y2 = z2. Substi-

tuting in the constraint equation, x2 = y2 = z2 = 1/3, z = 1/
√

3. There are four candidates:

(±1/
√

3,±1/
√

3, 1/
√

3). The maximizers are (1/
√

3, 1/
√

3, 1/
√

3) and (−1/
√

3,−1/
√

3, 1/
√

3),

where xyz = 1/3
√

3. The other two candidates are minimizers, with xyz = −1/3
√

3.

6: (a) Let D be the set in the positive quadrant of R2 that bounded by

x2 + 9y2 = 10 and xy = 1 .

Let f(x, y) = xy. Compute
∫
D f(x, y)dA.

(b) Let D be the set in R2 that is given by

x2 ≤ y ≤ 2x2 and x3 ≤ y ≤ 2x3 .
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Let f(x, y) =
x

y
. Compute

∫
D f(x, y)dA.

SOLUTION (a) Substituting y = 1/x into x2 + 9y2 = 10 and multiplying through by x2 gives

x4 + 9 = 10x2, or (x2− 5) = 25− 9 = 16. Hence x3 = 5± 4, and since x > 0, x = 1 or x = 3. Hence

the regoing consists of the points (x, y) satisfying

1 ≤ x ≤ 3 and 1/x ≤ y ≤ 1

3

√
10− x2 .

Therefore, ∫
D
f(x, y)dA =

∫ 3

1

(∫ 1
3

√
10−x2

1/x
ydy

)
xdx

=
1

2

∫ 3

1

(
10x− x3

9
− 1/x

)
dx

=
10

9
− 1

2
ln(3) .

(b) Introduce the variables u = y/x2 and v = y/x3. Then x = u/v and y = u3/v2, and

[Dx(u, v)]

[
1/v −u/v2

3u2/v2 −2u3/v3

]

and hence

dxdy =
u3

v4
dudv .

Then we have f(x(u, v), y(u, v)) = v/u2 and 1 ≤ u, v ≤ 2. Hence∫
D
f(x, y)dA =

∫ 2

1

(∫ 2

1

v

u2
u3

v4
du

)
dv =

(∫ 2

1
udu

)(∫ 2

1

1

v3
dv

)
=

3

2

3

8
=

9

16
.

7: Let S be the triangle in R3 with vertices (0, 4, 1), (1, 0, 2) and (0, 0, 3).

(a) Find a parameterization of the surface S.

(b) Let f(x, y, z) = xyz. Compute
∫
S fdS.

SOLUTION (a) Taking (0, 0, 3) as a base point, the the two edges of the triangle meeting at

(0, 0, 3) are the segments running from (0, 0, 3) to (0, 4, 1) and from (0, 0, 3) to (1, 0, 2) respectively.

Let x0 = (0, 0, 3), v = (0, 4,−2) and w = (1, 0,−1). Let 0 ≤ t ≤ 1, and let x1(t) = x0 + tv and

x2(t) = x0 + tw. These segments trace out two sides of the tirangle. To get the triangle, joint them

up with a segment parameterized by 0 ≤ s ≤ 1:

X(s, t) = (1− s)x1(t) + sx2(t) = x0 + (1− s)tv + stw = (st, 4(1− s)t, 3− 2t+ st) ,

with 0 ≤ s, t ≤ 1.

We can also get a parameterization from the equation of the plane that contains the triangle.

Since v ×w = −2(2, 1, 2), the equation is (2, 1, 2) · (x, y, z − 3) = 0, which is 2x + y + 2z = 6, or

z = 3 − x − y
2 . The triangle is the graph of z = 3 − x − y

2 for x, y belonging to D, the triangle in
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the x, y plane that has vertices (0, 4), (1, 0), and (0, 0). The bounding lines are x = 0, y = 0 and

y = 4− 4x, and D is givne by

0 ≤ x ≤ 1 and 0 ≤ y ≤ 4(1− x) .

(b) The limits are simplest for the first paprameterization, so we use this first: Then we have

0 ≤ s, t ≤ 1, and

Xs(s, t) = (t,−4t, t) and Xt(s, t) = (s, 4(1− s), s− 2) .

