
Solutions for Test II, Math 291 Fall 2017

November 28, 2017

1. Let f(x, y) = x3y + x2y + x.

(a) Find all of the critical points of f . Evaluate the Hessian matrix of f at each of these critical

points, and determine where each is a local maximum, a local minimum, a saddle, or undecidable

from the Hessian.

(b) Sketch a contour plot of f in the vicinity of each critical point. Especially here, show the

computations that lead to the plot to get credit.

(c) Find all unit vectors u in R2 such that that

d2

dt2
f((1, 0) + tu)

∣∣∣∣
t=0

= 0 .

SOLUTION For (a) we compute

∇f(x, y) = (3x2y + 2xy + 1 , x3 + x2) .

The critical points are the solutions of the system

3x2y + 2xy + 1 = 0

x3 + x2 = 0 .

The second equation is satisfied if and only if x = 0 or x = −1. If x = 0, the first equation becomes

1 = 0, and so there is no critical point with x = 0. If x = −1, the first equation becomes y+ 1 = 0,

and so y = −1. Hence there is exactly one critical point, (− 1,−1). We next compute that

Hessf (x, y) =

[
6xy + 2y 3x2 + 2x

3x2 + 2x 0

]
.

Let A denote the Hessian evaluated at (− 1,−1). We find

A =

[
4 1

1 0

]
.

Then since det(A) = −1, one eigenvalue is positive and one is negative, so ( − 1,−1) is a saddle

point.
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For (b) we need the eigenvectors an eigenvalues of A. The characteristic polynomial is det(A−
tI) = t2 − 4t− 1, and hence the eigenvalues are λ1 = 2 +

√
5 and λ2 = 2−

√
5. Then

A− λ1I =

[
2−
√

5 1

1 −2−
√

5

]
.

Therefore v1 = (1,
√

5 − 2) is an eigenvector with eigenvalue λ1, and v2 = (2 −
√

5, 1) is an

eigenvector with eigenvalue λ2. Let u1 and u2 be the unit vectors obtained by normalizing these

vectors:

u1 =
1√

1−−2
√

5
(1,
√

5− 2) and u2 =
1√

1−−2
√

5
(2−

√
5, 1) .

Then writing x = uu1 + vu2, we have

x · x = λ1u
2 + λ2v

2 = (2 +
√

5)u2 + (2−
√

5)v2 .

Setting the right hand side equal to any non-zero constant, we get the equation of an hyperbola.

Setting the right hand side equal to zero gives us the asymptotes of this hyperbola. These are the

lines

v = ±

√√
5 + 2√
5− 2

u ≈ ±4.24v .

Here is a plot showing a few contour curves in the u, v plane:

To draw the corresponding contour plot for f at ( − 1,−1), we transport this plot to the x, y

plane and recall that the u axis points along u1:
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For(c), let B = Hessf (1, 0). We find B =

[
0 5

5 0

]
. Then

d2

dt2
f((1, 0) + tu)

∣∣∣∣
t=0

= u ·Bu .

If u = (u, v), then the right hand side is 10uv and this is zero if and only if either u = 0 or v = 0.

Hence there are 4 such unit vectors, ±(0, 1) and ±(1, 0).

2. Use the method of Lagrange multipliers in both parts of this problem.

(a) Let D be the region consisting of all points (x, y) satisfying

x2 ≤ y ≤ 3 + 2x .

Let f(x, y) = xy− 3x. Find the minimum and maximum values of f on D, and find all minimizers

and maximizers.

(b) Find the point on the paraboloid

z = 3− 1

2
((x− 1)2 + (y − 1)2)

that is closest to the origin. Hint: The cubic polynomial t3− 3t2 + t+ 2 has a simple integer root.

SOLUTION For (a), we first find the intersection of the bounding parabola and bounding line.

At the intersection, x2 − 2x = 3, or (x− 1)2 = 4, so that x = −1 and x = 3 are the two solutions.

The points of intersection are then (− 1, 1) and (3, 9).

Next, we introduce the constraint equations g1(x, y) = 0 and g2(x, y) = 0 where g1(x, y) = y−x2

and g2(x, y) = 3 + 2x− y. We then compute

∇f(x, y) = (y − 3, x) , ∇g1(x, y) = (− 2x, 1) and ∇g2(x, y) = (2,−1) .

We first look for solutions of Lagrange’s equation along the parabola.

det

([
∇f(x, y)

∇g1(x, y)

])
= det

([
y − 3 x

−2x 1

])
= 2x2 + y − 3 .

