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Abstract. Let G be a locally compact Kac-Moody group associated to a symmetrizable rank 3
Kac-Moody algebra of noncompact hyperbolic type. It is known that the fundamental chambers
of Weyl groups of certain algebras in this class serve as billiard tables for a physical phenomenon
known as cosmological billiards. We discuss the classification of Weyl groups in this class, we
determine their group presentations and exhibit their tessellations on the Poincaré disk. We
show that each Weyl group W is an amalgam of finite Coxeter groups by constructing an action
of W on a tree Y. It follows that among all Kac-Moody Weyl groups of affine or hyperbolic
type, those of rank 2 and of rank 3 noncompact hyperbolic type are the only ones that have
nontrivial amalgam decompositions. We show that the degrees of Y can be determined from
the Dynkin diagram of G. We construct a bihomogeneous bipartite tree X embedded in the
Tits building of G, a rank 3 locally finite hyperbolic building, on which the full Kac-Mooody
group G acts and we determine the degrees of X . We show that there is a nonuniform lattice
subgroup of G which acts properly on this tree, that is, with finite vertex stabilizers.

1. Introduction

The topic of our study is a class of hyperbolic Kac-Moody groups and the action of their Weyl
groups. In addition to their rich mathematical structure, this class of Kac-Moody symmetries
has recently been discovered to occur in high energy physics in the context of supergravity, a
theory incorporating general relativity and supersymmetry. It is known that the dynamics of
certain supergravity theories near a space-like singularity gives rise to a phenomenon known
as cosmological billiards, which may be identified with the motion of an abstract billiard ball
moving freely on a hyperbolic billiard table and bouncing off its walls ([DHN]). Remarkably, the
fundamental chamber of certain hyperbolic Kac-Moody Weyl groups serves as a ‘billiard table’
for the dynamics. The ambient Lorentz space for such hyperbolic Kac-Moody root systems is
thus the setting for many interesting physical phenomena, including cosmological billiards. A
concrete understanding of the geometry of the root space and its Weyl group action is therefore
desirable.

In order to build a mathematical framework for studying these physical applications, we adopt
a utilitarian approach to the subject. We work with explicit group theoretical constructions
whose existence is theoretically known, but which may be nontrivial to obtain in practice. We
consider the class of locally compact Kac-Moody groups associated to a symmetrizable rank
3 Kac-Moody algebra of noncompact hyperbolic type. The fundamental chambers of several
of the associated Weyl groups in this class have been discovered to serve as billiard tables for
cosmological billiards in D = 3 and D = 4 spacetime dimensions. In an appendix, we note that
among the known gravity and supergravity Lagrangians giving rise to billiard motion in D = 3
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and D = 4, there are 5 possible billiard tables for cosmological billiards in this class of Weyl
groups and their tessellations.

It is useful for physical applications to understand the classification of Weyl groups in this
class, to determine their explicit group presentations and their tessellations on the Poincaré disk.
We give a detailed answer to each of these questions. It turns out that these Weyl groups are
amalgams of the form H1 ∗K H2 where H1, H2 and K are finite Coxeter groups. In general,
determining which groups are amalgams is nontrivial, but can be achieved by investigating
actions of the groups on trees and applying the fundamental theory of Bass and Serre ([B], [Se]).
This is the approach we adopt, which also leads naturally to the construction of a bihomogeneous
bipartite tree embedded in the Tits building on which the full Kac-Mooody group G acts. We
then show that there is a nonuniform lattice subgroup of G which acts properly on this tree,
that is, with finite vertex stabilizers.

In order to discuss our result more precisely, we introduce the following notions. The data for
constructing a Kac-Moody algebra includes a generalized Cartan matrix which is a generalization
of the notion of a Cartan matrix of a finite dimensional Lie algebra, and which encodes the same
information as a Dynkin diagram. A Dynkin diagram D is of hyperbolic type if it is neither of
finite nor affine type, but every proper connected subdiagram is either of finite or of affine type.
If D is of hyperbolic type, we say that D is of compact hyperbolic type if every proper, connected
subdiagram is of finite type. ‘Symmetrizability’ is an important property of a generalized Cartan
matrix, necessary for the existence of a well-defined symmetric invariant bilinear form (· | ·) on
the Kac-Moody algebra which plays the role of ‘squared length’ of a root. It is necessary
that a generalized Cartan matrix be symmetrizable in order for its root space to give rise to a
cosmological billiard motion in the fundamental chamber of the Weyl group.

In order to associate a group to a Kac-Moody algebra, Tits associated a group functor GA on
the category of commutative rings, such that for any symmetrizable generalized Cartan matrix
A and any ring R there exists a group GA(R) ([Ti1], [Ti2]). He also showed that if R is a field,
then GA(R) is unique up to isomorphism.

Let G be a Kac-Moody group associated to a symmetrizable rank 3 Kac-Moody algebra of
noncompact hyperbolic type. The classification of hyperbolic Dynkin diagrams shows that there
are 33 possible such algebras up to isomorphism ([CCCMNNP], [Li], [S]). When completed over
a finite field, G is locally compact and totally disconnected ([CG], [RR]). Moreover, G admits
an action on a locally finite hyperbolic Tits building X ([CG], [RR]). The Tits building has a
geometric realization which can be expressed as a union of subcomplexes (apartments) which are
isomorphic Coxeter complexes satisfying certain axioms. For G of rank 3 noncompact hyperbolic
type, apartments in X are hyperbolic planes tessellated by the action of a hyperbolic Weyl group
W of noncompact type.

We recall that a discrete subgroup Γ of a locally compact group G is a lattice if the quotient
Γ\G carries a finite invariant measure. If further, Γ\G is compact, we say that Γ is cocompact.
Otherwise we say that Γ is nonuniform. It is known that the minimal parabolic subgroup B−

of the negative BN -pair for G is a nonuniform lattice subgroup of G ([CG], [Re]). In [C] the
author deduced from the results of [DJ] that for all symmetrizable locally compact Kac-Moody
groups G of either rank 2 (affine or hyperbolic) or of rank 3 noncompact hyperbolic type,
the nonuniform lattice subgroup B− has the Haagerup property, which is a strong negation of
Kazhdan’s property (T). It is also known that the Haagerup property predicts a continuous
proper action by isometries on a ‘median space’ ([CDH]).
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We explicitly construct a proper action of the lattice B− ≤ G on a bihomogeneous tree X ,
which is an example of a median space, for symmetrizable locally compact rank 3 Kac-Moody
groups G of noncompact hyperbolic type (Section 8). We begin by associating a tree Y to the
Weyl group W of G (Section 4). The tree Y is naturally embedded in the Poincaré disk and is
naturally associated to the tessellation of the Poincaré disk by W . The existence of such a tree
with a W -action is predicted by the fact that W is a discrete subgroup of PSL2(R) and hence is
virtually free. We make use throughout the paper of an explicit construction of such an action.

Now let X be the Tits building of G. Let A0 denote the fundamental apartment of X. Then
A0 is a copy of the Poincaré disk tessellated by W and Y is embedded in A0. We show that the
full Tits building X contains a tree X that retracts onto the tree Y under the retraction of the
building X onto A0 (Section 5.3). The tree X is bihomogeneous and bipartite and the vertices
of X are barycenters of faces of X, barycenters of edges of X, or corners of triangles in X. We
also show that the degrees of Y can be determined from the Dynkin diagram of G (Section 4).

Construction of a lattice acting properly on a tree cannot be made in a locally compact Kac-
Moody group G of affine or hyperbolic type (compact or noncompact) if rank(G) ≥ 4 since such
groups have Kazhdan’s Property (T) ([C] and [DJ]). By a theorem of de la Harpe and Valette
([HV]), every action of a Property (T) group on a tree fixes a vertex. In particular this applies
to lattice subgroups of G (see Section 8.1).

