1 Solutions for the even exercises from Chapter Two

2.2 Let $\mathbf{x}(t)=\left(t^{-2}, 4 / \sqrt{t}, t\right)$ for $t>0$.
(a) Compute $\mathbf{v}(t)=\mathbf{x}^{\prime}(t)$ and $\mathbf{a}(t)=\mathbf{x}^{\prime \prime}(t)$.
(b) Compute $v(t)$ and $\mathbf{T}(t)$.
(c) Find the tangent line to this curve at $t=1$.

SOLUTION: Differentiating, we find

$$
\mathbf{v}(t)=\left(-2 t^{-3},-2 t^{-3 / 2}, 1\right) \quad \text { and } \quad \mathbf{a}(t)=\left(6 t^{4}, 3 t^{-5 / 2}, 0\right)
$$

Then

$$
v(t)=\|\mathbf{v}(t)\|=\sqrt{1+4 t^{-3}+4 t^{-6}}=1+2 t^{-3}
$$

and so

$$
\mathbf{T}(t)=\frac{1}{v(t)} \mathbf{v}(t)=\frac{1}{1+2 t^{-3}}\left(-2 t^{-3},-2 t^{-3 / 2}, 1\right)
$$

The tangent line is given by

$$
\mathbf{x}(1)+t \mathbf{v}(1)=(1-2 t, 4-2 t, 1+t) .
$$

2.4 Let $\mathbf{x}(t)=(\cos (t), \sin (t), t / r)$ where $r>0$. The curve $\mathbf{x}(t)$ is a helix in \mathbb{R}^{3}.
(a) Compute $\mathbf{v}(t)$ and $\mathbf{a}(t)$.
(b) Compute $v(t)$ and $\mathbf{T}(t)$.
(c) Compute the curvature $\kappa(t)$ and the torsion $\tau(t)$, as well as $\mathbf{N}(t)$ and $\mathbf{B}(t)$.
(d) Compute the Darboux vector $\boldsymbol{\omega}(t)$.
(e) Find the tangent line to this curve at $t=\pi / 4$, and the equation of the osculating plane to the curve at $t=\pi / 2$. Find the intersection of this line and plane.

SOLUTION: (We give here the solution of a slightly more general problem in which the third component of the curve it t / r instead of t / π. Simply replace r by π below to get the solution for the special case asked for in the text.) Differentiating, we find

$$
\mathbf{v}(t)=(-\sin (t), \cos (t), 1 / r) \quad \text { and } \quad \mathbf{a}(t)=(-\cos (t),-\sin (t), 0) .
$$

Then

$$
v(t)=\|\mathbf{v}(t)\|=\frac{\sqrt{r^{2}+1}}{r}
$$

and so

$$
\mathbf{T}(t)=\frac{1}{v(t)} \mathbf{v}(t)=\frac{r}{\sqrt{r^{2}+1}}(-\sin (t), \cos (t), 1 / r) .
$$

To find the curvature and \mathbf{N}, we first compute

$$
\mathbf{a}_{\perp}:=\mathbf{a}-(\mathbf{a} \cdot \mathbf{T}) \mathbf{T}=\frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} .
$$

[^0]By the computations made above, $\mathbf{a} \cdot \mathbf{v}=0$, so all of the acceleration is orthogonal, and so in this case

$$
\kappa(t)=\frac{\|\mathbf{a}(t)\|}{v(t)^{2}}=\frac{r^{2}}{r^{2}+1},
$$

and

$$
\mathbf{N}(t)=\frac{1}{\left\|\mathbf{a}_{\perp}(t)\right\|} \mathbf{a}_{\perp}(t)=\frac{1}{\|\mathbf{a}(t)\|} \mathbf{a}(t)=\mathbf{a}(t)=(-\cos (t),-\sin (t), 0)
$$

