Solutions for Challenge Problem Set 4, Math 291 Fall 2017

Eric A. Carlen¹ Rutgers University

December 20, 2017

This challenge problem set concerns least squares solutions of linear equations.

0.1 Least squares solutions

Consider the equation $A\mathbf{x} = \mathbf{b}$ where A is an $m \times n$ matrix. We know that this equation is solvable if and only if \mathbf{b} lies in the span of the columns of A. And we know that in this case the solution is unique if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the solution $\mathbf{x} = \mathbf{0}$.

Suppose that the span of the columns of A is not all of \mathbb{R}^m , so that there exist vectors $\mathbf{b} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{b}$ has no solution. Let $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ be the orthonormal set obtained by applying the Gram-Schmidt Algorithm to the columns of A.

Exercise 1: For any $\mathbf{b} \in \mathbb{R}^m$, define

$$\tilde{\mathbf{b}} = \sum_{j=1}^{r} (\mathbf{b} \cdot \mathbf{u}_j) \mathbf{u}_j$$
.

Show that $\tilde{\mathbf{b}}$ belongs to the span of the columns of A, and that for all \mathbf{y} in the span of the columns of A,

$$\|\tilde{\mathbf{b}} - \mathbf{b}\|^2 \le \|\mathbf{y} - \mathbf{b}\|^2 .$$

SOLUTION Clearly $\tilde{\mathbf{b}} \in \operatorname{Span}(\{\mathbf{u}_1, \dots, \mathbf{u}_r\}, \text{ and by the properties of the Gram-Schmidt algorithm, the span of the columns of <math>A$ equals $\operatorname{Span}(\{\mathbf{u}_1, \dots, \mathbf{u}_r\}, \mathbf{u}_r\})$. Next, note that $\mathbf{b} - \tilde{\mathbf{b}}$ is orthogonal to each \mathbf{u}_j , and hence to each vector in the span of the columns of A. Then for \mathbf{y} in the span of the columns of A, $\mathbf{y} - \tilde{\mathbf{b}}$ belongs to the span of the columns of A, and $\tilde{\mathbf{b}} - \mathbf{b}$ is orthogonal to the span of the columns of A.

Then since $\mathbf{y} - \mathbf{b} = (\mathbf{y} - \tilde{\mathbf{b}}) + (\tilde{\mathbf{b}} - \mathbf{b})$, the Pythagorean Theorem gives

$$\|\mathbf{y} - \mathbf{b}\|^2 = \|\mathbf{y} - \tilde{\mathbf{b}}\|^2 + \|\tilde{\mathbf{b}} - \mathbf{b}\|^2 \ge \|\tilde{\mathbf{b}} - \mathbf{b}\|^2$$

and there is equality if and only if $\mathbf{y} = \tilde{\mathbf{b}}$.

Exercise 2. Let $\tilde{\mathbf{b}}$ be defined as in Exercise 1. Since $\tilde{\mathbf{b}}$ belongs to the span of the columns of A, there is at least one $\mathbf{x}_0 \in \mathbb{R}^n$ such that $A\mathbf{x}_0 = \tilde{\mathbf{b}}$. Show that for all $\mathbf{x} \in \mathbb{R}^n$,

$$||A\mathbf{x}_0 - \mathbf{b}||^2 \le ||A\mathbf{x} - \mathbf{b}||^2.$$

^{© 2017} by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

(Use the result of Exercise 1.)

SOLUTION By definition $A\mathbf{x}_0 = \tilde{\mathbf{b}}$ and we can define $\mathbf{y} := A\mathbf{x}$. Then \mathbf{y} is in the span of the columns of A, and so by the first exercise, $\|\tilde{\mathbf{b}} - \mathbf{b}\|^2 \le \|\mathbf{y} - \mathbf{b}\|^2$, which is then the same as $\|A\mathbf{x}_0 - \mathbf{b}\|^2 \le \|A\mathbf{x} - \mathbf{b}\|^2$.

The vector \mathbf{x}_0 considered in Exercise 2 may not solve $a\mathbf{x} = \mathbf{b}$, but it comes as close as possible: It makes $||A\mathbf{x} - \mathbf{b}||^2$ as small as possible. It is what is commonly called a *least squares solution* of the equation $A\mathbf{x} = \mathbf{b}$.

However, if $A\mathbf{x} = \mathbf{0}$ has solutions other than $\mathbf{x} = \mathbf{0}$, there will be infinitely many such least squares solutions. Among these, there is one that is special: It has a length that is less than that of any other least squares solution.