On the other hand, if G is a rank 2 locally compact Kac-Moody group, then G is symmetriz-
able and is of affine or hyperbolic type, The Tits building of G is then itself a homogeneous tree
X ([CG], [RR]). It is known that G has the Haagerup property and that the subgroup B− acts
properly on X ([CG], [Re]).

After preparation of this manuscript, we were notified that the existence of amalgam presen-
tations ofW in terms of finite Coxeter groups and that a continuous action of the full Kac-Moody
group G on a locally finite tree can be deduced from the far reaching methods in the recent book
of Mike Davis ([D]). However, we prefer explicit computation of the vertex stabilizers for the
action of W on the tree Y, the presentations they give and the subgroup relations among them,
which we determined in Section 3.1. We also require an explicit embedding of a tree X in the
full Tits building which retracts onto the tree Y. We extended these constructions to give a
proper action of the nonuniform lattice B− in the Kac-Moody group G on a tree embedded in
the rank 3 hyperbolic Tits building of G.

Using the classification of hyperbolic Dynkin diagrams ([CCCMNNP], [Li], [S]), in Section 3,
we tabulate the 33 possible symmetrizable generalized Cartan matrices of rank 3 noncompact
hyperbolic type, their Dynkin diagrams and their Weyl groups, from which the corresponding
noncompact tessellations of the hyperbolic plane can be determined.

It turns out that among the 33 symmetrizable Dynkin diagrams of rank 3 noncompact hy-
perbolic type, there are only 9 distinct (nonisomorphic) Weyl groups. Therefore, among the 33
noncompact hyperbolic tessellations of the Poincaré disk that arise here, only 9 are distinct. We
give detailed drawings of these 9 tessellations with the inscribed trees Y in Section 4.1. These
intricate drawings were prepared by Sahar Waked Sati (using AutoCAD 2009 from Autodesk),
to whom we are deeply indebted for her patience and artistic talent.

Our amalgam presentations of W of the form H1 ∗K H2 where H1, H2 and K are finite
Coxeter groups come from the graph of groups presentations for the action of each W on Y
(Section 4.2). These amalgam decompositions coincide with the JSJ-decompositions for Weyl
groups given by Mihalik ([Mi]) and Ratcliffe and Tschantz ([RTs]). We deduce that among all
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Kac-Moody Weyl groups of affine or hyperbolic type, those of rank 2 and of rank 3 noncompact
hyperbolic type are the only ones that have nontrivial amalgam decompositions (Section 4).

We mention that there are a number of papers that use dynamical systems methods to
study billiard motion on abstract hyperbolic manifolds, notably Bunimovich, Chernov and Sinai
([BCS1], [BCS2]), McMullen ([Mc]) , Sarnak ([Sa]), Schwartz ([Sc1], [Sc2], [Sc3]), Sinai ([Si])
and Tabachnikov ([T]). However, we are not aware of any mathematical studies of cosmological
billiards, or of billiard motion in the fundamental chamber of a Weyl group of a Lie algebra.

We thank Mike Mihalik and John Ratcliffe for notifying us of their results on JSJ-decompositions
for Coxeter groups and for very helpful discussions which led to the material in Section 4.3. We
also thank Sophie de Buyl for clarifying some details about the appearance of Kac-Moody Weyl
groups in cosmological billiards. We are very grateful to the anonymous referee whose careful
reading and comments improved our exposition.

2. Locally compact Kac-Moody groups and Tits buildings

2.1. Introduction to Kac-Moody algebras. The data for constructing a Kac-Moody algebra
includes a generalized Cartan matrix. This is a square matrix A = (aij), i, j ∈ {1, 2, . . . , ℓ} whose
entries are integers such that:

(1) aii = 2,

(2) aij ≤ 0, i ̸= j,

(3) aij = 0 implies aji = 0.

A generalized Cartan matrix A is called indecomposable if there is no rearrangement of the
indices so that A can be written in block diagonal form. A generalized Cartan matrix A is called
symmetrizable if there exist nonzero rational numbers d1, . . . , dℓ, such that the matrix DA is
symmetric, where D = diag(d1, . . . , dℓ). We call DA a symmetrization of A.

The generalized Cartan matrix A is affine if A is positive semi-definite but not positive defi-
nite. If A is neither positive definite nor positive semi-definite, but every proper indecomposable
submatrix is either positive definite or positive semi-definite, we say that A has hyperbolic type.
If every proper indecomposable submatrix of A is positive definite, we say that A has compact
hyperbolic type. Thus if A has a proper indecomposable affine submatrix, we say that G has
noncompact hyperbolic type.

Given a generalized Cartan matrix and a finite dimensional vector space h satisfying some
natural conditions, one may construct a Kac-Moody algebra. An account of the construction
and the subject, which also includes works of many others, is given in [K] (see also [Sel]).

2.2. Examples. Let A = (aij), i, j ∈ {1, 2, . . . , ℓ} be a generalized Cartan matrix.

Rank 3 compact hyperbolic type. If rank(A) = 3 then for any rank 2 proper indecomposable

submatrix

(
aii aij
aji ajj

)
we have aijaji < 4 for i ̸= j. For example, A =

 2 −1 −1
−2 2 −2
−2 −1 2

.

Rank 3 noncompact hyperbolic type. If rank(A) = 3 then there is a rank 2 proper inde-

composable submatrix

(
aii aij
aji ajj

)
with aijaji = 4 for i ̸= j. For example, A =

 2 −2 0
−2 2 −1
0 −1 2

.
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2.3. Introduction to Kac-Moody groups and their properties. Subsequent to the discov-
ery of infinite dimensional generalizations of Lie algebras by dropping the assumption that the
matrix of Cartan integers is positive definite, the problem of associating groups to Kac-Moody
algebras arose, the difficulty being that there is no obvious definition of a general ‘Kac-Moody
group’.

Several appropriate definitions of a Kac-Moody group have been discovered, many of them
using a variety of techniques as well as additional external data, such as a Z-form for the universal
enveloping algebra. Many constructions use some version of the Tits functor ([Ti2]).

Though there is no obvious infinite dimensional generalization of finite dimensional Lie
groups, Tits associated a group functor GA on the category of commutative rings, such that
for any symmetrizable generalized Cartan matrix A and any ring R there exists a group GA(R)
([Ti1], [Ti2]). Tits showed that if R is a field, then GA(R) is characterized uniquely up to iso-
morphism, apart from some degeneracy in the case of small fields. Tits defined not one group,
but rather minimal and maximal groups. The value of the Tits functor GA over a field k is called
a minimal Kac-Moody group. The maximal or complete Kac-Moody group is defined relative to
a completion of the Kac-Moody algebra and contains GA(k) as a dense subgroup.

Let A be an ℓ × ℓ symmetrizable generalized Cartan matrix. The existence of a completion
G = GA(Fq) of the Tits functor associated to A and the finite field Fq was noted by Tits ([Ti1]).
Explicit completions have been constructed using distinct methods by Carbone and Garland
([CG]) and by Rémy and Ronan ([RR]). A complete Kac-Moody group G over a finite field is
locally compact and totally disconnected.

While Kac-Moody groups may be described axiomatically, by generators and relations, by
analytic, topological and geometric methods, for our purposes it will be convenient and sufficient
for our purposes to characterize these groups by describing their BN -pairs.

2.4. The BN-pair and Tits building of a complete Kac-Moody group. A Kac-Moody
group G may be described by certain group theoretic data, called a Tits system or BN -pair.
This data carries a great deal of information about the group and its subgroups, and in particular
determines a simplicial complex, a Tits building X on which the Kac-Moody group acts.

Let A be an ℓ×ℓ symmetrizable generalized Cartan matrix. Let G = GA(Fq) be a completion
of Tits’ functor associated to A and the finite field Fq. Such completions have been constructed
by Carbone and Garland ([CG] and by Rémy and Ronan ([RR]). We shall use the Carbone-
Garland completion. A complete Kac-Moody group G over a finite field Fq is locally compact
and totally disconnected, and the Tits building X of G is locally finite. In this section we give
a brief description of the Tits system for G and its corresponding Tits building.