We next compute $\mathbf{B}=\mathbf{T} \times \mathbf{N}$, and find

$$
\mathbf{B}(t)=\frac{1}{\sqrt{r^{2}+1}}(\sin (t),-\cos (t), r)
$$

Since \mathbf{B} is so simple, the easiest way to compute the torsion is to compute $\mathbf{B}^{\prime}(t)$, and to use the definition $\mathbf{B}^{\prime}(t)=-v(t) \tau(t) \mathbf{N}(t)$. We readily find

$$
\tau(t)=\frac{r}{r^{2}+1} .
$$

We are now ready to compute the Darboux vector, $\boldsymbol{\omega}=\tau \mathbf{T}+\kappa \mathbf{B}$. We find

$$
\begin{aligned}
\boldsymbol{\omega} & =\frac{r}{r^{2}+1} \frac{r}{\sqrt{r^{2}+1}}(-\sin (t), \cos (t), 1 / r)+\frac{r^{2}}{r^{2}+1} \frac{1}{\sqrt{r^{2}+1}}(\sin (t),-\cos (t), r) \\
& =\frac{r}{\sqrt{r^{2}+1}}(0,0,1)
\end{aligned}
$$

Finally, we compute that tangent line to $\mathbf{x}(t)$ at $t=\pi / 4$, finding it is parameterized by

$$
\begin{equation*}
\mathbf{x}(\pi / 4)+t \mathbf{v}(\pi / 4)=((1-t) / \sqrt{2},(1+t) / \sqrt{2},(\pi+4 t) / 4 r) . \tag{1.1}
\end{equation*}
$$

The equation of the osculating plane at $t=\pi / 2$ is

$$
\mathbf{B}(\pi / 2) \cdot(\mathbf{x}-\mathbf{x}(\pi / 2))=0 .
$$

This simplifies to $(1,0, r) \cdot(x, y-1, z-\pi /(2 r))=0$ which then further simplifies to

$$
x+r z=\pi / 2 .
$$

Plugging the parameterized line (??) into the equation of the plane and solving for t, we find that the intersection occurs at

$$
t_{0}=-\frac{2+\pi}{8-2 \sqrt{2}} .
$$

Plugging this value of t into (??) gives the intersection.
2.6: Let $\mathbf{x}(t)$ be the curve given by

$$
\mathbf{x}(t)=\left(t^{3 / 2}, 3 t, 6 t^{1 / 2}\right)
$$

for $t>0$.
(a) what is the arc length along the curve between $\mathbf{x}(1)$ and $\mathbf{x}(4)$?
(b) Compute curvature $\kappa(t)$ and torsion $\tau(t)$ as a function of t.
(c) Find an equation for the osculating plane at $t=1$, and find a parameterization of the tangent line to the curve at $t=1$.

SOLUTION: Differentiating, we find

$$
\mathbf{v}(t)=3\left(t^{1 / 2} / 2,1, t^{-1 / 2}\right) \quad \text { and } \quad \mathbf{a}(t)=\frac{3}{4}\left(t^{-1 / 2}, 0,2 t^{-3 / 2}\right) .
$$

Then

$$
v(t)=\|\mathbf{v}(t)\|=\frac{3}{2} \sqrt{4+t+t / 4}=\frac{3}{2}\left(t^{1 / 2}+2 t^{-1 / 2}\right) .
$$

The arc length along the curve between $\mathbf{x}(1)$ and $\mathbf{x}(4)$ then is

$$
\int_{1}^{4} v(t) \mathrm{d} t=\frac{3}{2} \frac{26}{3}=13 .
$$

Computing the curvature and torsion, we find

$$
\kappa(t)=\frac{2}{3}(t+2)^{-2} \quad \text { and } \quad \tau=-\frac{2}{3}(t+2)^{-2} .
$$

