Solutions for Challenge Problem Set 4, Math 291 Fall 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

December 20, 2017

This challenge problem set concerns least squares solutions of linear equations.

0.1 Least squares solutions

Consider the equation $A \mathbf{x}=\mathbf{b}$ where A is an $m \times n$ matrix. We know that this equation is solvable if and only if \mathbf{b} lies in the span of the columns of A. And we know that in this case the solution is unique if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the solution $\mathbf{x}=\mathbf{0}$.

Suppose that the span of the columns of A is not all of \mathbb{R}^{m}, so that there exist vectors $\mathbf{b} \in \mathbb{R}^{m}$ such that $A \mathbf{x}=\mathbf{b}$ has no solution. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ be the orthonormal set obtained by applying the Gram-Schmidt Algorithm to the columns of A.

Exercise 1: For any $\mathbf{b} \in \mathbb{R}^{m}$, define

$$
\tilde{\mathbf{b}}=\sum_{j=1}^{r}\left(\mathbf{b} \cdot \mathbf{u}_{j}\right) \mathbf{u}_{j} .
$$

Show that $\tilde{\mathbf{b}}$ belongs to the span of the columns of A, and that for all \mathbf{y} in the span of the columns of A,

$$
\|\tilde{\mathbf{b}}-\mathbf{b}\|^{2} \leq\|\mathbf{y}-\mathbf{b}\|^{2} .
$$

SOLUTION Clearly $\tilde{\mathbf{b}} \in \operatorname{Span}\left(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}\right.$, and by the properties of the Gram-Schmidt algorithm, the span of the columns of A equals $\operatorname{Span}\left(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}\right.$. Next, note that $\mathbf{b}-\tilde{\mathbf{b}}$ is orthogonal to each \mathbf{u}_{j}, and hence to each vector in the span of the columns of A. Then for \mathbf{y} in the span of the columns of $A, \mathbf{y}-\tilde{\mathbf{b}}$ belongs to the span of the columns of A, and $\tilde{\mathbf{b}}-\mathbf{b}$ is orthogonal to the span of the columns of A.

Then since $\mathbf{y}-\mathbf{b}=(\mathbf{y}-\tilde{\mathbf{b}})+(\tilde{\mathbf{b}}-\mathbf{b})$, the Pythagorean Theorem gives

$$
\|\mathbf{y}-\mathbf{b}\|^{2}=\|\mathbf{y}-\tilde{\mathbf{b}}\|^{2}+\|\tilde{\mathbf{b}}-\mathbf{b}\|^{2} \geq\|\tilde{\mathbf{b}}-\mathbf{b}\|^{2}
$$

and there is equality if and only if $\mathbf{y}=\tilde{\mathbf{b}}$.
Exercise 2. Let $\tilde{\mathbf{b}}$ be defined as in Exercise 1. Since $\tilde{\mathbf{b}}$ belongs to the span of the columns of A, there is at least one $\mathbf{x}_{0} \in \mathbb{R}^{n}$ such that $A \mathbf{x}_{0}=\tilde{\mathbf{b}}$. Show that for all $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\left\|A \mathbf{x}_{0}-\mathbf{b}\right\|^{2} \leq\|A \mathbf{x}-\mathbf{b}\|^{2} .
$$

[^0](Use the result of Exercise 1.)
SOLUTION By definition $A \mathbf{x}_{0}=\tilde{\mathbf{b}}$ and we can define $\mathbf{y}:=A \mathbf{x}$. Then \mathbf{y} is in the span of the columns of A, and so by the first exercise, $\|\tilde{\mathbf{b}}-\mathbf{b}\|^{2} \leq\|\mathbf{y}-\mathbf{b}\|^{2}$, which is then the same as $\left\|A \mathbf{x}_{0}-\mathbf{b}\right\|^{2} \leq\|A \mathbf{x}-\mathbf{b}\|^{2}$.

The vector \mathbf{x}_{0} considered in Exercise 2 may not solve $a \mathbf{x}=\mathbf{b}$, but it comes as close as possible: It makes $\|A \mathbf{x}-\mathbf{b}\|^{2}$ as small as possible. It is what is commonly called a least squares solution of the equation $A \mathbf{x}=\mathbf{b}$.

However, if $A \mathbf{x}=\mathbf{0}$ has solutions other than $\mathbf{x}=\mathbf{0}$, there will be infinitely many such least squares solutions. Among these, there is one that is special: It has a length that is less than that of any other least squares solution.