The Carbone-Garland completion G of Tits’ functor over the finite field Fq has subgroups
B± ⊆ G, N ⊆ G, and Weyl group W = N/H, where H = N ∩ B± is a normal subgroup of N .
We have B± = HU± where U+ is generated by all positive real root groups , U− is generated
by all negative real root groups, B+ is compact, in fact a profinite neighborhood of the identity
in G, and B− is discrete. Then (G,B+, N) and (G,B−, N) are BN -pairs, and

G = B+NB− = B−NB+.

It follows that G has Bruhat decomposition

G = ⊔w∈W B±wB±.

There is a surjective homomorphism ν : N −→ W . We identify W (non-canonically) with a
subset (not a subgroup) of N which contains exactly one representative of every element of W .
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By abuse of notation, this set of representatives will also be called W . Let S be the standard
generating set for W consisting of simple root reflections. Let U ( S. The standard parabolic
subgroups are

PU = ⊔w∈⟨U⟩ B
±wB±.

A parabolic subgroup is any subgroup containing a conjugate of B±. The Tits building of G is a
simplicial complex X of dimension dim(X) = |S|−1. In fact we associate a building X± to each
BN -pair (G,B+, N) and (G,B−, N). The buildings X+ and X− are isomorphic as chamber
complexes and have constant thickness q + 1 (see [DJ], Appendix KMT).

In the next sections, we will work only with the Tits building X = X+ of the positive BN -
pair (G,B+, N) which we write as (G,B,N). The vertices of X are given by the cosets in G
of the maximal parabolic subgroups of G. The incidence relation is described as follows. The
r + 1 vertices Q1, . . . , Qr+1 span an r-simplex if and only if the intersection Q1 ∩ · · · ∩Qr+1 is
parabolic, that is, contains a conjugate of B±. In our case, the Weyl group W is infinite, so by
the Solomon-Tits theorem, X is contractible. The group G acts by left multiplication on cosets.

The building X satisfies the axioms of Tits:

Tits building axioms, (1965)

A building is a simplicial complex X that can be expressed as the union of subcomplexes Σ
(called apartments) satisfying the following axioms:

(B0) Each apartment Σ is a Coxeter complex of the same dimension d which also equals dim(X).

(B1) For any two simplices σ and ω there is an apartment Σ containing both of them.

(B2) If Σ and Σ′ are two apartments containing σ and ω, then there is an isomorphism Σ −→ Σ′

fixing σ and ω pointwise.

It follows that all apartments are isomorphic.

Let X be a Tits building. Let Σ be an apartment, let C ∈ Σ be a chamber (maximal simplex)
contained in Σ. There is a unique chamber map ρ = ρ(Σ, C) : X −→ Σ called a retraction which
fixes C pointwise and maps every apartment containing C isomorphically onto Σ. The retraction
map ρ preserves distances from C and preserves colors of vertices.

2.5. Lattices in Kac-Moody groups. Let G be a locally compact group and let µ be a (left)
Haar measure on G. Let Γ ≤ G be a discrete subgroup with quotient p : G −→ Γ\G. We call Γ
a lattice in G if µ(Γ\G) < ∞, and a cocompact lattice if Γ\G is compact.

Symmetrizable locally compact Kac-Moody groupsG over finite fields Fq are known to contain
lattice subgroups. If q is sufficiently large then the minimal parabolic subgroup B− of the
negative BN -pair for G is a nonuniform lattice subgroup for G of rank r ≥ 3 ([CG], [Re]), and
also for r = 2 with no restriction on q ([CG]).

The action of G on its Tits building X permits combinatorial criteria for subgroups Γ ≤ G
to be discrete, cocompact, or to have finite covolume, without reference to a Haar measure on G
([BL]). In particular, the discreteness of a lattice subgroup Γ in a locally compact Kac-Moody
group G is equivalent to the property that Γ acts on the Tits building X of G with finite vertex
stabilizers ([BL]). Thus locally compact Kac-Moody groups G contain lattices that act discretely
and isometrically on the locally finite Tits building X.

We will show that if G has rank 3 noncompact hyperbolic type, then G also acts discretely
and isometrically on a simplicial tree X embedded in the Tits building (Section 8).
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3. Weyl groups of rank 3 noncompact hyperbolic type

Let G be a locally compact Kac-Moody group associated to a symmetrizable rank 3 Kac-
Moody algebra of noncompact hyperbolic type. Then the Weyl group W = N/H is given by
generators and relations:

W = ⟨w1, w2, w3 | (wiwj)
mij = 1, if mij ̸= ∞⟩,

where
mii := 1, mij := 2, 3, 4, 6, or ∞

when
aijaji = 0, 1, 2, 3, or ≥ 4, i, j ∈ {1, 2, 3},

respectively, where aij are the entries of the generalized Cartan matrix A corresponding to G.
The group W acts on the set of all roots, preserving the symmetric bilinear form (· | ·).

The Weyl groups W that arise in our setting are hyperbolic triangle groups T (r, s, t) of
noncompact type. That is, W is generated by reflections in the sides of a triangle in the
hyperbolic plane with angles π/r, π/s, π/t, with

1

r
+

1

s
+

1

t
< 1

and one or more of the angles equal to 0. We sometimes denote W as W (r, s, t). A fundamental
region for W in the hyperbolic plane therefore has at least one boundary point corresponding
to an angle of 0 in the fundamental region. We note that the isomorphism type of W (r, s, t) is
unchanged under a permutation of the indices (r, s, t).

We will not attempt to define the tessellation associated to the noncompact hyperbolic re-
flection group W , rather we refer the reader to the informative discussion in Chapter II of the
book [M] of Magnus. However, we do provide diagrams of tessellations of the Poincaré disk by
W in Section 4.1. The study of tessellations by hyperbolic triangle groups was initiated by Klein
and Fricke (1890-1912). Carathéodory established the existence of hyperbolic tessellations by
triangle groups where one or more angles in the fundamental region equals 0 ([Ca]).

Using the classification of hyperbolic Dynkin diagrams ([CCCMNNP], [Li], [S]), here we
tabulate the 33 possible symmetrizable generalized Cartan matrices of rank 3 noncompact hy-
perbolic type. The first column of the tables given below gives an enumeration index for the
rank 3 symmetrizable Dynkin diagrams of noncompact hyperbolic type. The second column
displays the Dynkin diagram itself, and the third column gives the corresponding generalized
Cartan matrix. The fourth column lists the triple (m12,m23,m31), where the Weyl group for
each Dynkin diagram is given by W = ⟨w1, w2, w3 | (wiwj)

mij = 1, if mij ̸= ∞⟩.
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Table 3.1a. Rank 3 symmetrizable Dynkin diagrams of noncompact hyperbolic type

Dynkin Diagram GCM (m12,m23,m31)

1.

3

21 (
2 −1 −2

−1 2 −1
−2 −1 2

)
(3, 3,∞)

2.

21

3

(
2 −1 −2

−1 2 −2
−2 −2 2

)
(3,∞,∞)

3.

1 2

3

(
2 −1 −1

−1 2 −1
−4 −4 2

)
(3,∞,∞)

4.

1 2

3

(
2 −1 −4

−1 2 −4
−1 −1 2

)
(3,∞,∞)

5.

1 2

3

(
2 −2 −1

−1 2 −1
−2 −4 2

)
(4,∞, 4)

6.

1 2

3

(
2 −1 −2

−2 2 −2
−2 −1 2

)
(4, 4,∞)

7.

21

3

(
2 −2 −2

−1 2 −1
−2 −2 2

)
(4, 4,∞)

8.

21

3

(
2 −2 −2

−2 2 −2
−2 −2 2

)
(∞,∞,∞)

9.

