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INFINITE TOWERS OF TREE LATTICES

Lisa Carbone and Gabriel Rosenberg

§0. Introduction

Let X be a locally finite tree and let G = Aut(X). Then G is naturally a locally
compact group ([BL], Ch. 3). A discrete subgroup Γ ≤ G is called an X-lattice if

(1) V ol(Γ\\X) :=
∑

x∈V (Γ\X)

1
|Γx|

is finite, and a uniform X-lattice if Γ\X is a finite graph, non-uniform otherwise ([BL],
Ch. 3). Bass and Kulkarni have shown ([BK], (4.10)) that G = Aut(X) contains a
uniform X-lattice if and only if X is the universal covering of a finite connected graph,
or equivalently, that G is unimodular, and G\X is finite. In this case, we call X a uniform
tree.

Following ([BL], (3.5)) we call X rigid if G itself is discrete, and we call X minimal if
G acts minimally on X, that is, there is no proper G-invariant subtree. If X is uniform
then there is always a unique minimal G-invariant subtree X0 ⊆ X ([BL] (5.7), (5.11),
(9.7)). We call X virtually rigid if X0 is rigid (cf. ([BL], (3.6)).

Let X be a locally finite tree, and let Γ ≤ Γ′ be an inclusion of X-lattices. Then by
([BL], (1.7)) we have:

(2) V ol(Γ′\\X) =
V ol(Γ\\X)

[Γ′ : Γ]
.

We call an infinite ascending chain

(3) Γ1 < Γ2 < Γ3 < . . .

of X-lattices an infinite tower of X-lattices. By (0.2), the lattice inclusions of (0.3) are
of finite index, and V ol(Γi\\X) −→ 0 as i −→ ∞.
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The Kazhdan-Margulis property for lattices in Lie groups ([KM]) states that the co-
volume of a lattice is bounded away from zero. Hence the existence of infinite towers
of X-lattices in G = Aut(X) shows that the Kazhdan-Margulis property is violated for
X-lattices.

Bass and Kulkarni have given ([BK], (Sec. 7)) several examples of uniform trees such
that G = Aut(X) contains infinite towers of uniform X-lattices. The second author has
extended the results and techniques of Bass-Kulkarni to all uniform trees that are not
rigid ([R]).

Here our main result is that, with one exception (see §5), if G = Aut(X) contains a
non-uniform X-lattice, then G contains an infinite tower of non-uniform X-lattices.

The authors would like to thank H. Bass for many helpful discussions and suggestions.

§1. The setting

An edge-indexed graph (A, i) consists of an underlying graph A , and an assignment
of a positive integer i(e) > 0 to each oriented edge e ∈ EA. Our underlying graph A will
always be understood to be locally finite. In [BK] and [BL] one allows i(e) to be any
positive cardinal, but our interest here is only in finite i(e). If i(e) > 1, we call e ramified
and unramified otherwise.

Let A = (A,A) be a graph of groups, with underlying graph A, vertex groups
(Aa)a∈V A, edge groups (Ae = Ae)e∈EA and monomorphisms αe:Ae ↪→ A∂0e. A graph
of groups A naturally gives rise to an edge-indexed graph I(A) = (A, i) whose indices
are the indices of the edge-groups as subgroups of the adjacent vertex groups: that is,
i(e) = [A∂0e : αeAe], which we assume to be finite, for all e ∈ EA.

Given an edge-indexed graph (A, i), a graph of groups A such that I(A) = (A, i), is
called a grouping of (A, i). We call A a finite grouping if the vertex groups Aa are finite
and a faithful grouping if A is a faithful graph of groups, that is if π1(A, a) acts faithfully

on X = (̃A, a).
Let A

′ and A be groupings of (A, i). Then A
′ = (A,A′) is called a full graph of

subgroups of A = (A,A) (as in ([B], (1.14)) if A′
a ≤ Aa for a ∈ A′, and for e ∈ EA′,

A′
e ≤ Ae, and α′

e = αe|A′
e
. We further assume that for e ∈ EA′, with ∂0e = a,

A′
a∩αeAe = αeA′

e, that is A′
a/αeA′

e −→ Aa/αeAe is injective, and hence bijective. This
assumption implies that I(A′) = (A, i), and that π1(A′, a′) ≤ π1(A, a) ([B], (1.14)).

Let (A, i) be an edge-indexed graph. A tower of groupings on (A, i) is a semi-infinite
sequence (Ai)i∈Z>0 of groupings of (A, i) such that each Ai is a full graph of proper
subgroups of Ai+1. A tower of faithful groupings induces an infinite ascending chain of
fundamental groups:

(1) π1(A1, a0) ≤ π1(A2, a0) ≤ π1(A3, a0) ≤ . . .

