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SOLUTION:

1.2 Let a = (5, 2), b = (2,−1) and c = (1, 1). Express each of these three vectors as a linear

combination of the other two.

SOLUTION: The equation sb + tc = a is equivalent to

2s+ t = 5

−s+ t = 2

The solution is s = 1 and t = 3.

The equation sc + ta = b is equivalent to

s+ 5t = 2

s+ 2t = −1

The solution is s = −3 and t = 1.

The equation sa + tb = c is equivalent to

5s+ 2t = 1

2s− t = 1

The solution is s = 1/3 and t = −1/3.

1.4 Let x = (4, 7,−4, 1, 2,−2) and y = (2, 1, 2, 2,−1,−1). Compute the lengths of each of these

vectors, and the angle between them.

SOLUTION: We compute

x · y = 9 x · x = 90 and y · y = 15 .

Thus, ‖x‖ = 3
√

10 and ‖y‖ =
√

15. Then θ, the angle between the x and y is

θ = arccos

(
9

15
√

6

)
= arccos

(
3

5
√

6

)
≈ 1.323 radians ≈ 75.82◦

1 c© 2010 by the author.
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1.6 Let x = (− 5, 2,−5) and y = (1, 2, 1). Is the angle between x and y acute or obtuse? Justify

your answer.

SOLUTION: We compute

x · y = −5 + 4− 5 = −6 .

Since this is negative,
x · y
‖x‖‖y‖

is negative, so

θ = arcos

(
x · y
‖x‖‖y‖

)
is greater than π/2. Thus, the angle is obtuse. (Note that we did not have to actually calculate

the angle to answer this question.)

1.8 Let a,b and c be any three vectors in R3 with a 6= 0. Show that b = c if and only if

a · b = a · c and a× b = a× c .

FIRST SOLUTION: We write the given equations in the form

a× (b− c) = 0 and a · (b− c) = 0 . (0.1)

Since ‖a × (b − c)‖ = ‖a‖‖b − c‖ sin(θ), and since a 6= 0, the first equation says that b − c is a

multiple of a; i.e.,

b− c = ta (0.2)

for some t. Using this in the second equation, we get

0 = a · (b− c) = a · (ta) = t‖a‖2 .

Since a 6= 0, this says t = 0, and so (0.2) says that b − c = 0. That is, when (0.1) is true, then

b = c, and the converse is obvious.

SECOND SOLUTION: We now give another solution, slightly longer, but illustrating useful

points.

We begin by writing b = b‖ + b⊥ where b‖ is the component of b parallel to a, and b⊥ is the

component of b orthogonal to a, and likewise for c.

First of all,

b‖ =
1

‖a‖2
(b · a)a and c‖ =

1

‖a‖2
(c · a)a .

Thus,

b‖ = c‖ ⇐⇒ v · a = c · a .

Next, recall that

b⊥ = − 1

‖a‖2
a× (a× b) ,

and likewise for c.

But if a× b = a× c, then a× (a× b) = a× (a× c) and so

a× b = a× c ⇐⇒ b⊥ = c⊥ .
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Since

b = c ⇐⇒ b‖ = c‖ and b⊥ = c⊥ ,

putting the pieces together,

b = c ⇐⇒ a · b = a · c and a× b = a× c .

1.10 (a) Let a = (−1, 1, 2) and b = (2,−1, 1). Find all vectors x, if any exist, such that

a× x = (−2, 4,−3) and b · x = 2 .

If none exist, explain why this is the case.

(b) Let a = (−1, 1, 2) and b = (2,−1, 1). Find all vectors x, if any exist, such that

a× x = (2, 4, 3) and b · x = 2 .

If none exist, explain why this is the case.

(c) Among all vectors x such that (−1, 1, 2)×x = (−2, 4,−3), find the one that is closest to (1, 1, 1).

SOLUTION: The vector a× x is orthogonal to a, and hence a× x = c cannot possibly have any

solution unless c is orthogonal to a.