21

3

(
2 −2 −1

−2 2 −1
−3 −3 2

)
(∞, 6, 6)
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Table 3.1b. Rank 3 symmetrizable Dynkin diagrams of noncompact hyperbolic type

Dynkin Diagram GCM (m12,m23,m31)

10.

21

3

(
2 −2 −3

−2 2 −3
−1 −1 2

)
(∞, 6, 6)

11.

1

3

2 (
2 −1 −2

−4 2 −4
−2 −1 2

)
(∞,∞,∞)

12.

1 2

3

(
2 −4 −2

−1 2 −1
−2 −4 2

)
(∞,∞,∞)

13.
1 2 3

(
2 −2 0

−2 2 −1
0 −1 2

)
(∞, 3, 2)

14.
1 32

(
2 −4 0

−1 2 −1
0 −1 2

)
(∞, 3, 2)

15.
1 32

(
2 −1 0

−4 2 −1
0 −1 2

)
(∞, 3, 2)

16.
1 2 3

(
2 −2 0

−2 2 −2
0 −1 2

)
(∞, 4, 2)

17.
321

(
2 −2 0

−2 2 −1
0 −2 2

)
(∞, 4, 2)

18.
321

(
2 −1 0

−2 2 −1
0 −4 2

)
(4,∞, 2)

19.
2 31

(
2 −2 0

−1 2 −4
0 −1 2

)
(4,∞, 2)
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Table 3.1c. Rank 3 symmetrizable Dynkin diagrams of noncompact hyperbolic type

Dynkin Diagram GCM (m12,m23,m31)

20.
21 3

(
2 −1 0

−4 2 −2
0 −1 2

)
(∞, 4, 2)

21.
1 2 3

(
2 −4 0

−1 2 −1
0 −2 2

)
(∞, 4, 2)

22.
321

(
2 −2 0

−2 2 −2
0 −2 2

)
(∞,∞, 2)

23.
321

(
2 −2 0

−2 2 −1
0 −3 2

)
(∞, 6, 2)

24.
321

(
2 −2 0

−2 2 −3
0 −1 2

)
(∞, 6, 2)

25.
1 32

(
2 −4 0

−1 2 −2
0 −2 2

)
(∞,∞, 2)

26.
1 32

(
2 −1 0

−4 2 −2
0 −2 2

)
(∞,∞, 2)

27.
2 31

(
2 −4 0

−1 2 −3
0 −1 2

)
(∞, 6, 2)

28.
2 31

(
2 −1 0

−4 2 −1
0 −3 2

)
(∞, 6, 2)

29.
321

(
2 −1 0

−3 2 −4
0 −1 2

)
(6,∞, 2)
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Table 3.1d. Rank 3 symmetrizable Dynkin diagrams of noncompact hyperbolic type

Dynkin Diagram GCM (m12,m23,m31)

30.
2 31

(
2 −3 0

−1 2 −1
0 −4 2

)
(6,∞, 2)

31.
1 32

(
2 −1 0

−4 2 −1
0 −4 2

)
(∞,∞, 2)

32.
1 32

(
2 −1 0

−4 2 −4
0 −1 2

)
(∞,∞, 2)

33.
1 32

(
2 −4 0

−1 2 −1
0 −4 2

)
(∞,∞, 2)
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3.1. Subgroup structure. Among the 33 symmetrizable Dynkin diagrams of rank 3 noncom-
pact hyperbolic type in the above tables, there are only 9 isomorphism classes of Weyl groups.
These are given by the 9 triples:

(∞,∞,∞), (∞, 2,∞), (∞, 3,∞), (∞, 3, 2), (∞, 4, 2), (∞, 6, 2), (∞, 3, 3), (∞, 4, 4), (∞, 6, 6).

There are many examples of Weyl groups W ∗ associated to triples in this list that are sub-
groups of other Weyl groups W also in the list. These relationships are summarized in Figure
3.1 below. If we let w1, w2, w3 be the generators of W , then Table 3.2 below also gives generators
and coset representatives for W ∗ in terms of the generators of W , which can be used to obtain
tessellations corresponding to subgroups.

Figure 3.1. Subgroup diagram
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Table 3.2. Subgroup generators and cosets

W ∗ W Index(W ∗ ≤ W ) Generators for W ∗ Coset Representatives
W (∞,∞,∞) W (∞, 2,∞) 2 w1, w2, w3w1w3 1, w3

W (∞,∞,∞) W (∞, 3, 2) 6
w1, w2w1w2, 1, w3, w2w3,
w3w2w1w2w3 w3w2w3, w3w2, w2

W (∞,∞,∞) W (∞, 4, 2) 4 w1, w2w1w2, w3w2w3 1, w3, w3w2, w2

W (∞, 2,∞) W (∞, 3, 2) 3 w1, w2w1w2, w3 1, w2, w3w2

W (∞, 2,∞) W (∞, 4, 2) 2 w1, w2, w3w2w3 1, w3

W (∞, 3,∞) W (∞, 3, 2) 4 w1w2w1w2w1, w2, w3 1, w1, w2w1, w3w2w1

W (∞, 3,∞) W (∞, 6, 2) 2 w1, w2, w3w2w3 1, w3

W (∞, 3, 3) W (∞, 3, 2) 2 w1w2w1, w2, w3 1, w1

W (∞, 4, 4) W (∞, 4, 2) 2 w1w2w1, w2, w3 1, w1

W (∞, 6, 6) W (∞, 6, 2) 2 w1w2w1, w2, w3 1, w1
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In order to find a fundamental domain for a subgroup W ∗ ≤ W , we fix a fundamental
chamber F for W in the Poincaré disk and take the union of the images of F under the coset
representatives for W ∗ in W . This gives the fundamental chamber for W ∗. We give some
examples below with reference to the diagrams in Section 4.1.

The Weyl group W (∞,∞,∞) is a subgroup of the Weyl group W (∞, 3, 2) of index 6. The 6
triangles in the tessellation of W (∞, 3, 2) meeting at the central vertex are coset representatives
of the subgroup W (∞,∞,∞). As in [CV], we have

W (∞, 3, 2) ∼= W (∞,∞,∞)oD6,

where D6 denotes the dihedral group of order 6, the symmetries of a triangle.
Both W (∞, r, r) and W (∞, r/2,∞) are index 2 subgroups of W (∞, r, 2), for r = 4, 6. For the

fundamental domain of W (∞, r, r) in the tessellation of W (∞, r, 2) we take a shaded triangle T
with a corner at the origin together with an unshaded triangle sharing the edge of T opposite the
center vertex. For the fundamental domain of W (∞, r/2,∞) in the tessellation of W (∞, r, 2)
we take a shaded triangle T1 centered at the origin together with an unshaded triangle T2 that
also has a corner at the origin and whose union T1 ∪ T2 is also a triangle.

4. Tree associated to the Weyl group W

LetG be a symmetrizable locally compact Kac-Moody group of rank 3 noncompact hyperbolic
type. In this section, we describe how to associate bihomogeneous bipartite tree Y to the Weyl
group W of G. The tree Y is naturally related to the tessellation of the Poincaré disk by W .
The existence of such a tree with a W -action is an expected consequence of the fact that W is
a discrete subgroup of PSL2(R) and hence is virtually free. We will make use of the explicit
construction of Y and the properties of the W -action on Y throughout the paper.

Theorem 4.1. Let G be a symmetrizable locally compact Kac-Moody group of rank 3 noncompact
hyperbolic type. Let W be the Weyl group of G. Then W determines a bihomogeneous bipartite
tree Y whose vertices are barycenters of faces or edges in the tessellation of the Poincaré disk
by W , or corners of triangles in the tessellation.

Proof: We inscribe a tree in the tessellation of the Poincaré disk by W by first placing a vertex
at each non-boundary corner of the triangles in the tessellation. If W ̸= W (∞,∞,∞), then
every fundamental chamber has such a corner. If each chamber has 2 such corners, then we
connect pairs of vertices with an edge if there exists a chamber that contains both vertices.