Therefore,

Xs ×Xt = 2t(2, 1, 2) ,

and hence ‖Xs ×Xt‖ = 6t, and then dS = 6dsdt. Finally, f(X(s, t)) = 4s(1 − s)t2(3 − 2t + st).

Hence ∫
S
fdS = 6

∫ 1

0

(∫ 1

0
4s(1− s)t3(3− 2t+ st)ds

)
dt =

∫ 1

0

(
12t3 − 6t4

)
dt =

9

5
.

We now do the integral using the second paprameterization X(x, y) = (x, y, 3 − x − y
2 ). We

obtain

Xx ×Xy = (1, 0,−1)× (0, 1,−1
2) = (1, 12 , 1)

so ‖Xx ×Xy‖ = 3
2 is constant. Then∫

S
xyz dS =

∫
D
xy
(

3− x− y

2

) 3

2
dA =

∫ 1

0

(∫ 4−4x

0

18xy − 6x2y − 3xy2

4
dy

)
dx

= 4

∫ 1

0

(
x(x+ 5)(x− 1)2

)
dx =

9

5
,

as we found before.

Material from Part 3 of the Course:

8: Consider the two vector fields

F = (2xyz − y2, x2z − 2xy, x2y) and G = (2yz − y2, x2z − 2x, x2y) .

(a) Compute the divergence and curl of F and G.

(b) Let S be the part of the paraboloid z = 1− x2 − y2 that lies above the x, y plane. Compute∫
S
G ·NdS .

(c) One of the vector fields F and G is equal to ∇ϕ for some potential function ϕ. Which one is

it? Find such a potential function.

(d) One of the vector fields F and G is equal to curlA for some vector potential A. Which one is

it? Find such a vector potential.



8

(e) Let C be the curve that is parametrized by

x(t) = (t3 − 2t2, t− 4t2, t+ t3) for 0 ≤ t ≤ 1 .

Compute

∫
C
F ·Tds, giving the exact numerical value.

SOLUTION (a) We compute

curlF(x, y, z) = 0 and divF(x, y, z) = 2yz − 2x ,

and also

curlG(x, y, z) = (0,−2xy + 2y, 2xz + 2y − 2z − 2) and divG(x, y, z) = 0,

(b) Let S̃ be the unit disk in the x, y plane. Then S ∪ S̃ bound V, the set of points (x, y, z) that

lies above the x, y plane and be low the grapho of z = 1− x2 − y2. By the Divergence Theorem,∫
V

divG(x)dV =

∫
S
G ·N(x)dS +

∫
S̃
G ·N(x)dS .

Since divG(x, y, z) = 0, ∫
S
G ·N(x)dS = −

∫
S̃
G ·N(x)dS .

On S̃, z = 0 and hence G = (−y2,−2x, x2y). Morover, on S̃, the outward norm N is the constant

vector (0, 0,−1). Hence on S̃, G ·N(x) = −x2y. Therefore, with D denoting the unit disk in the

x, y plane, ∫
S̃
G ·N(x)dS = −

∫
D
x2ydA = 0

by symmetry – the integrand is an odd function of y. We conclude that

∫
S
G ·NdS = 0.

(c) Since curlF = 0, it is F. Integrating, we find F(x, y, z) = ∇ϕ(x, y, z) where ϕ(x, y, z) =

x2yz − y2x.

(d) Since divG = 0, it is G. Integrating, we find G(x, y, z) = curlA(x, y, z) where A(x, y, z) =

(F9x, y, z), 0H(x, y, z)) and

F (x, y, z) = −
∫ y

0
R(x, t, z)dt+

∫ z

0
Q(x, 0, t)dt

= −x2
∫ y

0
tdt+

∫ z

0
(x2t− 2x)dt =

x2

2
(z2 − y2)− 2xz

H(x, y, z) =

∫ y

0
P (x, t, z)dt =

∫ y

0
(2zt− t2)dt = y2z − 1

3
y3 .