Since $\mathbf{a} \times \mathbf{v}$ is a multiple of \mathbf{B}, the equation of the osculating plane at $t=1$ is

$$
(\mathbf{a}(1) \times \mathbf{v}(1) \cdot(\mathbf{x}-\mathbf{x}(1)=0 .
$$

Computing, this becomes

$$
\frac{9}{4}(2,-2,1) \cdot(x-1, y-3, z-6)=0,
$$

and this further simplifies to

$$
2 x-2 y+z=2 .
$$

The tangent line is parameterized by

$$
\mathbf{x}(1)+t \mathbf{v}(1)=(1+3 t / 2,3+3 t, 6+3 t) .
$$

2.8: Let $\mathbf{x}(t)$ be the curve given by

$$
\mathbf{x}(t)=\left(2 t, t^{2}, t^{3} / 3\right)
$$

(a) Compute the arc length $s(t)$ as a function of t, measured from the starting point $\mathbf{x}(0)$.
(b) Compute curvature $\kappa(t)$ and torsion $\tau(t)$ as a function of t.
(c) Find equations for the osculating planes at time $t=0$ and $t=1$, and find a parameterization of the line formed by the intersection of these planes.

SOLUTION: Differentiating, we find

$$
\mathbf{v}(t)=\left(2,2 t, t^{2}\right) \quad \text { and } \quad \mathbf{a}(t)=(0,2,2 t) .
$$

Then

$$
v(t)=\|\mathbf{v}(t)\|=2+t^{2}
$$

The arc length along the curve between $\mathbf{x}(0)$ and $\mathbf{x}(t)$ then is

$$
\int_{0}^{t} v(r) \mathrm{d} r=\int_{0}^{t}\left(2+r^{2}\right) \mathrm{d} r=2 t+26^{3} / 3 .
$$

Computing the curvature and torsion, we find

$$
\kappa(t)=\frac{\sqrt{\left(2+t^{2}\right)^{2}+4}}{\left(2+t^{2}\right)^{2}}(t+2)^{-2} \quad \text { and } \quad \tau=-\frac{4}{\left(2+t^{2}\right)^{2}} \frac{1}{\sqrt{\left(2+t^{2}\right)^{2}+4}} .
$$

Since $\mathbf{a} \times \mathbf{v}$ is a multiple of \mathbf{B}, the equation of the osculating plane at $t=1$ is

$$
\mathbf{a}(1) \times \mathbf{v}(1) \cdot(\mathbf{x}-\mathbf{x}(1)=0 .
$$

Computing, this becomes

$$
\frac{9}{4}(2,-2,1) \cdot(x-1, y-3, z-6)=0,
$$

and this further simplifies to

$$
2 x-2 y+z=2 .
$$

The tangent line is parameterized by

$$
\mathbf{x}(1)+t \mathbf{v}(1)=(1+3 t / 2,3+3 t, 6+3 t) .
$$

Finally since $\mathbf{a}(t) \times \mathbf{v}(t)$ is a multiple of $\mathbf{B}(t)$ (as is $\mathbf{a}(t) \times \mathbf{v}(t)$), we can write an equation for the normal plane at time t as

$$
[\mathbf{a}(t) \times \mathbf{v}(t)] \cdot[\mathbf{x}-\mathbf{x}(t)]=0 .
$$

Doing this for $t=0$, we find $(0,0,-3) \cdot(x, y, z)=0$, which reduces to

$$
z=0 .
$$

Doing this for $t=0$, we find $(-2,4,-4) \cdot(x-2, y-1, z-1 / 3)=0$, which reduces to

$$
2 x-4 y+4 z=\frac{4}{3} .
$$

Plugging $z=0$ (from the first equation) into the second equation, we find that the line is the line lies in the x, y plane, where is is given by

$$
y=\frac{x}{2}-\frac{1}{3}
$$

This line can also be prameterized as

$$
\mathbf{x}(t)=(t, t / 2-1 / 3,0) .
$$

2.10 Let $\mathbf{x}(t)$ be the curve given by $\mathbf{x}(t)=(t, \sqrt{2} \ln (t), 1 / t)$ for $t>0$.
(a) Find the arc length along the curve from $\mathbf{x}(1)$ to $\mathbf{x}(3)$.
(b) Find the arc length along the curve from $\mathbf{x}(1)$ to $\mathbf{x}(t)$ as a function of t.
(c) Find the arc length parameterization $\mathbf{x}(s)$ of this curve.