On the other hand, if a · c = 0, then

0 = a · (a× x) = a · c ,

and so, by the result of Exercise 1.8, a× x = c if and only if

a× (a× x) = a× c .

But since

a× (a× x) = −‖a‖2x⊥

this is equivalent to

x⊥ = − 1

‖a‖2
a× c , (0.3)

where x⊥ is the component of x orthogonal to a.

Next, since since a× x‖ = 0, x‖ can be any multiple of a, and the equation will be satisfied, as

long as x⊥ satisfies (0.3). Thus, the set of all vectors x satisfying a× x = c is the empty set if a is

not orthogonal to c, and otherwise, it is the line parameterized by

x(t) = − 1

‖a‖2
a× c + ta .

In the case at hand, a = (− 1, 1, 2) and c = (− 2, 4,−3). We compute

a · c = 0 ,

so the set the set of all vectors x satisfying (−1, 1, 2)×x = (−2, 4,−3) is the line line paramterized

by

x(t) = − 1

‖a‖2
a× c + ta =

1

6
(11, 7, 2) + t(− 1, 1, 2) . (0.4)
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Next, for part (b), we compute a · (2, 4, 3) = 8. Thus, a and (2, 4, 3) are not orthogonal, and

there is no solution.

Next, for part (c), using the result of part (a) we need to find the point on the line parameterized

in (0.4) that is closest to (1, 1, 1). This point is − 1
‖a‖2a× c plus the component of

(1, 1, 1)− 1

6
(11, 7, 2) =

1

6
(− 5,−1, 4)

parallel to a. This is

1

6
(11, 7, 2) +

1

6

(− 5,−1, 4) · (− 1, 1, 2)

(− 1, 1, 2) · (− 1, 1, 2)
(− 1, 1, 2) =

1

6
(11, 7, 2) +

1

3
(− 1, 1, 2)

=
1

2
(3, 3, 2) .

1.12 (a) Let a, b and c be three non-zero vectors in R3. Define a transformation f from R3 to R3

by

f(x) = a× (b× (c× x))) .

Show that f(x) = 0 for all x ∈ R3 if and only if b is orthogonal to c, and a is a multiple of c. .

SOLUTION: By Lagrange’s identity; i.e., a× (b× c) = (a · c)b− (a · b)c,

b× (c× x) = (b · x)c− (b · c)x ,

and then taking the cross product of both sides with a, we get

f(x) = (b · x)a× c− (b · c)a× x . (0.5)

If b is orthogonal to c, and a is a multiple of c, then a×c = 0 and b ·c = 0, so in this case f(x) = 0

no matter what x is.

We will now give two proofs for the converse. The first is short, but perhaps somewhat tricky.

The second is longer, but is a more direct application of the ideas we used to prove Lagrange’s

identity in the first place. It is a good example of making a judicuous choice of coordinates to solve

a problem

Here is the first approach to the converse: Let u be any unit vector that is ortogonal to both a

and c. Then

f(u) = (b · u)a× c− (b · c)a× u .

Since u is orthogonal to both a and c, a× c is a multiple (possibly zero) of u. On the other hand,

a× u is orthogonal to u. Hence (b · u)a× c and (b · c)a× u are orthogonal, and therefore

‖f(u)‖2 = ‖(b · u)a× c‖2 + ‖(b · c)a× u‖2 .

Hence, assuming f(x) = 0 for all x, we have, in particular, that

(b · c)a× u = 0 .

Now since a and u are orthogonal and non-zero, a×u 6= 0, and so it must be the case that b ·c = 0.

This shows that when f(x) = 0 for all x, b is orthogonal to c, and we are halfway there. Moreover,

given this, (0.5) simplifies to

f(x) = (b · x)a× c . (0.6)
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Now since f(x) = 0 for all x, f(b) = 0. But this means

‖b‖2a× c = 0 .

Since b 6= 0, this means a×c = 0, and thus a is a multiple of c. This completes the first approach.