For an edge e ∈ EA, define:

(2) ∆(e) =
i(e)
i(e)

.
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If γ = (e1, . . . , en) is a path, set:

∆(γ) = ∆(e1) . . .∆(en).

Definition. An indexed graph (A, i) is unimodular if ∆(γ) = 1 for all closed paths γ in
A.

Now assume that (A, i) is unimodular. Pick a base point a0 ∈ V A, and define, for
a ∈ V A,

(3) Na0(a) =
∆a

∆a0
(= ∆(γ) for any path γ from a0 to a) ∈ Q>0.

For e ∈ EA, put

Na0(e) :=
Na0(∂0(e))

i(e)
.

Following ([BL], (2.6)), we say that (A, i) has bounded denominators if

{Na0(e) | e ∈ EA}

has bounded denominators, that is, if for some integer D > 0, D ·Na0 takes only integer
values on edges. Since

Na1 =
∆a0

∆a1
Na0 ,

this condition is independant of a0 ∈ V A.

Theorem ([BK], (2.4)). An indexed graph (A, i) admits a finite grouping if and only
if (A, i) is unimodular and has bounded denominators. The grouping can further be taken
to be faithful.

We define the volume of an indexed graph (A, i) at a basepoint a0 ∈ V A:

(4) V ola0(A, i) :=
∑

a∈V A

1

(
∆a

∆a0
)

=
∑

a∈V A

(
∆a0

∆a
).

Then
V ola1(A, i) =

∆a0

∆a1
V ola0(A, i),

as in ([BL], Ch. 2) We write V ol(A, i) < ∞ if V ola(A, i) < ∞ for some, and hence every
a ∈ V A.

If A is a finite grouping of (A, i), then we have ([BL], (2.6.15)):

(5) V ol(A) =
1

|Aa|
V ola(A, i),
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which is automatically finite if V ol(A, i) < ∞.
We now describe a method for constructing X-lattices which follows naturally from

the fundamental theory of Bass-Serre ([B], [S]), and was first suggested in ([BK]). We

begin with an edge-indexed graph (A, i). Then (A, i) determines X = ˜(A, i, a0) up to
isomorphism ([BL], Ch. 2).

We say that (A, i) admits a lattice if (A, i) admits a grouping A such that π1(A, a0) is
an X-lattice. This happens if and only if (A, i) satisfies:

(U) (A, i) is unimodular, and
(BD) (A, i) has bounded denominators, and
(FV) (A, i) has finite volume.
Assume that (A, i) is unimodular and has bounded denominators (which is automatic

if A if finite). By ([BK], (2.4)) we can find a finite faithful grouping A of (A, i) and a
group Γ = π1(A, a0) acting faithfully on X. Then

(a) Γ is discrete, since A is a graph of finite groups.
(b) Γ is a uniform X-lattice if and only if A is finite.
(c) Γ is a non-uniform X-lattice if and only if A is infinite, and

(6) V ol(Γ\\X) = V ol(A)(:=
∑

a∈V A

1
|Aa|

=
1

|Aa|
V ola(A, i)) < ∞.

Our task is the following: given an edge-indexed graph (A, i) of finite volume, construct
an infinite tower of finite faithful groupings of (A, i). This induces an infinite tower

Γ1 < Γ2 < Γ3 < . . .

of X-lattices in Aut(X), for X = (̃A, i), with Γi\X = A, i = 1, 2, . . . .
An edge e ∈ EA is called separating if A−{e, e} has two connected components A0(e)

and A1(e), where A0(e) and A1(e) contain ∂0(e) and ∂1(e) respectively.
Let (A, i) be any connected edge-indexed graph. A subset β ⊂ EA of n ≥ 2 (oriented)

edges is called an arithmetic bridge for (A, i) (as in ([C1], Sec. 4)) if:
(1) β ∩ β = ∅, A − (β ∪ β) has two connected components, A0 and A1,
(2) For every e ∈ β, ∂0e ∈ A0 and ∂1e ∈ A1,
(3) There exists an integer d > 1 such that d | i(e) for every e ∈ β.
Following [BT] we say that (A, i) is discretely ramified if for e ∈ EA

i(e) > 1 =⇒ i(e) = 2, e is separating, and (A0(e), i) is an unramified tree.

We call (A, i) a dominant rooted edge-indexed tree if A is a tree, and there exists an
a ∈ V A such that i(e) = 1 for all edges e ∈ EA directed towards a. Let (A, i) be
an edge-indexed graph. We say that (A, i) is restricted if (A, i) satisfies any one of the
following conditions:
(DR) (A, i) is discretely ramified, or

(F) (A, i) is a dominant rooted edge-indexed tree, or
(GS) A is a tree, and (A, i) contains a prime-prime interval (see [R]) and no other

ramified edges.
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We say that (A, i) is permissible if (A, i) admits a lattice and if (A, i) is not restricted.
We note that an infinite edge-indexed graph (A, i) with finite volume is automatically
non-discretely ramified, is not a dominant rooted tree ([CR2]), is obviously not (GS) as
above, and hence is not restricted.