SOLUTION: We compute

$$
\mathbf{v}(t)=\left(1, \sqrt{2} / t,-1 / t^{2}\right),
$$

and hence

$$
v(t)=\|\mathbf{v}(t)\|=\sqrt{1+\frac{2}{t^{2}}+\frac{1}{t^{4}}}=\sqrt{\left(1+t^{-2}\right)^{2}}=1+t^{-2}
$$

Then the arc length along the curve from $\mathbf{x}(1)$ to $\mathbf{x}(3)$ is

$$
\int_{1}^{3} v(t) \mathrm{d} t=\int_{1}^{3}\left(1+t^{-2}\right) \mathrm{d} t=\frac{8}{3} .
$$

Likewise, the arc length along the curve from $\mathbf{x}(1)$ to $\mathbf{x}(t)$ is, for $t \geq 1$,

$$
\int_{1}^{t} v(r) \mathrm{d} r=\int_{1}^{t}\left(1+r^{-2}\right) \mathrm{d} r=t-1 / t
$$

For $0<t<1$, it is

$$
\int_{t}^{1} v(r) \mathrm{d} r=\int_{t}^{1}\left(1+r^{-2}\right) \mathrm{d} r=-(t-1 / t) .
$$

Combining the formulas, the along the curve from $\mathbf{x}(1)$ to $\mathbf{x}(t)$ is $|t-1 / t|$.
To find the arc length parameterization, we compute

$$
s(t)=\int_{1}^{t}\left(1+r^{-2}\right) \mathrm{d} r=t-1 / t,
$$

for all $t>0$, and then solve

$$
s=t-1 / t
$$

to determine $t(s)$. We find $t s=t^{2}-1$, or $t^{2}-s t=1$ or $(t-s / 2)^{2}=1+s^{2} / 4$, so

$$
t(s)=\sqrt{1+s^{2} / 4}-s / 2 .
$$

Then

$$
\mathbf{x}(s)=\mathbf{x}(t(s))=\left(t \sqrt{1+s^{2} / 4}-s / 2, \sqrt{2} \ln \left(\sqrt{1+s^{2} / 4}-s / 2\right), 1 /\left(\sqrt{1+s^{2} / 4}-s / 2\right)\right)
$$

2.12 Find the arc length parameterization of the curve given by $\mathbf{x}(t)=\left(t^{-2}, 4 / \sqrt{t}, t\right)$ for $t>0$. What is the arc length along the segment of the curve joining $\mathbf{x}(1)$ and $\mathbf{x}(4)$?

SOLUTION: We compute

$$
\mathbf{v}(t)=\left(-2 / t^{3},-2 / t^{3 / 2}, 1\right)
$$

and hence

$$
v(t)=\|\mathbf{v}(t)\|=\sqrt{1+\frac{4}{t^{3}}+\frac{4}{t^{6}}}=\sqrt{\left(1+2 t^{-3}\right)^{2}}=1+2 t^{-3} .
$$

We then pick some time, say $t=1$ as a refrence starting time, and define

$$
s(t)=\int_{1}^{t} v(r) \mathrm{d} r=\int_{1}^{t}\left(1+2 r^{-3} \mathrm{~d} r=t-t^{-2} .\right.
$$

We must then solve

$$
\begin{equation*}
t-t^{-2}=s \tag{1.2}
\end{equation*}
$$

to find $t(s)$, We then plug $t(s)$ in to $\mathbf{x}(t)$ to find $\mathbf{x}(s)$. Solving (??), we find

$$
t(s)=\frac{1}{6}\left(108+8 s^{2}+12 \sqrt{81+12 s^{3}}\right)^{1 / 3}+\frac{2}{3} \frac{s^{2}}{\left(108+8 s^{2}+12 \sqrt{81+12 s^{3}}\right)^{1 / 3}}+\frac{1}{3} s
$$

Plugging this in, one has the (rather messy) answer.
On the other hand, the arc length along the curve from $\mathbf{x}(1)$ to $\mathbf{x}(4)$ is

$$
\int_{1}^{4} v(t) \mathrm{d} t=\int_{1}^{3}\left(1+2 t^{-3}\right) \mathrm{d} t=\frac{63}{16} .
$$