Setting this equal to zero, and using the constraint equation g1(x, y) = 0 to eliminate y, we obtain

x2 = 1. Hence there are two solutions of this system on the part of the parabola that bounds D,

namely x1 = (− 1, 1) and x2 = (1, 1).

We next look for solutions of Lagrange’s equation along the line.

det

([
∇f(x, y)

∇g2(x, y)

])
= det

([
y − 3 x

2 −1

])
= 3− y − 2x .

Setting this equal to zero, and using the constraint equation g2(x, y) = 0 to eliminate y, we obtain

x = 0. Hence there is one solution of this system on the part of the line that bounds D, namely

x3 = (0, 3).

The critical point of f is (0, 3), but this is x3 which we have already taken into account. Finally,

we must consider the other corner point that is not already on our list, namely x4 = (3, 9).
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We now compute

f(x1) = 2 , f(x2) = −2 , f(x3) = 0 , and f(x4) = 18 .

Hence the maximum value is 18, and the maximizer is x4 = (3, 9), while the minimum value is −2,

and the minimizers is x2 = (1, 1). Here is a contour plot of f together with the two constraint

curves; note that the points of tangency appear where we calculated them to be:

For (b), define f(x, y, z) = x2 + y2 + z2, which is the squared distance from (x, y, z) to the

origin. We also define g(x, y, z) = z + ((x − 1)2 + (y − 1)2)/2 − 3 so that the constraint equation

is g(x, y, z) = 0. By Lagrange’s Theorem, the point on the paraboloid that is closest to the origin

satisfied ∇f(x, y, z) = λ∇g(x, y, z) for some number λ. This means that ∇f(x, y, z)×∇g(x, y, z) =

(0, 0, 0). Computing the gradients and cross product, we find

2(x, y, z)× (x− 1, y − 1, 1) = (y − z(y − 1), z(x− 1)− x, y − x) = (0, 0, 0) .

We see that at the minimizer, y = x. Using this to eliminate y form the constraint equation, we

see that z + (x − 1)2 = 3. Using this to eliminate z from the equation x = z(x − 1), we see that

x = (3− (x− 1)2)(x− 1). This cubic equation simplifies to

x3 − 3x2 + x+ 2 = 0 .

It is easy to see that x = 2 is a root, and then we factor x3 − 3x2 + x + 2 = (x − 2)(x2 − x − 1)

and so the other two roots are x = (1 +
√

5)/2 and x = (1 −
√

5)/2. We get the corresponding

candidate points by substituting these values of x into y = x and z = 3 − (x = 1)2. We find the

three candidates:

x1 = (2, 2, 2) , x2 =
1

2
(1 +

√
5, 1 +

√
5, 3 +

√
5) and x3 =

1

2
(1−

√
5, 1−

√
5, 3−

√
5) .

We then compute

f(x1) = 12 , f(x2) =
1

2
(13 + 5

√
5) and f(x3) =

1

2
(13− 5

√
5) .

Therefore x3 is the minimizer, and the minimum distance is
√
f(x3), which is√

13− 5
√

5

2
.
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3. (a) Let D be the set in the positive quadrant of R2 that is bounded by

x2 + y2 = 4 and xy = 1 .

Let f(x, y) =
√

1 + x2 + y2. Compute
∫
D f(x, y)dA.

(b) Let D be the set in R2 that is given by

x2 ≤ y ≤ 2x2 and x3 ≤ y ≤ 2x3 .

Let f(x, y) =
x

y
. Compute

∫
D f(x, y)dA.

SOLUTION For (a), it is simplest to use polar coordinates. In polar variables, the bounding

equations are r = 2 and r2 cos θ sin θ = 1. Using the first equation to eliminate r from the second,

we find sin(2θ) = 1/2. This has the solutions 2θ = π/6 and 2θ = 5π/6. Therefore, D lies in the

sector
π

12
≤ θ ≤ 5π

12
.

Then since the hyperbola is the inner boundary of D,√
2

sin(2θ)
≤ r ≤ 3 .

The area element in polar coordinates is rdrdθ, and so∫
D
f(x, y)dA =

∫ 5π/12

π/12

(∫ 2

√
2/ sin(2θ)

r
√

1 + r2dr

)
dθ

=
1

3

∫ 5π/12

π/12

(
53/2 −

(
1 +

2

sin(2θ)

)3/2
)

dθ .

An advantage of polar coordinates is that the factor of r in the area element combines with the

integrand f(r cos θ, r sin θ) =
√

1 + r2 to give the function r
√

1 + r2 with has the simple antideriva-

tive 1
3(1 + r2)3/2. One can also set up the integral in Cartesian coordinates, but then one does not

have this advantage.