Suppose that each chamber has only 1 non-boundary corner. In this case, there exist adjacent
chambers (triangles) that share an edge with 2 boundary points. The remaining non-boundary
corners have had vertices associated to them. We connect these vertices by an edge.

If W = W (∞,∞,∞), then the Poincaré disk is tessellated by ideal triangles, so there are no
non-boundary corners. In this case, we place a vertex at the barycenter of face of each ideal
triangle in the tessellation, and connect pairs of vertices at the barycenters of distinct adjacent
chambers with an edge.

If e is an edge connecting vertices in distinct adjacent chambers (which occurs if and only
if the Poincaré disk is tessellated by triangles with 2 or 3 boundary points), then e must cross
the wall E common to both chambers. We now place a vertex at this intersection, which is
naturally identified with the barycenter of E. This amounts to taking a barycentric subdivision
of the originally inscribed tree. This also ensures that the Weyl group acts on the tree without
inversions. In the cases where each chamber has 2 non-boundary corners and the edges of the
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inscribed tree connect vertices in the same chamber, we note that the Weyl group acts without
inversions, so no further subdivision is necessary. In each case, by our construction, the graphs
obtained here are trees. �

We use the notation Ya,b to denote the bihomogeneous tree of degrees a and b, and we consider
the following cases:

(i) W is of type (∞,∞,∞).

(ii) W is of type (∞, r,∞), r = 2, 3.

(iii) W is of type (∞, r, 2), r = 3, 4, 6.

(iv) W is of type (∞, r, r), r = 3, 4, 6.

For case (i), the fundamental apartment of X is tessellated by ideal triangles. We place a vertex
at the barycenter of each ideal triangle in the tessellation and a vertex at the barycenter of each
edge of the ideal triangles. The simplicial complex spanned by these vertices is the tree Y3,2

which is naturally bipartite. Vertices at barycenters of the triangles have degree 3, and vertices
at the barycenters of edges have degree 2.

For case (ii), the tessellation of the Poincaré disk by W suggests two possible types of vertices:
those at (non-boundary) corners of triangles in the tessellation (which will have degree r) and
those at barycenters of edges of the triangles (which will have degree 2). The simplicial complex
spanned by these vertices is the tree Yr,2 which is naturally bipartite.

For case (iii), the tessellation of the Poincaré disk by W suggests two possible types of vertices
for our tree: both are at (non-boundary) corners of triangles in the tessellation. Each corner in
a tessellation of type (∞, r, 2) touches either 4 triangles or 2r triangles. A vertex at a corner
that touches 4 triangles has degree 2, a vertex that touches 2r triangles has degree r. In this
case, we associate the tree Yr,2 to W and this tree is naturally bipartite.

For case (iv), we make a tree by placing a vertex at every (non-boundary) corner of the triangles
in the tessellation, and each vertex has degree r. In this case, we associate the tree Yr,r to W
and this tree is naturally bipartite, with the two different types of vertices corresponding to
different orbits under the action of the Weyl group.

We may summarize these results in the following table. If a = b then Ya,b is homogeneous.

Table 4.1. Tree associated to the Weyl group

Type Ya,b in H
(∞,∞,∞) Y3,2

(∞, 2,∞) Y4,2

(∞, 3,∞) Y6,2

(∞, 3, 2) Y3,2

(∞, 4, 2) Y4,2

(∞, 6, 2) Y6,2

(∞, 3, 3) Y3,3

(∞, 4, 4) Y4,4

(∞, 6, 6) Y6,6
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We remark that the trees associated with the Weyl groups W (∞, r, 2) for r = 3, 4, 6 are the same
as the trees associated with their subgroups W (∞, s,∞), for s = ∞, 2, 3, respectively. Note also
that taking a barycentric subdivision of the tree associated to the Weyl group W (∞, r, r) would
give the same tree as that associated to W (∞, r, 2) for r = 3, 4, 6.

We may determine the degrees of Y directly from the Dynkin diagram D, using the rules listed
below. In what follows, a circuit diagram refers to a Dynkin diagram in which every pair of
vertices is connected by an edge or multi-edge, and a linear diagram refers to a Dynkin diagram
in which there exists a pair of vertices with no edge between them.

For linear diagrams:

(a) If D has a single edge, then Y = Y3,2.

(b) If D has a triple edge, then Y = Y6,2.

(c) For all other cases, Y = Y4,2.

For circuit diagrams:

(a) If D has only one single edge, then Y = Y6,2.

(b) If D has two single edges, then Y = Y3,3.

(c) If D has a double edge with a single arrow, then Y = Y4,4.

(d) If D has a triple edge, then Y = Y6,6.

(e) For all other cases Y = Y3,2.

4.1. Diagrams of Tessellations and Embedded Trees. We recall that there are only 9
distinct noncompact hyperbolic tessellations of the Poincaré disk that arise here. Here we give
detailed drawings of these 9 tessellations and the embedded tree Y = Ya,b in the Poincaré
disk. These drawings were prepared by Sahar Waked Sati using AutoCAD 2009. Some of these
pictures were reproduced from our hand drawn diagrams and therefore may not display perfect
symmetry or have the exact angles we intend. The tessellations underlying Figures 4.1 and
4.4 appear in the book of Magnus ([M], Figures 18 and 17, respectively). We have copied and
modified these diagrams.
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Figure 4.1. Y3,2 embedded in the tessellation induced by W (∞,∞,∞)

16



Figure 4.2. Y4,2 embedded in the tessellation induced by W (∞, 2,∞)
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Figure 4.3. Y6,2 embedded in the tessellation induced by W (∞, 3,∞)
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Figure 4.4. Y3,2 embedded in the tessellation induced by W (∞, 3, 2)
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Figure 4.5. Y4,2 embedded in the tessellation induced by W (∞, 4, 2)
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Figure 4.6. Y6,2 embedded in the tessellation induced by W (∞, 6, 2)
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Figure 4.7. Y3,3 embedded in the tessellation induced by W (∞, 3, 3)
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Figure 4.8. Y4,4 embedded in the tessellation induced by W (∞, 4, 4)

23



Figure 4.9. Y6,6 embedded in the tessellation induced by W (∞, 6, 6)
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4.2. Quotient graph of groups for W on Y. For W as in Section 3, we have associated a
tree Y to W that is naturally associated to the tessellation of W on the Poincaré disk. In fact,
the action of W the Poincaré disk induces an action of W on Y. If F is a fundamental triangle
for the action of W on the Poincaré disk, then the intersection of the closure of F with Y will
be a fundamental domain for the action of W on Y.

Thus if W = W (∞,∞,∞), then the quotient graph for the action of W on Y = Y3,2 consists
of a tripod; namely a vertex of degree 3 (at the barycenter of F) together with 3 terminal
vertices (at the barycenters of edges of F).

If W ̸= W (∞,∞,∞) then the intersection of the closure of F with Y consists of a single
edge with its initial and terminal vertices.

We can then form the quotient graph of groups for the action of W on Y by associating to
the vertices and edges of the quotient graph W\Y the stabilizers of liftings to Y of these vertices
and edges for the action of W on the Poincaré disk. By applying the fundamental Bass-Serre
theory for reconstructing group actions on trees, this gives a graph of groups presentation for
W .