Moral of the story: Arc length parameterization, while useful conceptually, is very messy in practice. Computing arc length between two points may be very much simpler.
2.14 Let $\mathbf{a}=\frac{1}{3}(2,1,2)$. Let $\mathbf{u}=\frac{1}{3}(1,2,-2)$, and note that this is a unit vector orthogonal to \mathbf{a}. Find a unit vector \mathbf{v} so that $\mathbf{f}(\mathbf{x}):=\mathbf{h}_{\mathbf{v}}\left(\mathbf{h}_{\mathbf{u}}(\mathbf{x})\right)$ is the rotation of \mathbf{x} through the angle $\theta=\pi / 3$ about the axis along \mathbf{a}, and then compute $\mathbf{f}((1,1,1))$.
SOLUTION: If \mathbf{u} and \mathbf{v} are two unit vectors in \mathbb{R}^{3} such that the angle between \mathbf{u} and \mathbf{v} is Θ, then $\mathbf{h}_{\mathbf{v}} \circ \mathbf{h}_{\mathbf{u}}$ is the rotation through the angle 2Θ about the axis along $\frac{1}{\|\mathbf{u} \times \mathbf{v}\|} \mathbf{u} \times \mathbf{v}$.

Thus, we seek a unit vector \mathbf{v} so that

$$
\begin{equation*}
\mathbf{u} \times \mathbf{v}=\sin (\pi / 6) \mathbf{a}=\frac{1}{2} \mathbf{a} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=\cos (\pi / 3)=\frac{1}{2} . \tag{1.4}
\end{equation*}
$$

We know from previous exercises that there is one and only one vector \mathbf{v} for which both (??) and (??) are true. Writing $\mathbf{v}=\mathbf{v}_{\|}+\mathbf{v}_{\perp}$, that is, breaking \mathbf{v} up into its components parallel and orthogonal to \mathbf{u}, we have

$$
\mathbf{v}_{\|}=(\mathbf{v} \cdot \mathbf{u}) \mathbf{u}=\frac{1}{6}(1,2,-2) .
$$

Since $\mathbf{u} \cdot \mathbf{v}=\cos (\pi / 3),\|\mathbf{u} \times \mathbf{v}\|=\sin (\pi / 3)=\sqrt{3} / 2$. Therefore,

$$
\mathbf{v}_{\perp}=-\mathbf{u} \times(\mathbf{u} \times \mathbf{v})=\|\mathbf{u} \times \mathbf{v}\| \mathbf{u} \times \mathbf{a}=\frac{\sqrt{3}}{2} \frac{1}{9}(1,2,-2) \times(2,1,2)
$$

Computing the cross product, we find:

$$
\mathbf{v}_{\perp}=\frac{\sqrt{3}}{2} \frac{1}{3}(2,-2,-1)
$$

Thus

$$
\begin{aligned}
\mathbf{v}=\mathbf{v}_{\|}+\mathbf{v}_{\perp} & =\frac{1}{6}(1,2,-2)+\frac{\sqrt{3}}{6}(2,-2,-1) \\
& =\frac{1}{6}(1+2 \sqrt{3}, 2-2 \sqrt{3},-2-\sqrt{3})
\end{aligned}
$$

As you can (and should) check, the right hand side is indeed a unit vector, as it should be. We then compute

$$
\mathbf{h}_{\mathbf{u}}((1,1,1))=\frac{1}{9}((7,5,13))
$$

and then

$$
\frac{1}{9} \mathbf{h}_{\mathbf{u}}((7,5,13))=\frac{1}{6}(7+\sqrt{3}, 2,7-\sqrt{3}) .
$$

Thus,

$$
\mathbf{f}((1,1,1))=\frac{1}{6}(7+\sqrt{3}, 2,7-\sqrt{3}) .
$$

[^0]: ${ }^{1}$ © 2010 by the author.