. Therefore,

A(x, y, z) = (12x
2(z2 − y2)− 2xz, 0, y2z − 1

3y
3) .

(d) Since F = ∇ϕ where ϕ(x, y, z) = x2yz − y2x,∫
C
F ·Tds = ϕ(x(1))− ϕ(x(0)) = ϕ(−1,−3, 2) = 3 .



9

9: (a) Let S be the part of the surface in R3 given by
√
x2 + y2 = 10 − z3 that lies inside the

cylinder x2 + y2 = 4. Let F = (2yz − y2, x2z − 2x, z). Compute the flux∫
S
F ·NdS ,

where N is taken to point upward.

(b) Let C be the contour that runs from (0, 0, 0) to (0, 1, 2), and from there to (2, 3, 2), and from

there back to (0, 0, 0). Let G = (z, x, y). Compute the total circulation∫
C
G ·Tds .

SOLUTION (a) We compute divF(x, y, z) = 1. Since this is quite simple, we can avoid parame-

terizing the surface.

The surface meets the cylinder when
√

4 = 10 − z3, so that z = 2. Let V be the region lying

below the graph of
√
x2 + y2 = 10− z3 and above the plane z = 2. Let S̃ be the part of this plane

lying inside the cyliner, equipped with the downward unit notmal N. Then S ∪ S̃ is the boundary

of V. By the Divergence Theorem and the fact that divF(x, y, z) = 1,∫
V

dV =

∫
S
F ·NdS +

∫
S̃
F ·NdS .

To do the volume integral, note that in cylindrical coordinates,

0 ≤ θ ≤ 2π , 0 < r < 2 and 2 ≤ z ≤ (10− r)1/3 .

Hence ∫
V

dV = 2π

∫ 2

0
((10− r)1/3 − 2)rdr = 2π

∫ 2

0
(10− r)1/3rdr − 8π .

Next, everyhere on S̃, N = (0, 0,−1) and z = 2. Therefore, everywhere on S̃, F ·N = −2. Since S̃
is a disk of radius 2, ∫

S̃
F ·NdS = −8π .

Hence∫
S
F ·NdS = 8π + 2π

∫ 2

0
(10− r)1/3rdr − 8π = 2π

∫ 2

0
(10− r)1/3rdr =

2π

7
(101/3225− 456) .

If one does this directly, the surface is parameterized by

X(r, θ) = (r cos θ, r sin θ, (10− r)1/3) , 0 ≤ θ ≤ 2π , 0 < r < 2 .

Then

Xr ×Xθ(r, θ) =
1

3
(10− r)−2/3(r cos θ, r sin θ, 3r(10− r)2/3) .

Then

F(X(r, θ)) = (2r sin θ(10− r)1/3 − r2 sin2 θ, r2 cos2 θ(10− r)1/3 − 2r cos θ, (10− r)1/3) .



10

Then, on S,

F ·NdS = F(X(r, θ)) ·Xr ×Xθ(r, θ)drdθ ,

and this is integrated over 0 ≤ θ ≤ 2π , 0 < r < 2. The integration in θ will eliminate all the

terms that explicitly depend on θ since, e.g.,
∫ 2π
0 sin θ cos θdθ = 0. We are then left with

F ·NdS = 2π

∫ 2

0
(10− r)1/3rdr =

2π

7
(101/3225− 456) ,

exactly as we found above.

(b) We compute curlG(x, y, z) = (1, 1, 1). The curve bounds a triangle whose normal in the plane

through the origin that is normal to (0, 1, 2) × (2, 3, 2) = (−4, 4,−2). The curve goes around the

triangle clockwise when viewed from above, so the normal that is consistent with this orientation

is the downward normal, which is

N =
1

3
(−2, 2,−1) .

Hence curlG ·N = (1, 1, 1) · 13(−2, 2,−1) = −1
3 everywhere on the tirangle, and since the area of

the triangle is 1
2‖(0, 1, 2)× (2, 3, 2)‖ = ‖ − 2, 2,−1‖ = 3, we have by Stokes’ Theorem that∫

C
G ·Tds = −1 .