We now give a second proof that when f(x) = 0 for all x, then b is orthogonal to c, and a is

a multiple of c. This is based on the use of an adapted system of coordinates, as in the proof of

Lagrange’s identity.

Suppose that b is a multiple (necessarily non-zero) of c, say b = λc. Then

b× (c× x) = −λ‖c‖2x⊥

where x⊥ is the component of x that is orthogonal to c. But then if x is orthogonal to both c and

a, then

‖a× (b× (c× x)))‖ = ‖a‖|λ|‖c‖2‖x‖ = ‖a‖‖b‖‖c‖‖x‖ .

Since there are non-zero vectors x orthogonal to any two vectors a and c in R3, we see that there

are vectors x such that ‖a× (b× (c× x)))‖ 6= 0 if b = λc.

Therefore, without loss of generality, we may assume that b is not a multiple of c. Therefore,

b⊥, the component of b orthogonal to c, is not 0. We may then define an orthonormal basis

{u1,u2,u3} such that

u1 =
1

‖c‖
c u2 =

1

‖b⊥‖
b⊥ and u3 = u1 × u2 .

Now let us write

x = ru1 + su2 + tu3 .

Since c = ‖c‖u1, we then compute

c× x = ‖c‖(su3 − tu2) . (0.7)

Now we write

b = b⊥ + b‖ = ‖b⊥‖u2 ± ‖b‖‖u1 , (0.8)

where the plus sign is right if b‖ is a positive multiple of c, and negative otherwise. (Of course, the

sign is irrelevant if b‖ = 0, as will turn out to be the case.)

Now we combine (0.7) and (0.8) to compute

b× (c× x) = (‖b⊥‖u2 ± ‖b‖‖u1)× ‖c‖(su3 − tu2)

= s‖c‖‖b⊥‖u1 ∓ s‖c‖‖b‖‖u2 ∓ t‖c‖‖b‖‖u3 .

Finally then

s‖c‖‖b⊥‖(a× u1)∓ s‖c‖‖b‖‖(a× u2)∓ t‖c‖‖b‖‖(a× u3) = 0 , (0.9)

and this must be true for every choice of s and t. Setting t = 1, and s = 0, we see that

‖c‖‖b‖‖(a× u3) = 0 .
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Since ‖c‖ 6= 0 by hypothesis, either ‖b‖‖ = 0, or a × u3 = 0. If the latter were true, it would

be the case that a = ±‖a‖u3.

Thus, supposing that ‖b‖‖ 6= 0, and setting t = 0, and s = 1 in (0.9), we would conclude that

‖c‖‖b⊥‖‖a‖u1 ± ‖c‖‖b‖‖‖a‖u2 = 0 ,

and since {u1,u3} is orthonormal, this means that ‖c‖‖b⊥‖‖a‖ = 0 and ‖c‖‖b‖‖‖a‖ = 0

But by hypothesis ‖a‖, ‖c‖ 6=, ‖b‖‖ 6= 0, and we have seen in the first part of the argument

that ‖b⊥‖ 6= 0. Thus we have a contradiction, and it must be the case that our supposition that

‖b‖‖ 6= 0 is false. Hence, ‖b‖‖ − 0, and thus b is orthogonal to c as was to be shown,

Moreover, armed with this knowledge, (0.9) simplifies to

‖c‖‖b‖(a× u1) = 0 .

Since ‖c‖, ‖b‖ 6= 0, a× u1 = 0 which means that a is a multiple of u1, and hence c, as was to be

shown.

Altogether, if a× (b× (c×x)) = 0 for all x ∈ R3 then a is a multiple of c, and b is orthogonal

c. This completes the second approach.

1.14 Let P1 the plane through the three points a1 = (1, 2, 1) a2 = (−1, 2,−3) and a3 = (2,−3,−2).

Let P2 denote the plane through the three points b1 = (1, 1, 0) b2 = (1, 0, 1) and b3 = (0, 1, 1).