To see this, let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{s}\right\}$ be the orthonormal basis that one gets by applying the GramSchmidt algorithm to the rows of A. Let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{s}, \mathbf{w}_{s+1}, \ldots, \mathbf{w}_{n}\right\}$ be an orthonormal basis of \mathbb{R}^{n} that one gets by extending $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{s}\right\}$.
Exercise 3: Show that for $s+1 \leq j \leq n, A \mathbf{w}_{j}=0$. Then show that if \mathbf{x}_{0} satisfies $A \mathbf{x}_{0}=\tilde{\mathbf{b}}$, then so does

$$
\mathbf{x}_{1}:=\mathbf{x}_{0}-\sum_{j=s+1}^{n}\left(\mathbf{x}_{0} \cdot \mathbf{w}_{j}\right) \mathbf{w}_{j} .
$$

Moreover, show that $\left\|\mathbf{x}_{1}\right\| \leq\left\|\mathbf{x}_{0}\right\|$, and there is equality if and only if \mathbf{x}_{0} is in the span of the rows of A. This least length solution is called the least length, least squares solution of $A \mathbf{x}=\mathbf{b}$. Thus, every matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique least length, least squares solution
SOLUTION By linearity,

$$
A \mathbf{x}_{1}=A \mathbf{x}_{0}-\sum_{j=s+1}^{n}\left(\mathbf{x}_{0} \cdot \mathbf{w}_{j}\right) A \mathbf{w}_{j}=A \mathbf{x}_{0}=\tilde{\mathbf{b}}
$$

Also

$$
\left\|\mathbf{x}_{1}\right\|=\sum_{j=1}^{s}\left(\mathbf{x}_{0} \cdot \mathbf{w}_{j}\right)^{2} \leq \sum_{j=1}^{n}\left(\mathbf{x}_{0} \cdot \mathbf{w}_{j}\right)^{2}
$$

with equality only in case $\mathbf{x}_{0} \cdot \mathbf{w}_{j}=0$ for each $j=s+1, \ldots, n$, and in this case $\mathbf{x}_{1}=\mathbf{x}_{0}$.
Exercise 4. Let $A=\left[\begin{array}{rcrr}1 & 0 & -2 & -1 \\ 1 & 2 & 2 & 3 \\ -1 & 0 & 2 & 3 \\ 1 & 2 & 2 & 5\end{array}\right]$.
Apply the Gram-Schmidt Algorithm to the columns and rows of A, and find the unique least length, least squares solution of $A \mathbf{x}=\mathbf{b}$ for

$$
\mathbf{b}=(1,2,3,4) \quad \text { and then } \quad \mathbf{b}=(1,1,1,-1) \quad \text { and then } \quad \mathbf{b}=(1,1,-1,1) .
$$

SOLUTION We first compute the $Q R$ factorization of A :

$$
Q=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2
\end{array}\right] \quad \text { and } \quad R=\left[\begin{array}{cccc}
2 & 2 & 0 & 2 \\
0 & 2 & 4 & 6 \\
0 & 0 & 0 & 2
\end{array}\right] .
$$

Then $\tilde{b} b$ is given by $\tilde{\mathbf{b}}=Q Q^{T} \mathbf{b}$, and then we get a least squares solution by solving $A \mathbf{x}=\tilde{\mathbf{b}}$, which since $A=Q R$ and $Q^{T} Q=I_{3 \times 3}$, is equivalent to solving $R \mathbf{x}=Q^{t} \mathbf{b}$. Since the third column of R is non-pivotal, we can always find a solution with $x_{3}=0$ by back substitution.

Proceeding to actual computations, take $\mathbf{b}=(1,2,3,4)$. Then $Q^{t} \mathbf{b}=(2,4,3)$ and $R \mathbf{x}=(2,4,3)$ has the solution $(2,-5 / 2,0,3 / 2)$. (This is the unique solution with $x_{3}=0$.

Next, taking $b b=(1,1,1,1), Q^{t} \mathbf{b}=(2,4,3)$ and $R \mathbf{x}=(1,1,1)$ has the solution $(1,-1,0,1 / 2)$.
Next, taking $b b=(1,1,-1,1), Q^{t} \mathbf{b}=(2,4,3)$ and $R \mathbf{x}=(2,0,0)$ has the solution $(1,0,0,0)$.
To convert our least squares solutions into least-length least squares solutions, apply the GramSchmidt algorithm to the rows of A. Let $W=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right]$ be the 3×4 matrix that has these vectors as its columns. Then define $P=W W^{T}$, and note that for any $\mathbf{x} \in \mathbb{R}^{4}$,

$$
P \mathbf{x}=\sum_{j=1}^{3}\left(\mathbf{x} \cdot \mathbf{w}_{j}\right) \mathbf{w}_{j}
$$

and hence applying P to our least squares solutions, converts them to least-length least squares solutions. Doing the computations, we find

$$
P=\left[\begin{array}{cccc}
5 / 9 & 4 / 9 & -2 / 9 & 0 \\
4 / 9 & 5 / 9 & 2 / 9 & 0 \\
-2 / 9 & 2 / 9 & 8 / 9 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then $P(2,-5 / 2,0,3 / 2)=(0,-1 / 2,-1,3 / 2)$ is the least-length least squares solution for the first choice of $\mathbf{b}, P(1,-1,0,1 / 2)=(1 / 9,-1 / 9,-4 / 9,1 / 2)$ is the least-length least squares solution for the second choice of \mathbf{b}, and $P(1,0,0,0)=(5 / 9,4 / 9,-4 / 9,0)$ is the least-length least squares solution for the third choice of \mathbf{b}.