§2. Rooted products of graphs of groups

Given rooted graphs of groups A = (A,A, a0), a0 ∈ V A, and B = (B,B, b0), b0 ∈ V B,
we construct a rooted graph of groups C = (C, C, c0) = A ×a0=b0 B as follows: we set

C := A � B/(a0 = b0 = c0).

For a ∈ V A, e ∈ EA, we set

Ca := Aa × Bb0 , Ce := Ae × Bb0 ,

and if αe : Ae ↪→ A∂0e, we set

γe := αe × IdBb0
.

Similarly, for b ∈ V B, e ∈ EB, we set

Cb := Aa0 × Bb, Ce := Aa0 × Be,

and if βe : Be ↪→ B∂0e, we set

γe := IdAa0
× βe.

If we set (A, iA) = I(A) and (B, iB) = I(B), then we have the ‘rooted union of edge-
indexed graphs’:

(C, iC) := (A, iA) � (B, iB)/(a0 = b0 = c0),

for c0 ∈ V C, and clearly C is a grouping of (C, iC).

(2.1) Remarks.

(1) The graph of groups C is faithful if and only if A and B are faithful. In fact, if NA

is the maximal normal subgroup of A, and NB is the maximal normal subgroup
of B, then the maximal normal subgroup of C is NA × NB.

(2) We have

π1(C, c0) = (π1(A, a0) × Bb0) ∗(Aa0×Bb0 ) (Aa0 × π1(B, b0)).

(3) If A and B are graphs of finite groups, then so also is C, and

V ol(C) =
1

|Bb0 |
V ol(A) +

1
|Aa0 |

V ol(B) − 1
|Aa0 ||Bb0 |

.
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(2.2) Functoriality.

Suppose that we have groupings A ≤ A
′ of an edge-indexed graph (A, iA) and B ≤ B

′

of an edge-indexed graph (B, iB), then we get groupings

C = A ×a0=b0 B ≤ C
′ = A

′ ×a0=b0 B
′

for a0 ∈ V A, b0 ∈ V B of the edge-indexed graph (C, iC) = (A, iA) � (B, iB)/(a0 = b0 =
c0), for c0 ∈ V C. In particular, for an edge e ∈ V A with initial vertex a ∈ V A,

A′
e × B′

b0

α′
e×IdB′

b0−→ A′
a × B′

b0

≤ ≤ ≤ ≤

Ae × Bb0

αe×IdBb0−→ Aa × Bb0

commutes, and similarly in B.

(2.3) Corollary. A tower A1 ≤ A2 ≤ A3 ≤ . . . yields a tower

A1 ×a0=b0 B ≤ A2 ×a0=b0 B ≤ A3 ×a0=b0 B ≤ . . .

Since a unimodular edge-indexed graph with bounded denominators admits a finite
faithful grouping, we can apply the above corollary repeatedly to obtain the following
lemma.

(2.4) Lemma. Let (A, i) be an edge-indexed graph and (A0, i) a core subgraph such that
(A, i) is obtained from (A0, i) by attaching to finitely many vertices a1, . . . , an ∈ V A0,
rooted edge-indexed graphs (Aj , ij , aj), j = 1, . . . , n. Suppose that (A0, i) admits an
infinite ascending chain of finite faithful groupings of finite volume. Suppose that (Aj , ij),
j = 1, . . . , n are unimodular, have finite volume and bounded denominators.Then (A, i)
admits an infinite tower of finite faithful groupings of finite volume.

§3. Infinite towers of uniform tree lattices

In [R], the second author proved the following:

(3.1) Theorem ([R]). Let (A, i) be a finite permissible edge-indexed graph. Then (A, i)
admits an infinite tower of finite faithful groupings.

The proof of Theorem (3.1) generalizes the techniques of Bass-Kulkarni ([BK]) for
constructing towers of groupings on certain fundamental examples, and uses certain
constructions with edge-indexed graphs to extend to a more general setting.

Theorem (3.1) yields the following:
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(3.2) Theorem ([R]). Let X be a locally finite tree. The following conditions are
equivalent:

(a) X is uniform and not rigid.
(b) X is the universal cover of a finite permissible edge-indexed graph.
(c) Aut(X) contains an infinite ascending chain

Γ1 < Γ2 < Γ3 < · · ·

of uniform X-lattices.
(d) The set of uniform covolumes

{V ol(Γ\\X) | Γ is a uniform X-lattice} ⊂ Q>0

is not bounded away from zero.