(a) Find equations for the planes P1 and P2.

(b) Parameterize the line given by P1 ∩ P2, and find the distance between this line and the point

a1.

(c) Consider the line through b1 and b2. Determine the point of intersection of this line with the

plane P1.

SOLUTION: The plane contains a1, and its normal vector is (a2−a1)×(a3−a1) = (−20,−10, 10).

Hence an equation for P1 is

(−2,−1, 1) · (x− 1, y − 2, z − 1) = −2x− y + z = −3 .

You can check this: Each of the three given points do satisfy this equation.

In the same way, or by inspection, using the symmetry of the points specifying P2, we find that

an equation for it is

x+ y + z = 2 .

To parameterize the line P1 ∩ P2, we need a base point. Let us look for one with z = 0, and

then we must have

−2x− y = −3

x+ y = 2

. Hence, −3x = −5, so x = 3/5 and y = 7/5. Our base point is x0 = (3/5, 7/5, 0).

The direction vector is

v = (−2,−1, 1)× (1, 1, 1) = (−2, 3,−1) .
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Hence the line is

x(t) = (3/5− 2t, 7/5 + 3t,−t) .

The distance between this line and a1 is the length of the component of a1−x0 that is orthogonal

to v; i.e.,

(a1 − x0)⊥ = (a1 − x0)−
1

‖v‖2
[(a1 − x0) · v]v .

Since

a1 − x0 = (1, 2, 1)− (3/5, 7/5, 0) = (2/5, 3/5, 1) ,

which is orthogonal to v, one has

(a1 − x0)⊥ = (2/5, 3/5, 1) ,

and so the distance is
1

5

√
38 .

Finally, for part (c), The line through b1 and b2 is parameterized by

x(t) = b1 + t(b2 − b1) = (1, 1− t, t) .

Plugging this into our equation for P1, we have

−2(1)− (1− t) + t = −3

which means t = 0. Indeed, you can see that b1 does satisfy the equation for P1. Had you noticed

this at the outset, you could have used b1 as the base point for the line in part (b).

1.16 Consider the vector a = (1, 4, 3) and b = (3, 2, 1). Find an orthonormal basis of R3 whose

third vector is orthogonal to both a and b.

SOLUTION: We compute a× b = (− 2, 8,−10) and ‖a× b‖ = 2
√

42. Thus we take

u3 :=
1

2
√

42
(− 2, 8,−10) .

We now choose u2 to be any unit vectors that is orthogonal to u1. Since ( − b, a, 0) is always

orthogonal to (a, b, c), no matter the values of a, b and c, the vector (8, 2, 0)) is orthogonal to u1.

Normalizing it we find

u1 =
1√
17

(4, 1, 0) .

Finally,

u2 = u3 × u1 =
1√
714

(5,−20,−17) .

1.18 Consider the plane passing through the three points

p1 = (−1,−3, 0) p2 = (5, 1, 2) and p3 = (0,−3, 4)

and the line passing through

z0 = (1, 1,−1) and z1 = (1,−2, 2)
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(a) Find a parametric representation x(s, t) = x0 + sv1 + tv2 for the plane.

(b) Find a parametric representation z(u) = z0 + uw for the line.

(c) Find an equation for the plane.

(d) Find a system of equations for the line.

(e) Find the points, if any, where the line intersects the plane.

(f) Find the distance from p1 to the line.

(g) Find the distance from z0 to the plane.

SOLUTION: For (a), we form

v1 := p2 − p1 = (6, 4, 2) and v2 := p3 − p1 = (1, 0, 4) .

We take p1 as the base point, and then the parameterization is

x(s, t) = (− 1,−3, 0) + s(6, 4, 2) + t(1, 0, 4) = (− 1 + 6s+ t,−3 + 4s, 2s+ 4t) .

For (b), we form w = z1 − z0 = (0,−3, 3). We then take z0 as the base point, and the

parameterization is

z(u) = z0 + uw = (1, 1,−1) + u(0,−3, 3) = (1, 1− 3u,−1 + 3u) .