Here is a typical application of the least squares method. Suppose you know, for theoretical reasons that some variable y must depend on another variable x in a "linear way";

$$
y=a x+b,
$$

for some constants a and b. To determine a and b from measurements, you could measure the output variable y for two values of the input variable x, say x_{1} and x_{2} and you would get a pair of equations that you could then solve for a and b :

$$
\begin{aligned}
& a x_{1}+b=y_{1} \\
& a x_{2}+b=y_{2}
\end{aligned}
$$

The problem is that all laboratory measurements have some error in them, and to bet better values
of a and b, you might make more measurements, say 6 :

$$
\begin{aligned}
a x_{1}+b & =y_{1} \\
a x_{2}+b & =y_{2} \\
a x_{3}+b & =y_{3} \\
a x_{4}+b & =y_{4} \\
a x_{5}+b & =y_{5} \\
a x_{6}+b & =y_{6}
\end{aligned}
$$

Now the problem is, in general, over-determined. There are 6 equations and only 2 variables, and in general no solution - there will be a solution if and only if all of the point $\left(x_{j}, y_{j}\right)$ lie exactly on some line. Usually there will be some scatter. One can find the "least squares fit" of a line to this scattered data using least squares solutions.

Introduce the matrix

$$
A:=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\cdots & \vdots \\
x_{n} & 1
\end{array}\right]
$$

And the vector $\mathbf{y}:=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Then with $\mathbf{x}=(a, b)$, we seek a least squares solution to $A \mathbf{x}=\mathbf{y}$. Using these values of a and b, you can plot a line that is the best least-squares fir of the data.

Exercise 5. Show that as long as all of the x_{j} are not the same, $\operatorname{rank}(A)=2$ and then that the 2×2 matrix $A^{T} A$ is invertible. Note that if \mathbf{x} solves $A \mathbf{x}=\mathbf{y}$, then $A^{T} A \mathbf{x}=A^{T} \mathbf{y}$, and hence $\mathbf{x}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}$. Show that for all $\mathbf{y} \in \mathbb{R}^{n}$, without any other assumptions, $\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}$ is the unique least squares solution of $A \mathbf{x}=\mathbf{y}$ in this case. Notice that $A^{T} A$ is a 2×2 matrix no matter how large n is, so that it is always easy to invert.
SOLUTION If $A^{T} A \mathbf{x}=\mathbf{0 B}$ dor any $b x$, then $0=\mathbf{x} \cdot A^{T} A \mathbf{x}=A \mathbf{x} \cdot A \mathbf{x}=\|A \mathbf{x}\|^{2}$. Since the columns of A are linearly independent under the rank assumption, this means $\mathbf{x}=0$. Hence the null space of A is trivial, and since it is a square matrix, the fundamental Theorem of Linear Algebra says it is invertible.

Now let $\tilde{\mathbf{y}}$ be related to \mathbf{y} as in Exercise 1, so that $A \mathbf{x}=\tilde{\mathbf{y}}$ has a unique solution \mathbf{x}_{0} which is the least squares solutions to $A \mathbf{x}=\mathbf{y}$. Then $\mathbf{y}=(\mathbf{y}-\tilde{\mathbf{y}})+\tilde{\mathbf{y}}$, and since $(\mathbf{y}-\tilde{\mathbf{y}})$ is orthogonal to the columns of $A, A^{T}(\mathbf{y}-\tilde{\mathbf{y}})=\mathbf{0}$. Therefore, $A^{T} \mathbf{y}=A^{T} \tilde{\mathbf{y}}$. So

$$
\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}=\left(A^{T} A\right)^{-1} A^{T} \tilde{\mathbf{y}}=\left(A^{T} A\right)^{-1} A^{T} A \mathbf{x}_{0}=\mathbf{x}_{0}
$$

Exercise 6. Find the line $y=a x+b$ that is the best least squares fit to the points

$$
(1,0.12),(1.5,0.77),(2,1.48),(2.5,2.11),(3,0.2 .75),(3.5,3.49),(4,4.21),(4.5,4.81), .
$$

SOLUTION Forming A and \mathbf{y} as above, we compute $A^{t} A=\left[\begin{array}{cc}71 & 22 \\ 22 & 8\end{array}\right]$ and $A^{t} \mathbf{y}=(68.46,19.74)$.
Then the least-squares solution (also least length since it is unique) is

$$
(a, b)=\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}=(1.350 .-1.245)
$$

So the best fit line is $y=(1.350) x-1.245$.

[^0]: ${ }^{1}$ (c) 2017 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

