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This challenge problem set concerns least squares solutions of linear equations.

0.1 Least squares solutions

Consider the equation Ax = b where A is an m×n matrix. We know that this equation is solvable

if and only if b lies in the span of the columns of A. And we know that in this case the solution is

unique if and only if the equation Ax = 0 has only the solution x = 0.

Suppose that the span of the columns of A is not all of Rm, so that there exist vectors b ∈ Rm

such that Ax = b has no solution. Let {u1, . . . ,ur} be the orthonormal set obtained by applying

the Gram-Schmidt Algorithm to the columns of A.

Exercise 1: For any b ∈ Rm, define

b̃ =
r∑

j=1

(b · uj)uj .

Show that b̃ belongs to the span of the columns of A, and that for all y in the span of the columns

of A,

‖b̃− b‖2 ≤ ‖y − b‖2 .

Exercise 2. Let b̃ be defined as in Exercise 1. Since b̃ belongs to the span of the columns of A,

there is at least one x0 inRn such that Ax0 = b̃. Show that for all xinRn,

‖Ax0 − b‖2 ≤ ‖Ax− b‖2 .

(Use the result of Exercise 1.)

The vector x0 considered in Exercise 2 may not solve ax = b, but it comes as close as possible:

It makes ‖Ax− b‖2 as small as possible. It is what is commonly called a least squares solution of

the equation Ax = b.

However, if Ax = 0 has solutions other than x = 0, there will be infinitely many such least

squares solutions. Among these, there is one that is special: It has a length that is less than that

of any other least squares solution.
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To see this, let {w1, . . . ,ws} be the orthonormal basis that one gets by applying the Gram-

Schmidt algorithm to the rows of A. Let {w1, . . . ,ws,ws+1, . . . ,wn} be an orthonormal basis of

Rn that one gets by extending {w1, . . . ,ws}.

Exercise 3: Show that for s + 1 ≤ j ≤ n, Awj = 0. Then show that if x0 satisfies Ax0 = b̃, then

so does

x1 := x0 −
n∑

j=s+1

(x0 ·wj)wj .

Moreover, show that ‖x1‖ ≤ ‖x0‖, and there is equality if and only if x0 is in the span of the rows

of A. This least length solution is called the least length, least squares solution of Ax = b. Thus,

every matrix equation Ax = b has a unique least length, least squares solution

Exercise 4. Let A =


1 0 −2 −1

1 2 2 3

−1 0 2 3

1 2 2 5

.

Apply the Gram-Schmidt Algorithm to the columns and rows of A, and fins the unique least

length, least squares solution of Ax = b for

b = (1, 2, 3, 4) and then b = (1, 1, 1,−1) and then b = (1, 1,−1, 1) and then .

Here is a typical application of the least squares method. Suppose you know, for theoretical

reasons that some variable y must depend on another variable x in a “linear way”;

y = ax + b ,

for some constants a and b. To determine a and b from measurements, you could measure the

output variable y for two values of the input variable x, say x1 and x2 and you would get a pair of

equations that you could then solve for a and b:

ax1 + b = y1

ax2 + b = y2

The problem is that all laboratory measurements have some error in them, and to bet better values

of a and b, you might make more measurements, say 6:

ax1 + b = y1

ax2 + b = y2

ax3 + b = y3

ax4 + b = y4

ax5 + b = y5

ax6 + b = y6
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Now the problem is, in general, over-determined. There are 6 equations and only 2 variables, and

in general no solution – there will be a solution if and only if all of the point (xj , yj) lie exactly on

some line. Usually there will be some scatter. One can find the “least squares fit” of a line to this

scattered data using least squares solutions.

Introduce the matrix

A :=


x1 1

x2 1

· · ·
...

xn 1


And the vector y := (y1, y2, . . . , yn). Then with x = (a, b), we seek a least squares solution to

Ax = y. Using these values of a and b, you can plot a line that is the best least-squares fir of the

data.

Exercise 5. Show that as long as all of the xj are not the same, rank(A) = 2 and then that

the 2 × 2 matrix ATAisinvertible.NotethatifxsolvesAx= y, thenATAx = ATy, and hence x =

(ATA)−1ATy. Show that for all y ∈ Rn, without any other assumptions, (ATA)−1ATy is the

unique least squares solution of Ax = y in this case. Notice that ATA is a 2× 2 matrix no matter

how large n is, so that it is always easy to invert.

Exercise 6. Find the line y = ax + b that is the best least squares fit to the points

(1, 0.12) , (1.5, 0.77) , (2, 1.48) , (2.5, 2.11) , (3, 0.2.75) , (3.5, 3.49) , (4, 4.21) , (4.5, 4.81) , .