For (c), we compute v1 × v2 − (16,−22,−4). We can use any non-zero multiple of this as the

normal vector. Discarding a common factor of 2, we define

a := (8,−11,−2) .

The equation then is a · (x− p0) = 0, which simplifies to

8x− 11y − 2z = 25 .

For (d), we note that x = z0 + uw for some u if and only if w × x = w × z0. Doing the two

cross products, this works out to

(3z + 3y,−3x,−3x)) = ((0,−3,−3) .

We get two independent equations by equating components of these vectors:

y + z = 0

x = 1

and you can easily check that this is consistent with the answer to part (b).

For (e), we substitute z(u) = (1, 1 − 3u,−1 + 3u) into 8x − 11y − 2z = 25, and solve for u to

find u = 26/27. Thus the point of intersection is

z(26/27) =
1

9
(9,−17, 17) .
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For (f), the distance is the length of (p1 − z0)⊥, the component of p1 − z0 orthogonal to w.

This is given by

1

‖w‖
‖w × (p1 − z0)‖ =

1

3
√

2
‖(0, 3,−3)× (− 2,−4, 1)‖ =

1

3
√

2
9 =

3√
2
.

For (g), the distance is the length of (p1 − z0)‖, the component of p1 − z0 orthogonal to a.

This is given by
1

‖a‖
‖a · (p1 − z0)‖ =

26

3
√

21
.

1.20 Consider the plane given by

2x− y + 3z = 4 .

Let p = (−1,−3, 0). What is the distance from p to the plane?

SOLUTION: We first need to find a base point x0 in the plane. Looking for a solution with

y = z = 0, we see that x = 2. Thus, we take x0 = (2, 0, 0). Then, since a := (2,−1, 3) is

orthogonal to the plane, Then the distance is

|(p− x0) · a|
‖a‖

= − 3√
14

.

1.22 Consider the line ` given by

2x− y + 3z = 4

x+ y + z = 2 .

Find a parametric representation of the line obtained by reflecting this line through the plane

x + 3y − z = 1. That is; the outgoing line should have as its base point the intersection of the

incoming line and the plane, and its direction vector should be hu(v) where v is the incoming

direction vector, and u is a unit normal vector to the plane.

SOLUTION: First, we parameterize the line. It is easy to observe that (2, 0, 0) satisfies both

equations, so we take this as our base point x0.

The direction vector v of the lines is given by the cross product of the normals of the two

intersecting planes:

v = (2,−1, 3)× (1, 1, 1) = (−3,−1, 4)

So the line is parameterized by

x(t) = (2, 0, 0) + t(−3,−1, 4) = (2− 3t,−t, 4t) .

Plugging this into the equation of the plane x+ 3y − z = 1, we find

(2− 3t)− 3t− 4t = 1

or t = 1/10. Thus the point where the line intersects the plane, which I will call z0 is

z0 =
1

10
(17,−1, 4) .
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As you can check, this does satisify the equation for the plane.

Let w be the outgoing direction vector. One gets this by reflecting the incoming one about the

plane. The unit vector normal to the plane is

u =
1√
11

(1, 3,−1) ,

and so

w = v − 2(v · u)u .

We know u and we know v, so we compute

w =
1

11
(− 31,−5, 46) .

Using this, one computes w, and the the outgoing line is parameterized by

z0 + tw =
1

10
(17,−1, 4) + t

1

11
(− 31,−5, 46) .

1.24 Let x = (5, 2, 4, 2). Let u be a unit vector such that hu(x) is a multiple of e1. What are the

possible values of this multiple? Find four such unit vectors u.

SOLUTION: We compute x · x, so that ‖x‖ = 7. Thus, the only two multiples of e1 that

Householder reflections of x for some u are ±(7, 0, 0, 0).
Taking the multiple of e1 to be (7, 0, 0, 0), we have

u = ± 1

‖x− 7e1‖
(x− 7e1) = ± 1

‖(− 2, 2, 4, 2)‖
(− 2, 2, 4, 2) = ± 1√

7
(− 1, 1, 2, 1) .