To see this, let $\{\mathbf{w}_1, \dots, \mathbf{w}_s\}$ be the orthonormal basis that one gets by applying the Gram-Schmidt algorithm to the rows of A. Let $\{\mathbf{w}_1, \dots, \mathbf{w}_s, \mathbf{w}_{s+1}, \dots, \mathbf{w}_n\}$ be an orthonormal basis of \mathbb{R}^n that one gets by extending $\{\mathbf{w}_1, \dots, \mathbf{w}_s\}$.

Exercise 3: Show that for $s+1 \leq j \leq n$, $A\mathbf{w}_j = 0$. Then show that if \mathbf{x}_0 satisfies $A\mathbf{x}_0 = \tilde{\mathbf{b}}$, then so does

$$\mathbf{x}_1 := \mathbf{x}_0 - \sum_{j=s+1}^n (\mathbf{x}_0 \cdot \mathbf{w}_j) \mathbf{w}_j$$
.

Moreover, show that $\|\mathbf{x}_1\| \leq \|\mathbf{x}_0\|$, and there is equality if and only if \mathbf{x}_0 is in the span of the rows of A. This least length solution is called the least length, least squares solution of $A\mathbf{x} = \mathbf{b}$. Thus, every matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique least length, least squares solution

SOLUTION By linearity,

$$A\mathbf{x}_1 = A\mathbf{x}_0 - \sum_{j=s+1}^n (\mathbf{x}_0 \cdot \mathbf{w}_j) A\mathbf{w}_j = A\mathbf{x}_0 = \tilde{\mathbf{b}}$$
.

Also

$$\|\mathbf{x}_1\| = \sum_{j=1}^s (\mathbf{x}_0 \cdot \mathbf{w}_j)^2 \le \sum_{j=1}^n (\mathbf{x}_0 \cdot \mathbf{w}_j)^2$$

with equality only in case $\mathbf{x}_0 \cdot \mathbf{w}_j = 0$ for each $j = s + 1, \dots, n$, and in this case $\mathbf{x}_1 = \mathbf{x}_0$.

Exercise 4. Let
$$A = \begin{bmatrix} 1 & 0 & -2 & -1 \\ 1 & 2 & 2 & 3 \\ -1 & 0 & 2 & 3 \\ 1 & 2 & 2 & 5 \end{bmatrix}$$
.

Apply the Gram-Schmidt Algorithm to the columns and rows of A, and find the unique least length, least squares solution of $A\mathbf{x} = \mathbf{b}$ for

$$\mathbf{b} = (1, 2, 3, 4)$$
 and then $\mathbf{b} = (1, 1, 1, -1)$ and then $\mathbf{b} = (1, 1, -1, 1)$.

SOLUTION We first compute the QR factorization of A:

$$Q = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & 1/2 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 2 & 2 & 0 & 2 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Then $\tilde{b}b$ is given by $\tilde{\mathbf{b}} = QQ^T\mathbf{b}$, and then we get a least squares solution by solving $A\mathbf{x} = \tilde{\mathbf{b}}$, which since A = QR and $Q^TQ = I_{3\times 3}$, is equivalent to solving $R\mathbf{x} = Q^t\mathbf{b}$. Since the third column of R is non-pivotal, we can always find a solution with $x_3 = 0$ by back substitution.

Proceeding to actual computations, take $\mathbf{b} = (1, 2, 3, 4)$. Then $Q^t \mathbf{b} = (2, 4, 3)$ and $R\mathbf{x} = (2, 4, 3)$ has the solution (2, -5/2, 0, 3/2). (This is the unique solution with $x_3 = 0$.

Next, taking bb = (1, 1, 1, 1), $Q^t \mathbf{b} = (2, 4, 3)$ and $R\mathbf{x} = (1, 1, 1)$ has the solution (1, -1, 0, 1/2). Next, taking bb = (1, 1, -1, 1), $Q^t \mathbf{b} = (2, 4, 3)$ and $R\mathbf{x} = (2, 0, 0)$ has the solution (1, 0, 0, 0).

To convert our least squares solutions into least-length least squares solutions, apply the Gram-Schmidt algorithm to the rows of A. Let $W = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3]$ be the 3×4 matrix that has these vectors as its columns. Then define $P = WW^T$, and note that for any $\mathbf{x} \in \mathbb{R}^4$,

$$P\mathbf{x} = \sum_{j=1}^{3} (\mathbf{x} \cdot \mathbf{w}_j) \mathbf{w}_j$$

and hence applying P to our least squares solutions, converts them to least-length least squares solutions. Doing the computations, we find

$$P = \begin{bmatrix} 5/9 & 4/9 & -2/9 & 0 \\ 4/9 & 5/9 & 2/9 & 0 \\ -2/9 & 2/9 & 8/9 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Then P(2, -5/2, 0, 3/2) = (0, -1/2, -1, 3/2) is the least-length least squares solution for the first choice of \mathbf{b} , P(1, -1, 0, 1/2) = (1/9, -1/9, -4/9, 1/2) is the least-length least squares solution for the second choice of \mathbf{b} , and P(1, 0, 0, 0) = (5/9, 4/9, -4/9, 0) is the least-length least squares solution for the third choice of \mathbf{b} .