This generalizes Theorem 7.1(a) of [BK] which states the result for homogeneous trees.

§4. Infinite towers of non-uniform X-lattices with quotient a tree

The techniques described in §3 extend to certain infinite edge-indexed graphs. We
have the following:

(4.1) Theorem. Let (A, i) be an edge-indexed graph that admits a lattice, and which is
infinite, hence permissible. Assume that (A, i) is a tree, but is not dominant-end-rooted.
Then (A, i) admits an infinite tower of finite faithful groupings.

Except for the case that (A, i) is a dominant-end-rooted edge-indexed tree (see [CR2]),
the assumption that (A, i) is an infinite permissible tree implies the existence of a finite
permissible ‘core’ graph (A0, i) which is an edge-indexed path of length n ≥ 1. By
Theorem (3.1), (A0, i) admits an infinite tower of finite faithful groupings, and we may
then apply Lemma (2.4) to extend the tower of groupings to (A, i).

If (A, i) is a dominant end-rooted edge-indexed tree, then (A, i) does not contain a
finite permissible core. We know that in this case, the set of covolumes of non-uniform
lattices in Aut(X), X = (̃A, i), is not bounded away from zero, however our techniques
do not suffice to produce a tower of groupings on (A, i).

(4.2) Theorem. Let (A, i) be as in Theorem (4.1). Let X = (̃A, i). Then there is an
infinite ascending chain

Γ1 < Γ2 < Γ3 < · · ·

of non-uniform X-lattices in Aut(X). Hence V ol(Γi\\X) −→ 0 as i −→ ∞.

In Theorems (4.1), and (4.2), the covering tree X = (̃A, i) may be uniform or not.
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§5. Infinite towers of non-uniform X-lattices

We have the following:

(5.1) Theorem ([R]). Let (A, i) be a permissible edge-indexed graph. Suppose (A, i)
contains an arithmetic bridge with n ≥ 2 edges. Then (A, i) admits an infinite tower of
finite faithful groupings.

Concerning existence of arithmetic bridges, we have the following:

(5.2) Theorem ([C1], [CR1]). Let (A, i) be a unimodular edge-indexed graph. Let
e ∈ EA be a ramified edge such that ∆(e) is not an integer. If e is not separating, then
e is contained in an arithmetic bridge with n ≥ 2 edges.

Combining the results of §2, §4 and the above, we have:

(5.3) Theorem. Let (A, i) be a permissible edge-indexed graph that is not a dominant-
end-rooted edge-indexed tree. Then (A, i) admits an infinite tower of finite faithful group-
ings.

A corollary of Theorem (5.3) is the following:

(5.4) Theorem. Let X be a locally finite tree. If Aut(X) contains a non-uniform X-
lattice Γ, and X is not the universal cover of a dominant-end-rooted edge-indexed tree,
then Aut(X) contains an infinite tower

Γ1 < Γ2 < Γ3 < · · ·
of non-uniform X-lattices. Hence V ol(Γi\\X) −→ 0 as i −→ ∞.

§6. Existence of non-uniform X-lattices

By Theorem (5.4), the question of existence of infinite towers of non-uniform X-lattices
reduces to the question of existence of non-uniform X-lattices.

To outline the results on existence of non-uniform X-lattices, we make the following
definition. Let X be a locally finite tree, G = Aut(X), and let µ be a (left) Haar measure
on G. Suppose that G is unimodular. Then µ(Gx) is constant on G-orbits, so we can
define ([BL], (1.5)):

µ(G\\X) :=
∑

x∈V (G\X)

1
µ(Gx)

.

We have the ‘Lattice existence theorem’:

(6.1) Theorem ([BCR], (0.2)). Let X be a locally finite tree, let G = Aut(X), and
let µ be a (left) Haar measure on G. The following conditions are equivalent:

(a) G contains an X-lattice Γ.
(b) (U) G is unimodular, and

(FV) µ(G\\X) < ∞.

In particular, we have the following theorem, which together with Bass-Kulkarni’s ‘Uni-
form existence theorem’ ([BK], (4.10)) gives Theorem (6.1):
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(6.2) Theorem ([BCR], (0.5)). Let X be a locally finite tree, let G = Aut(X), and
let µ be a (left) Haar measure on G. Assume that:

(U) G is unimodular,
(FV) µ(G\\X) < ∞, and
(INF) G\X is infinite.

Then G contains a (necessarily non-uniform) X-lattice Γ.

For uniform trees, we have the following:

(6.3) Theorem ([C1], [C2]). If X is uniform and not virtually rigid then G contains
a non-uniform X-lattice Γ.
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