To set the integral up in Cartesian coordinates, we first find the intersection of the bounding

curve. Using y = 1/x to eliminate y in x2 + y2 = 4, we find x4 − 4x2 = −1, so that (x2 − 2)2 = 3.

Thus, x2 = 2±
√

3. Thus, the region D lies in the strip√
2−
√

3 ≤ x ≤
√

2 +
√

3 .

The hyperbola xy = 1 bounds D from below, and the circle x2 + y2 = 4 bounds D from above, and

so
1

x
≤ y ≤

√
4− x2 .

Therefore ∫
D
f(x, y)dA =

∫ √2+
√
3

√
2−
√
3

(∫ √4−x2
1/x

√
1 + x2 + y2dy

)
dx
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anyone getting to here would get most of the credit. To do the one integration we use that fact

that for any a > 0, the antiderivative of
√
a+ y2 is

1

2

(
y
√
a+ y2 + a ln(y +

√
a+ y2)

)
.

Using this with a = 1 + x2, one can do the y integral.

For (b), we introduce new variables u = y/x2 and v = y/x3. Then x = u/v , and y = x2u =

u3/v2. Thus we have

x(u, v) = (u/v, u3/v) .

Computing the Jacobian matrix

[Dx(u, v)] =

[
1/v −u/v2

3u2/v2 −2u3/v3

]
= u3/v4 .

Next, f(x(u, v), y(u, v)) = (u/v)/(u3/v2) = v/u2. Therefore,∫
D
f(x, y)dA =

∫ 2

1

(∫ 1

1

u

v3
du

)
dv

=

(∫ 2

1

1

v3
dv

)(∫ 2

1
udv

)
=

(
3

8

)(
3

2

)
=

9

16
.

4. (a) Let S be the part of the graph of z = xy that lies above the graph of z = x2 + y2 − 4.

Compute the area of S.

SOLUTION The graphs of z = xy and z = x2 + y2 meet above the curve in the x, y plane given

by x2 + y2 − xy = 4. Writing this in polar coordinates, we find r2(1− cos θ sin θ) = 4, or,

r =

√
8

2− sin(2θ)
.

The surface is then parameterized by

X(r, θ) = (r cos θ, r sin θ, r2 sin θ cos θ) .

We compute

Xr(r, θ) = ( cos θ, sin θ, 2r sin θ cos θ) and Xθ(r, θ) = (− r sin θ, r cos θ, r2(cos2 θ − sin2 θ)) .

We then compute

Xr ×Xθ(r, θ) = r(− r sin θ,−r cos θ, 1) .

Therefore,

dS = ‖Xr ×Xθ(r, θ)‖drdθ = r
√

1 + r2drdθ .

Hence the surface area is given by∫ 2π

0

(∫ √8/(2−sin(2θ))

0
r
√

1 + r2dr

)
dθ
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Since the antiderivative of r
√

1 + r2 is 1
3(1 + r2)3/2, this reduces to

1

3

∫ 2π

0

((
1 +

8

1− sin(2θ)

)3/2

− 1

)
dθ .

This is the exact answer. The integral cannot be evaluated in terms of elementary functions,

but it is easily evaluated numerically, and the value is 26.8709032....

Extra Credit: The function f(x, y, z) = 2x3y2 − 3x2y − 3y + x2 + y2 + z2 has (1, 1, 1) as one of

its critical points. Is this a local minimum, a local maximum, a saddle, on a critical point whose

nature cannot be decided by analysis of the Hessian of f? Does the function have either minimum

or a maximum on all of R3?

SOLUTION We compute the Hessian of f finding

Hessf (x, y, z) =

 12xy2 − 6y + 2 12x2y − 6x 0

12x2y − 6x 4x3 + 2 0

0 0 2

 .

Evaluating this at (1, 1, 1), we find

Hessf (1, 1, 1) =

 8 6 0

6 6 0

0 0 2

 .

The determinant of this 3 × 3 matrix is 24. The determinant of the upper left 2 × 2 block is 12.

The upper left entry is 8. Since all of these are positive, Sylvester’s Theorem tells us that all three

eigenvalues are positive, and so (1, 1, 1) is a local minimum.

Notice that for all x ∈ R, f(x, x, 0) = 2x5−3x3 + 2x2−3x. Since the highest power of x is odd,

this is unbounded above and below. Hence f does not have either a maximum or am minimum on

all of R3.