Here is a typical application of the least squares method. Suppose you know, for theoretical reasons that some variable y must depend on another variable x in a "linear way":

$$y = ax + b$$
,

for some constants a and b. To determine a and b from measurements, you could measure the output variable y for two values of the input variable x, say x_1 and x_2 and you would get a pair of equations that you could then solve for a and b:

$$ax_1 + b = y_1$$

$$ax_2 + b = y_2$$

The problem is that all laboratory measurements have some error in them, and to bet better values

of a and b, you might make more measurements, say 6:

$$ax_1 + b = y_1$$

 $ax_2 + b = y_2$
 $ax_3 + b = y_3$
 $ax_4 + b = y_4$
 $ax_5 + b = y_5$
 $ax_6 + b = y_6$

Now the problem is, in general, over-determined. There are 6 equations and only 2 variables, and in general no solution – there will be a solution if and only if all of the point (x_j, y_j) lie exactly on some line. Usually there will be some scatter. One can find the "least squares fit" of a line to this scattered data using least squares solutions.

Introduce the matrix

$$A := \left[\begin{array}{cc} x_1 & 1 \\ x_2 & 1 \\ \dots & \vdots \\ x_n & 1 \end{array} \right]$$

And the vector $\mathbf{y} := (y_1, y_2, \dots, y_n)$. Then with $\mathbf{x} = (a, b)$, we seek a least squares solution to $A\mathbf{x} = \mathbf{y}$. Using these values of a and b, you can plot a line that is the best least-squares fir of the data.

Exercise 5. Show that as long as all of the x_j are not the same, $\operatorname{rank}(A) = 2$ and then that the 2×2 matrix $A^T A$ is invertible. Note that if \mathbf{x} solves $A\mathbf{x} = \mathbf{y}$, then $A^T A\mathbf{x} = A^T \mathbf{y}$, and hence $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{y}$. Show that for all $\mathbf{y} \in \mathbb{R}^n$, without any other assumptions, $(A^T A)^{-1} A^T \mathbf{y}$ is the unique least squares solution of $A\mathbf{x} = \mathbf{y}$ in this case. Notice that $A^T A$ is a 2×2 matrix no matter how large n is, so that it is always easy to invert.

SOLUTION If $A^T A \mathbf{x} = \mathbf{0} \mathbf{B}$ dor any bx, then $0 = \mathbf{x} \cdot A^T A \mathbf{x} = A \mathbf{x} \cdot A \mathbf{x} = ||A\mathbf{x}||^2$. Since the columns of A are linearly independent under the rank assumption, this means $\mathbf{x} = 0$. Hence the null space of A is trivial, and since it is a square matrix, the fundamental Theorem of Linear Algebra says it is invertible.

Now let $\tilde{\mathbf{y}}$ be related to \mathbf{y} as in Exercise 1, so that $A\mathbf{x} = \tilde{\mathbf{y}}$ has a unique solution \mathbf{x}_0 which is the least squares solutions to $A\mathbf{x} = \mathbf{y}$. Then $\mathbf{y} = (\mathbf{y} - \tilde{\mathbf{y}}) + \tilde{\mathbf{y}}$, and since $(\mathbf{y} - \tilde{\mathbf{y}})$ is orthogonal to the columns of A, $A^T(\mathbf{y} - \tilde{\mathbf{y}}) = \mathbf{0}$. Therefore, $A^T\mathbf{y} = A^T\tilde{\mathbf{y}}$. So

$$(A^T A)^{-1} A^T \mathbf{y} = (A^T A)^{-1} A^T \tilde{\mathbf{y}} = (A^T A)^{-1} A^T A \mathbf{x}_0 = \mathbf{x}_0$$
.

Exercise 6. Find the line y = ax + b that is the best least squares fit to the points

$$(1,0.12)$$
, $(1.5,0.77)$, $(2,1.48)$, $(2.5,2.11)$, $(3,0.2.75)$, $(3.5,3.49)$, $(4,4.21)$, $(4.5,4.81)$,

SOLUTION Forming A and \mathbf{y} as above, we compute $A^tA = \begin{bmatrix} 71 & 22 \\ 22 & 8 \end{bmatrix}$ and $A^t\mathbf{y} = (68.46, 19.74)$.

Then the least-squares solution (also least length since it is unique) is

$$(a,b) = (A^T A)^{-1} A^T \mathbf{y} = (1.350. - 1.245) .$$

So the best fit line is y = (1.350)x - 1.245.