Challenge Problem Set 4, Math 291 Fall 2017

Eric A. Carlen¹ Rutgers University

November 14, 2017

This challenge problem set concerns least squares solutions of linear equations.

0.1 Least squares solutions

Consider the equation $A\mathbf{x} = \mathbf{b}$ where A is an $m \times n$ matrix. We know that this equation is solvable if and only if **b** lies in the span of the columns of A. And we know that in this case the solution is unique if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the solution $\mathbf{x} = \mathbf{0}$.

Suppose that the span of the columns of A is not all of \mathbb{R}^m , so that there exist vectors $\mathbf{b} \in \mathbb{R}^m$ such that $A\mathbf{x} = \mathbf{b}$ has no solution. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ be the orthonormal set obtained by applying the Gram-Schmidt Algorithm to the columns of A.

Exercise 1: For any $\mathbf{b} \in \mathbb{R}^m$, define

$$\tilde{\mathbf{b}} = \sum_{j=1}^r (\mathbf{b} \cdot \mathbf{u}_j) \mathbf{u}_j \; .$$

Show that **b** belongs to the span of the columns of A, and that for all **y** in the span of the columns of A,

$$\|\tilde{\mathbf{b}} - \mathbf{b}\|^2 \le \|\mathbf{y} - \mathbf{b}\|^2$$
.

Exercise 2. Let $\tilde{\mathbf{b}}$ be defined as in Exercise 1. Since $\tilde{\mathbf{b}}$ belongs to the span of the columns of A, there is at least one \mathbf{x}_0 $in \mathbb{R}^n$ such that $A\mathbf{x}_0 = \tilde{\mathbf{b}}$. Show that for all $\mathbf{x} in \mathbb{R}^n$,

$$\|A\mathbf{x}_0 - \mathbf{b}\|^2 \le \|A\mathbf{x} - \mathbf{b}\|^2 .$$

(Use the result of Exercise 1.)

The vector \mathbf{x}_0 considered in Exercise 2 may not solve $a\mathbf{x} = \mathbf{b}$, but it comes as close as possible: It makes $||A\mathbf{x} - \mathbf{b}||^2$ as small as possible. It is what is commonly called a *least squares solution* of the equation $A\mathbf{x} = \mathbf{b}$.

However, if $A\mathbf{x} = \mathbf{0}$ has solutions other than $\mathbf{x} = \mathbf{0}$, there will be infinitely many such least squares solutions. Among these, there is one that is special: It has a length that is less than that of any other least squares solution.

¹© 2017 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

To see this, let $\{\mathbf{w}_1, \ldots, \mathbf{w}_s\}$ be the orthonormal basis that one gets by applying the Gram-Schmidt algorithm to the rows of A. Let $\{\mathbf{w}_1, \ldots, \mathbf{w}_s, \mathbf{w}_{s+1}, \ldots, \mathbf{w}_n\}$ be an orthonormal basis of \mathbb{R}^n that one gets by extending $\{\mathbf{w}_1, \ldots, \mathbf{w}_s\}$.

Exercise 3: Show that for $s + 1 \le j \le n$, $A\mathbf{w}_j = 0$. Then show that if \mathbf{x}_0 satisfies $A\mathbf{x}_0 = \tilde{\mathbf{b}}$, then so does

$$\mathbf{x}_1 := \mathbf{x}_0 - \sum_{j=s+1}^n (\mathbf{x}_0 \cdot \mathbf{w}_j) \mathbf{w}_j \ .$$

Moreover, show that $\|\mathbf{x}_1\| \leq \|\mathbf{x}_0\|$, and there is equality if and only if \mathbf{x}_0 is in the span of the rows of A. This least length solution is called the least length, least squares solution of $A\mathbf{x} = \mathbf{b}$. Thus, every matrix equation $A\mathbf{x} = \mathbf{b}$ has a unique least length, least squares solution

Exercise 4. Let
$$A = \begin{bmatrix} 1 & 0 & -2 & -1 \\ 1 & 2 & 2 & 3 \\ -1 & 0 & 2 & 3 \\ 1 & 2 & 2 & 5 \end{bmatrix}$$
.

Apply the Gram-Schmidt Algorithm to the columns and rows of A, and fins the unique least length, least squares solution of $A\mathbf{x} = \mathbf{b}$ for

 $\mathbf{b} = (1, 2, 3, 4)$ and then $\mathbf{b} = (1, 1, 1, -1)$ and then $\mathbf{b} = (1, 1, -1, 1)$ and then .

Here is a typical application of the least squares method. Suppose you know, for theoretical reasons that some variable y must depend on another variable x in a "linear way";

$$y = ax + b ,$$

for some constants a and b. To determine a and b from measurements, you could measure the output variable y for two values of the input variable x, say x_1 and x_2 and you would get a pair of equations that you could then solve for a and b:

$$ax_1 + b = y_1$$
$$ax_2 + b = y_2$$

The problem is that all laboratory measurements have some error in them, and to bet better values of a and b, you might make more measurements, say 6:

$$ax_1 + b = y_1$$

$$ax_2 + b = y_2$$

$$ax_3 + b = y_3$$

$$ax_4 + b = y_4$$

$$ax_5 + b = y_5$$

$$ax_6 + b = y_6$$

Now the problem is, in general, over-determined. There are 6 equations and only 2 variables, and in general no solution – there will be a solution if and only if all of the point (x_j, y_j) lie exactly on some line. Usually there will be some scatter. One can find the "least squares fit" of a line to this scattered data using least squares solutions.

Introduce the matrix

$$A := \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & \vdots \\ x_n & 1 \end{bmatrix}$$

And the vector $\mathbf{y} := (y_1, y_2, \dots, y_n)$. Then with $\mathbf{x} = (a, b)$, we seek a least squares solution to $A\mathbf{x} = \mathbf{y}$. Using these values of a and b, you can plot a line that is the best least-squares fir of the data.

Exercise 5. Show that as long as all of the x_j are not the same, $\operatorname{rank}(A) = 2$ and then that the 2×2 matrix $A^T A is invertible. Note that if <math>\mathbf{x} solves \mathbf{A} \mathbf{x} = \mathbf{y}$, then $A^T A \mathbf{x} = A^T \mathbf{y}$, and hence $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{y}$. Show that for all $\mathbf{y} \in \mathbb{R}^n$, without any other assumptions, $(A^T A)^{-1} A^T \mathbf{y}$ is the unique least squares solution of $A \mathbf{x} = \mathbf{y}$ in this case. Notice that $A^T A$ is a 2×2 matrix no matter how large n is, so that it is always easy to invert.

Exercise 6. Find the line y = ax + b that is the best least squares fit to the points

(1, 0.12), (1.5, 0.77), (2, 1.48), (2.5, 2.11), (3, 0.2.75), (3.5, 3.49), (4, 4.21), (4.5, 4.81), .