Taking the multiple of e1 to be −(7, 0, 0, 0), we have

u = ± 1

‖x + 7e1‖
(x + 7e1) = ± 1

‖(12, 2, 4, 2)‖
(12, 2, 4, 2) = ± 1√

42
(6, 1, 2, 1) .

1.26 Consider two lines in R3 given parametrically by x1(s) = x1 +sv1 and x2(t) = x2 + tv2 where

x1 = (1, 2, 3) x2 = (2, 0, 2) v1 = (1, 2, 2) and v2 = (−2, 1, 1) .

Compute the distance between these two lines.

SOLUTION: This is given by

|(x1 − x2) · (v1 × v2)|
‖v1 × v2‖

=
1√
2
.

1.28 Consider two lines in R3 given parametrically by x1(s) = x1 +sv1 and x2(t) = x2 + tv2 where

x1 = (1, 2,−1) x2 = (2, 1,−5) v1 = (1,−4,−2) and v2 = (1, 1,−2).

Find the point on the first line that is closest to the second line, the point on the second line that

is closest to the first line, and the distance between these two lines.
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SOLUTION: We first compute the good orthonormal basis for this task:

u1 :=
1

‖v1 × v2‖
|v1 × v2 u2 =

1

‖v1‖
v1 × u1 and u3 = u1 × u2 .

We find

u1 =
1√
5
(2, 0, 1) u2 =

1√
105

(− 4,−5, 8) and u3 =
1√
21

(1,−4,−2) .

Next, let

b = x1 − x2 = (− 1, 1, 4) .

Then, as explained at the end of Chapter One, the optimal choice for t is

t =
b · u2

v2 · u2
= −31

25
,

and the optimal choice for s is

s =
t(v2 · u3 − b · u3

vv1 · u3
=

14

25
.

Thus, the point on the fist line that is closest to the second is

x1(s) =
1

25
(39,−6,−53) ,

and the point on the second line that is closest to the first is

x2(t) =
1

25
(19,−6,−63) ,

Thus

x1(s)− x2(t) =
1

5
(4, 0, 2) ,

and so the distance between the two lines is ‖x1(s)− x2(t)‖ = 2/
√

5.

1.30 Let {u1,u2,u3} be given by

u1 =
1

9
(1, 4, 8) u2 =

1

9
(8,−4, 1) and u3 =

1

9
(4, 7,−4)) .

(a) Verify whether {u1,u2,u3} is, or is not, an orthonormal basis of R3.

(b) Find a unit vector u so that hu(u1) = e1.

(c) With this same choice of u, compute hu(u2) and hu(u3).

SOLUTION: We compute that

‖u1‖2 =
1 + 16 + 64

81
= 1 and ‖u2‖2 =

64 + 16 + 1

81
= 1 ,

so both u1 and u2 are unit vectors.

We next compute

u1 · u2 =
8− 16 + 8

81
= 0 and u1 × u2 =

1

81
(36, 63,−36) = u3 .
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This shows that {u1,u2,u3} is a right handed orthonormal basis.

For (b), we take

u =
1

‖u1 − e1‖
(u1 − e1) =

1

‖(− 8, 4, 8)‖
(− 8, 4, 8) =

1

12
(− 8, 4, 8) .

We then compute

hu(u1) = u1 − 2(u1 · u)u = (1, 0, 0)

hu(u2) = u2 − 2(u2 · u)u = (0, 0, 1)

hu(u3) = u3 − 2(u3 · u)u = (0, 1, 0)

Notice that this Householder transformation has transformed a right handed orthonormal basis

into a left handed orthonormal basis. As we shall see in Chapter 2, this always happens, and so

the result for hu(u3) is exactly what we must have, given this fact, and our results for hu(u1) and

hu(u2).