In this subsection, we explicitly compute the quotient graph of groups for the action of W
on Y for all W that occur, except for W = W (∞,∞,∞) (which we consider in Section 6). For
each tessellation of the Poincaré disk by W with inscribed tree Y, let a denote the vertex at the
center of the Poincaré disk, and let b denote the other vertex in the fundamental chamber of the
tessellation. Then the stabilizers of vertices a and b and the edge (a, b) under the action of W
are given in the following table:

Table 4.2. Stabilizers of vertices and edges

W Stab(a) Stab(b) Stab((a, b))

W (∞, r, 2)
⟨
w2, w3 | w2

2, w
2
3, (w2w3)

r
⟩ ⟨

w1, w3 | w2
1, w

2
3, (w1w3)

2
⟩ ⟨

w3 | w2
3

⟩
W (∞, r, r)

⟨
w2, w3 | w2

2, w
2
3, (w2w3)

r
⟩ ⟨

w1, w3 | w2
1, w

2
3, (w1w3)

r
⟩ ⟨

w3 | w2
3

⟩
W (∞, r,∞)

⟨
w2, w3 | w2

2, w
2
3, (w2w3)

r
⟩ ⟨

w1 | w2
1

⟩
{1}

Since the edge (a, b) is a fundamental domain for the action of W on Y, the corresponding
graph of groups consists of a single edge which we also denote (a, b) together with vertex and
edge stabilizers as in the above table. The fundamental group of such a quotient graph of groups
is a free product of the vertex groups amalgamated over their intersection. Thus we obtain the
following graph of groups presentations for W :

W (∞, r, 2) ∼=
⟨
w2, w3 | w2

2 = w2
3 = (w2w3)

r = 1
⟩
∗⟨w3|w2

3=1⟩
⟨
w1, w3 | w2

1 = w2
3 = (w1w3)

2 = 1
⟩
,

W (∞, r, r) ∼=
⟨
w2, w3 | w2

2 = w2
3 = (w2w3)

r = 1
⟩
∗⟨w3|w2

3=1⟩
⟨
w1, w3 | w2

1 = w2
3 = (w1w3)

r = 1
⟩
,

W (∞, r,∞) ∼=
⟨
w2, w3 | w2

2 = w2
3 = (w2w3)

r = 1
⟩
∗{1}

⟨
w1 | w2

1 = 1
⟩
,

These presentations coincide with the ‘JSJ decompositions’ of Mihalik ([Mi]) over virtually
abelian subgroups and of Ratcliffe and Tschantz ([RTs]) over FA subgroups. Our amalgamated
subgroups are either trivial or cyclic of order 2, which fit both JSJ-decompositions. In particular,
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our work gives the amalgam presentation W (∞, 3, 2) ∼= D6 ∗Z/2Z D4 for W (∞, 3, 2) ∼= PGL2(Z)
(see Section 6.2 for more detail).

In Section 6 we also determine the quotient graph of groups for W (∞,∞,∞) and for the
index 2 subgroup PSL2(Z) of W (∞, 3, 2). The graph of groups presentations for W (∞,∞,∞)
and PSL2(Z) coincide with the well known presentations W (∞,∞,∞) ∼= Z/2Z ∗ Z/2Z ∗ Z/2Z
and PSL2(Z) ∼= Z/2Z ∗ Z/3Z.

4.3. Amalgam decompositions of higher rank hyperbolic Weyl groups. A group G
is said to have Property (FA) if every action of G on a tree has a global fixed point. Serre
showed in [Se] that if a group has Property (FA), then it cannot split as a free product with
amalgamation or HNN extension. In particular, a finitely generated group with Property (FA)
has finite abelianization. It is also known that Kazhdan’s Property (T) implies Property (FA)
of Serre ([Wa]).

From [Se] (Exercise 3, p 66), we see that if the Coxeter matrix of a finite rank Coxeter group
conatins no infinities, then the group has Property (FA). We thank John Ratcliffe and Mike
Mihalik for communicating the following:

Theorem 4.2. ([MT]) If the Coxeter matrix of a finite rank Coxeter group contains an infinity,
then the group has a nontrivial visual amalgamated product decomposition, and so it does not
have Property (FA).

Thus a finite rank Coxeter group has Property (FA) if and only if its Coxeter matrix contains
no infinities. In ([C]), the author deduced the following using the results of [DJ]:

Theorem 4.3. Let A be a symmetrizable affine or hyperbolic generalized Cartan matrix. Let
G = GA(Fq) be a locally compact Kac-Moody group associated to A and the finite field Fq, with
q sufficiently large. If r = rank(G) = 3 and G has compact hyperbolic type, or if rank(G) ≥ 3
and G has affine type, or if 4 ≤ r ≤ 10 and G has hyperbolic type then

(i) G has Property (T).

(ii) All entries in the Coxeter matrix for G are finite.

We deduce that for G as in Theorem 4.3, the associated Weyl group W = W (A) has Serre’s
Property (FA) and hence is not an amalgam. In particular, the Weyl group of any Dynkin
diagram containing only single bonds has Property (FA). Therefore the Weyl groups of the
exceptional Lie algebras En, n = 6, 7, 8, 9, 10 are not amalgams.

We combine these results to obtain the following correspondence between the representation
theoretic properties of the Kac-Moody group G and the properties of the Weyl group G. We
refer the reader to Section 7 for a discussion of the Haagerup property and Kazhdan’s Property
(T).

Theorem 4.4. Let A be a symmetrizable affine or hyperbolic generalized Cartan matrix. Let
G = GA(Fq) be a locally compact Kac-Moody group associated to A and the finite field Fq, with
q sufficiently large.

(i) If r = rank(G) = 2 or if rank(G) = 3 and G has noncompact hyperbolic type, then G has the
Haagerup property and W = W (A) has a nontrivial amalgamated product decomposition. Thus
W does not have Property (FA).

(ii) If r = rank(G) = 3 and G has compact hyperbolic type, or if rank(G) ≥ 3 and G has affine
type, or if 4 ≤ r ≤ 10 and G has hyperbolic type, then G has Property (T) and W = W (A) has
Property (FA).
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5. The Tits building X and an associated tree

LetG be a symmetrizable locally compact Kac-Moody group of rank 3 noncompact hyperbolic
type. Let X be the Tits building of G. In this section, we show that there is a bihomogeneous
bipartite tree X associated to the Tits building X of G.

5.1. Hyperbolic buildings of rank 3 Kac-Moody groups. Let G be a symmetrizable lo-
cally compact Kac-Moody group of rank 3 noncompact hyperbolic type over Fq. Let X be the
Tits building of G. Apartments in X are hyperbolic planes tessellated by the action of the
hyperbolic Weyl group W . We construct X using the following labelling.

Let B be the minimal parabolic subgroup of the positive BN -pair (G,B,N). The maximal
simplices (chambers) of X correspond to cosets G/B. Note that these chambers are 2-simplices
in this case, and hence are the triangular faces in the building.

The faces of the chambers, which are the edges in X, correspond to cosets G/Pi where Pi,
i = 1, 2, 3 are the non-maximal standard parabolic subgroups

P1 := B ⊔Bw1B,

P2 := B ⊔Bw2B,

P3 := B ⊔Bw3B.

The vertices of the Tits buildingX are given by the cosetsG/Pij where Pij (i, j = 1, 2, 3, i ̸= j)
are the maximal standard parabolic subgroups

P12 :=
⊔

w∈⟨w1,w2⟩

BwB,

P23 :=
⊔

w∈⟨w2,w3⟩

BwB,

P13 :=
⊔

w∈⟨w1,w3⟩

BwB.

(Note that Pij = Pji.)
The incidence relation is described as follows. The r + 1 vertices v1, . . . , vr+1 span an r-

simplex if and only if the intersection of the labels of v1 ∩ · · · ∩ vr+1 contains a contains a coset
of B. In particular, gB ∼i hB (i.e. gB and hB are i-adjacent) if and only if gPi = hPi. Note
that this implies that if A and B are simplices in X, then A is a subsimplex of B if and only if
the label of B is contained in the label of A. The group G acts on vertices, edges and chambers
of X by left multiplication on cosets.

