Challenge Problem Set 4, Math 291 Fall 2017

Eric A. Carlen ${ }^{1}$
Rutgers University

November 14, 2017

This challenge problem set concerns least squares solutions of linear equations.

0.1 Least squares solutions

Consider the equation $A \mathbf{x}=\mathbf{b}$ where A is an $m \times n$ matrix. We know that this equation is solvable if and only if \mathbf{b} lies in the span of the columns of A. And we know that in this case the solution is unique if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the solution $\mathbf{x}=\mathbf{0}$.

Suppose that the span of the columns of A is not all of \mathbb{R}^{m}, so that there exist vectors $\mathbf{b} \in \mathbb{R}^{m}$ such that $A \mathbf{x}=\mathbf{b}$ has no solution. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ be the orthonormal set obtained by applying the Gram-Schmidt Algorithm to the columns of A.

Exercise 1: For any $\mathbf{b} \in \mathbb{R}^{m}$, define

$$
\tilde{\mathbf{b}}=\sum_{j=1}^{r}\left(\mathbf{b} \cdot \mathbf{u}_{j}\right) \mathbf{u}_{j} .
$$

Show that $\tilde{\mathbf{b}}$ belongs to the span of the columns of A, and that for all \mathbf{y} in the span of the columns of A,

$$
\|\tilde{\mathbf{b}}-\mathbf{b}\|^{2} \leq\|\mathbf{y}-\mathbf{b}\|^{2} .
$$

Exercise 2. Let $\tilde{\mathbf{b}}$ be defined as in Exercise 1. Since $\tilde{\mathbf{b}}$ belongs to the span of the columns of A, there is at least one $\mathbf{x}_{0} i n \mathbb{R}^{n}$ such that $A \mathbf{x}_{0}=\tilde{\mathbf{b}}$. Show that for all $\mathbf{x} i n \mathbb{R}^{n}$,

$$
\left\|A \mathbf{x}_{0}-\mathbf{b}\right\|^{2} \leq\|A \mathbf{x}-\mathbf{b}\|^{2} .
$$

(Use the result of Exercise 1.)
The vector \mathbf{x}_{0} considered in Exercise 2 may not solve $a \mathbf{x}=\mathbf{b}$, but it comes as close as possible: It makes $\|A \mathbf{x}-\mathbf{b}\|^{2}$ as small as possible. It is what is commonly called a least squares solution of the equation $A \mathbf{x}=\mathbf{b}$.

However, if $A \mathbf{x}=\mathbf{0}$ has solutions other than $\mathbf{x}=\mathbf{0}$, there will be infinitely many such least squares solutions. Among these, there is one that is special: It has a length that is less than that of any other least squares solution.

[^0]To see this, let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{s}\right\}$ be the orthonormal basis that one gets by applying the GramSchmidt algorithm to the rows of A. Let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{s}, \mathbf{w}_{s+1}, \ldots, \mathbf{w}_{n}\right\}$ be an orthonormal basis of \mathbb{R}^{n} that one gets by extending $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{s}\right\}$.
Exercise 3: Show that for $s+1 \leq j \leq n, A \mathbf{w}_{j}=0$. Then show that if \mathbf{x}_{0} satisfies $A \mathbf{x}_{0}=\tilde{\mathbf{b}}$, then so does

$$
\mathbf{x}_{1}:=\mathbf{x}_{0}-\sum_{j=s+1}^{n}\left(\mathbf{x}_{0} \cdot \mathbf{w}_{j}\right) \mathbf{w}_{j} .
$$

Moreover, show that $\left\|\mathbf{x}_{1}\right\| \leq\left\|\mathrm{x}_{0}\right\|$, and there is equality if and only if \mathbf{x}_{0} is in the span of the rows of A. This least length solution is called the least length, least squares solution of $A \mathbf{x}=\mathbf{b}$. Thus, every matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique least length, least squares solution
Exercise 4. Let $A=\left[\begin{array}{rrrr}1 & 0 & -2 & -1 \\ 1 & 2 & 2 & 3 \\ -1 & 0 & 2 & 3 \\ 1 & 2 & 2 & 5\end{array}\right]$.
Apply the Gram-Schmidt Algorithm to the columns and rows of A, and fins the unique least length, least squares solution of $A \mathbf{x}=\mathbf{b}$ for
$\mathbf{b}=(1,2,3,4) \quad$ and then $\quad \mathbf{b}=(1,1,1,-1) \quad$ and then $\quad \mathbf{b}=(1,1,-1,1) \quad$ and then.
Here is a typical application of the least squares method. Suppose you know, for theoretical reasons that some variable y must depend on another variable x in a "linear way";

$$
y=a x+b
$$

for some constants a and b. To determine a and b from measurements, you could measure the output variable y for two values of the input variable x, say x_{1} and x_{2} and you would get a pair of equations that you could then solve for a and b :

$$
\begin{aligned}
& a x_{1}+b=y_{1} \\
& a x_{2}+b=y_{2}
\end{aligned}
$$

The problem is that all laboratory measurements have some error in them, and to bet better values of a and b, you might make more measurements, say 6 :

$$
\begin{aligned}
a x_{1}+b & =y_{1} \\
a x_{2}+b & =y_{2} \\
a x_{3}+b & =y_{3} \\
a x_{4}+b & =y_{4} \\
a x_{5}+b & =y_{5} \\
a x_{6}+b & =y_{6}
\end{aligned}
$$

Now the problem is, in general, over-determined. There are 6 equations and only 2 variables, and in general no solution - there will be a solution if and only if all of the point $\left(x_{j}, y_{j}\right)$ lie exactly on some line. Usually there will be some scatter. One can find the "least squares fit" of a line to this scattered data using least squares solutions.

Introduce the matrix

$$
A:=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\ldots & \vdots \\
x_{n} & 1
\end{array}\right]
$$

And the vector $\mathbf{y}:=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Then with $\mathbf{x}=(a, b)$, we seek a least squares solution to $A \mathbf{x}=\mathbf{y}$. Using these values of a and b, you can plot a line that is the best least-squares fir of the data.

Exercise 5. Show that as long as all of the x_{j} are not the same, $\operatorname{rank}(A)=2$ and then that the 2×2 matrix A^{T} Aisinvertible. Notethatif $\mathbf{x s o l v e s} \mathrm{Ax}=\mathbf{y}$, then $A^{T} A \mathbf{x}=A^{T} \mathbf{y}$, and hence $\mathbf{x}=$ $\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}$. Show that for all $\mathbf{y} \in \mathbb{R}^{n}$, without any other assumptions, $\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}$ is the unique least squares solution of $A \mathbf{x}=\mathbf{y}$ in this case. Notice that $A^{T} A$ is a 2×2 matrix no matter how large n is, so that it is always easy to invert.

Exercise 6. Find the line $y=a x+b$ that is the best least squares fit to the points

$$
(1,0.12),(1.5,0.77),(2,1.48),(2.5,2.11),(3,0.2 .75),(3.5,3.49),(4,4.21),(4.5,4.81),
$$

[^0]: ${ }^{1}$ (c) 2017 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