Every coset representative g for a coset of B in G can be written in the form

χi1(s1)wi1χi2(s2)wi2 . . . χin(sn)win ,

where ij = 1, 2, 3, wk is a generator of W , and χk(t) denotes χαk
(t) = exp(tek), t ∈ Fq and ek

are the Lie algebra generators. Moreover, by Lemma 7.4 in [R], an element in this form can also
be written as

χi1(t1)χi2(t2) . . . χin(tn)wi1wi2 . . . win

where tk = ±sk, with sign determined by choice of Lie algebra generators. Therefore, if we
require that wi1 . . . win be a reduced word in W , this representation is unique up to choice of
Lie algebra generators, and so we have a natural labelling of each chamber in X given by the
Lie algbera generators. Such decompositions for coset representatives were used by Iwahori and
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Matsumoto in [IM] for SL2(K) where K is a p-adic field, and by Carbone and Garland in [CG]
for rank 2 Kac-Moody groups over Fq. However, the result is a local one and holds for Moufang
buildings in general, and hence our case in particular, as shown in [RTi].

We can now prove the following lemma.

Lemma 5.1. Let G be a symmetrizable locally compact Kac-Moody group over Fq, and let X
be the Tits building associated to a BN -pair for G. Every face of a chamber in X is shared by
q + 1 chambers.

Proof: We observe that every face of a chamber in X, given by a coset of Pi in G, is shared
by n chambers, where n is the number of cosets of B contained in the given coset of Pi. In
particular gPi contains the coset gχi(s)wiB for all s ∈ Fq, as well as the coset gB. It follows
that n = q + 1. �

We also observe that if a vertex vi is labelled by a coset of Pij , then its link is the building cor-
responding to the Lie group over Fq with Weyl group W ′ generated by {wi, wj} (see [Br], Chap-
ters III and IV). Thus, the link of each vertex is the rank 2 building of type A1 ×A1, A2, B2, G2

or A
(1)
1 . In particular, every nonboundary vertex has a link corresponding to a rank 2 building

of finite (spherical) type. These buildings are discussed in Subsection 5.2.
We will also make use of the retraction of a building onto an apartment. Let A be an

apartment of X, let C ∈ A be a chamber contained in A. We recall that a retraction of X onto
A is a unique chamber map ρ = ρ(A, C) : X −→ A which fixes C pointwise and maps every
apartment containing C isomorphically onto A. The retraction ρ preserves distances from C and
preserves colors of vertices in X.

5.2. Links of vertices in the building. Let G be a rank 2 Lie group of finite type over Fq.
Then the Weyl group W of G has the presentation

⟨
w1, w2 | w2

1 = w2
2 = (w1w2)

m = 1
⟩
, where

m = 2, 3, 4, 6 for G = A1×A1, A2, B2, G2, respectively. This implies that the standard apartment
is of G is a polygon with 2m sides, and the full building for G is a generalized m-gon.

To determine the number of vertices and edges and the degrees of the vertices in the buildings
of G, we use a labelling that is analogous to the one used in the Rank 3 case. Let B be the
minimal parabolic subgroup of the positive BN -pair (G,B,N). We label the maximal simplices
(which are edges in this case) by the cosets G/B. We label the vertices with the cosets G/Pi

where Pi, i = 1, 2, 3 are the maximal standard parabolic subgroups

P1 := B ⊔Bw1B,

P2 := B ⊔Bw2B.

Note that the two standard parabolic subgroups give us a natural bipartion of the vertices of
the m-gon.

As before, all cosets of B can be written in the form

χi1(t1)χi2(t2) . . . χin(tn)wi1wi2 . . . winB,

where ij = 1, 2 in this case, and ij+1 = ij + 1 mod 2 for 1 ≤ j ≤ (n− 1). Since we require that
w = wi1wi2 . . . win be a reduced word in W , we note that 0 ≤ n ≤ m. If 0 < n < m, then i1 can
equal either 1 or 2, and each choice will give us a different element of W . If n = 0, w = 1, and
if n = m, then w is the unique word in W of longest length. We also have q choices for each
tk. Therefore, a simple counting argument shows that we have (1 + 2

∑m−1
i=1 qi + qm) different

cosets of B in G, and hence the generalized m-gon has (1 + 2
∑m−1

i=1 qi + qm) edges.
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We can apply Lemma 5.1 to these rank 2 buildings as well, and so each vertex has degree
q + 1. We also note that the cosets of Pi (i = 1, 2) all have the form

χi1(t1)χi2(t2) . . . χin(tn)wi1wi2 . . . winPi,

with the additional requirement that in ̸= i. This implies that 0 ≤ n < m, since a word in W
of length m can always be taken to end in wi. This also implies that i1 = i + n mod 2, since
we have the condition that ij+1 = ij + 1 mod 2 for 1 ≤ j ≤ (n − 1). Therefore, given a fixed
parabolic subgroup Pi, the word w = wi1wi2 . . . win is determined entirely by n, but we still have

q choices for each tk. Therefore there are 1 + q+ ...+ q(m−1) cosets of Pi in G for each i, and so
the generalized m-gon has 1 + q + ...+ q(m−1) vertices of each color.

5.3. Tree associated to the Tits building X.

Theorem 5.2. Let G be a symmetrizable locally compact Kac-Moody group of rank 3 noncompact
hyperbolic type. Let X be the Tits building of G. For every apartment A of X, let YA be the
tree associated to the Weyl group W of G and embedded in A. Define the simplicial complex

X =
∪

apartments A of X

YA.

Then X has the following properties:

(1) The vertices of X are barycenters of faces of X, barycenters of edges of X, or corners of
triangles in X. The retraction ρ of X onto an apartment A induces a retraction of X onto YA.
This retraction takes barycenters of faces and edges to barycenters of faces and edges respectively,
and takes corners of triangles to corners of triangles, preserving types of vertices.

(2) X is connected and a tree.

(3) The tree X is bihomogeneous and bipartite. If we let f(q, r) = qr + 2
∑r−1

i=1 q
i + 1 and

g(q, r) =
∑r−1

i=0 q
i, then the degrees of the vertices of X are as given in Table 5.1 below.

Table 5.1. Tree embedded in the Tits building

Type Ya,b in A Xa,b in X

(∞,∞,∞) Y3,2 X3, q+1

(∞, r,∞) Y2r,2 Xf(q,r), q+1

(∞, r, 2) Yr,2 Xg(q,r), q+1

(∞, r, r) Yr,r Xg(q,r), g(q,r)

Proof: (1) Each vertex of X is a vertex in some YA, and hence the barycenter of a face or edge
of A, or a corner of a triangle in A. We can thus identify each vertex of X with a simplex of A,
and hence of X. If x ∈ V X is a vertex at a barycenter of a face in YA in the apartment A, we
identify x with a chamber)σx of X. If x ∈ V X is a vertex at a barycenter of an edge in YA, we
identify x with an edge σx of X. If x ∈ V X is a vertex at a corner of a triangle in an apartment
A, we identify x with a vertex σx at a corner of a triangle in X.
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Now fix an apartment A0 of X. Then the retraction ρ of X onto A0 induces an isomorphism
of subtrees YA −→ YA0 for all apartments A of X.

If σx is a chamber of X, then ρ(σx) is at the barycenter of a face in A. If σx is an edge of X,
then ρ(σx) is at the barycenter of an edge in A. If σx is a vertex at a corner of a triangle in X,
then ρ(σx) is at the corner of a triangle in A.

(2) Pick any two vertices x and y in X . Then by building axiom (B1), there exists an
apartment A in X such that x, y ∈ A, and in particular, x, y ∈ YA. Thus, any two vertices in
X lie in the same connected component, and hence it follows that X is connected.

To show that X is a tree, we have to make sure that X does not contain closed circuits. To
continue the proof of the theorem, we make use of the following lemma which we prove here.

Lemma 5.3. If x and y are adjacent vertices of X , then there is a chamber of the Tits building
X containing x and y.

Proof (of Lemma 5.3): We prove the lemma in cases. Since X is a union of copies of Y, we have

the following 3 possibilities for pairs of adjacent vertices of X :

Case (a): If x is a vertex at a barycenter of a face in X and y is adjacent to x in X , then y is at
a barycenter of an edge. In this case, there is a chamber (ideal triangle) of X containing x and
y.

Case (b): If x is a vertex at a barycenter of an edge in X, y is adjacent to x in X and we are
not in Case (a), then y is at the corner of a triangle and is opposite x. In this case, the triangle
is a chamber of X containing both x and y.

Case (c): If x is a vertex at a corner of a triangle in X, y is adjacent to x in X and we are not
in case (b) then x is a vertex at a corner of the same triangle. In this case, the triangle is a
chamber of X containing both x and y. �
We now continue the proof of Theorem 5.2. We claim that X has no closed paths. Suppose
there is a closed path v1, v2, . . . vn = v1 in X containing n vertices, for n ≥ 3. Pick any two
adjacent vertices vk and vk+1 in this closed path, and another vertex on the closed path, say
vm such that vm ̸= vk and vm ̸= vk+1. Let γk be the path (vk, vk−1, . . . , vm) in the loop (with
indices taken cyclically, and let γk+1 be the path (vk+1, vk+2, . . . , vm) in the loop.

By Lemma 5.3, there is a chamber C containing vk, vk+1 and the edge e between them. By
building axiom (B1), there is an apartment A containing C and vm. Let ρ be the retraction of
X onto A that fixes C pointwise and maps every apartment containing C isomorphically onto A.
Thus ρ fixes vm. Since ρ is a simplicial map, it takes the path γk from vk to vm to a path σk in
YA from vk to vm, and the path γk+1 from vk+1 to vm to a path σk+1 in YA from vk+1 to vm.
Since vk ̸= vk+1, σk and σk+1 are distinct paths connecting vk to vm and vk+1 to vm respectively
in A. However, ρ also fixes the edge e in C that connects vk to vk+1. Thus, the image under ρ
of the closed path v1, v2, . . . vn = v1 in X is a closed path in A. This is a contradiction, since
ρ(X ) ⊆ YA, and YA is a tree. Thus, there are no closed paths in X containing 3 or more vertices.

It is easy to see that there are no closed paths in X containing only 2 vertices v1 and v2. Any
2 such vertices are adjacent in X and are contained in a single apartment A along with the 2
edges e1 and e2 forming a closed path between them. The retraction of X onto A fixes v1, v2,
and e1, e2 so a closed path in X containing 2 vertices would be a closed path in A, which is a
contradiction.
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(3) There is a natural bipartition of the vertices of X inherited from Y and preserved by ρ.
Since the local structure of the Tits building is the same for each chamber, X is bihomogeneous.
In particular, we have the following 4 cases:

(i) W is of type (∞,∞,∞).

(ii) W is of type (∞, r,∞), r = 2, 3.

(iii) W is of type (∞, r, 2), r = 3, 4, 6.

(iv) W is of type (∞, r, r), r = 3, 4, 6.

In case (i), we have Y = Y3,2. In each apartment of X, Y has a vertex of degree 3 at the
barycenter of the face of each ideal triangle and a vertex of degree 2 at the barycenter of each
edge of each ideal triangle. In X , each vertex at the barycenter of a face of a triangle is connected
to the 3 edges of the triangle, and hence still has degree three. Each vertex at the barycenter
of an edge is connected to vertices at the barycenter of the chambers that share that edge. By
Lemma 5.1, each edge lies on q + 1 chambers, and so the degree of vertices at the barycenter of
edges has degree q + 1.

In case (ii), we have Y = Yr,2. In each apartment of X, Y has vertices at (non-boundary) corners
of triangles in the tessellation which have degree r and vertices at barycenters of edges of the
triangles which have degree 2. In the building X, the link of each vertex at a non-bounday
corner is a generalized r-gon, and the vertex connects to each edge in the r-gon. As discussed
in Subsection 5.2, the number of edges in the r-gon is (qr + 2

∑r−1
i=1 q

i + 1). Each vertex at the
barycenter of an edge is connected to vertices at the barycenter of the chambers that share that
edge. By Lemma 5.1, each edge lies on q + 1 chambers, and so the degree of vertices at the
barycenter of edges has degree q + 1.

In case (iii), we have Y = Yr,2. In each apartment of X, Y has vertices at (non-boundary)
corners of triangles in the tessellation which have degree r and degree 2. The link of each vertex
of degree n is a generalized n-gon, and the vertex is connected to each of the vertices of a single
color in the n-gon. By the results of Subsection 5.2, we see that the number of vertices of a
single color in the n-gon is

∑n−1
i=0 qi. (Note that if n = 2,

∑n−1
i=0 qi = q + 1.)

In case (iv), we have Y = Yr,r. In each apartment of X, Y has a vertex at every (non-boundary)
corner of triangles in the tessellation, and each vertex has degree r. As in the previous case, the
link of each vertex of degree n is a generalized n-gon, and the vertex is connected to each of the
vertices of a single color in the n-gon. The number of vertices of a single color in the n-gon is∑n−1

i=0 qi. �

6. Examples

LetG be a symmetrizable locally compact Kac-Moody group of rank 3 noncompact hyperbolic
type. Let X be the Tits building of G. In this section we describe X and its inscribed tree X
in more detail in certain cases.

6.1. W (∞,∞,∞). When W = W (∞,∞,∞) we can describe the tree X explicitly. The tree
Y associated to W is Y = Y3,2. In each apartment of X, Y has a vertex of degree 3 at the
barycenter of the face of each ideal triangle and a vertex of degree 2 at the barycenter of each
edge of each ideal triangle.
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Vertices that had degree 3 in Y have degree 3 in X . Vertices that had degree 2 in Y have
degree q + 1 in X . Thus if W = W (∞,∞,∞), the tree X = X3,q+1 is naturally inscribed in X
and G acts on X without inversions.

For the action of W = W (∞,∞,∞) on the Poincaré disk, we take a fundamental triangle F
to be the central triangle in the tessellation. The quotient graph for the action of W on Y = Y3,2

then consists of a tripod; namely a vertex of degree 3 (at the barycenter of F) together with 3
terminal vertices (at the barycenters of edges of F).

To determine the stabilizers of vertices and edges of Y = Y3,2 under the action ofW (∞,∞,∞),
we identify W (∞,∞,∞) with the subgroup of W (∞, 3, 2) generated by w1, w2w1w2 and
w3w2w1w2w3, where w1, w2, and w3 are the generators of W (∞, 3, 2). The isomorphism
π : W −→ PGL2(Z) is given in Section 6.2. For this choice of generators, it is convenient

to identify the center of the Poincaré disk with the point eiπ/3 ∈ H.
It is easy to check that no element of W (∞,∞,∞) fixes the point eiπ/3 at the center of the

Poincaré disk. We associate the trivial group {1} to the vertex of degree 3 in the quotient graph
W/Y. The stabilizers of the barycenters of edges of F are all conjugate to the stabilizer of i
under the action of W (∞,∞,∞): this is the subgroup Z/2Z. We associate the vertex groups
Z/2Z to the remaining (terminal) vertices of W/Y. The fundamental group of this graph of
groups is Z/2Z ∗ Z/2Z ∗ Z/2Z.

6.2. W (∞, 3, 2). We consider the following 3 generalized Cartan matrices A13, A14 and A15,
corresponding to items 13, 14 and 15 in Table 3.1b in Section 3.

A13 =

 2 −2 0
−2 2 −1
0 −1 2

 , A14 =

 2 −4 0
−1 2 −1
0 −1 2

 , A15 =

 2 −1 0
−4 2 −1
0 −1 2

 .

In each of these cases A has non-compact hyperbolic type and the Weyl group W is

W = ⟨w1, w2, w3 | w2
i = (w1w2)

∞ = (w2w3)
3 = (w3w1)

2 = 1⟩,
which is isomorphic to PGL2(Z) ([FF]). The isomorphism π : W −→ PGL2(Z) is given by the
map ([K])

w1 7→
(

1 0
0 −1

)
, w2 7→

(
−1 1
0 1

)
, w3 7→

(
0 1
1 0

)
.

Let G be a symmetrizable locally compact Kac-Moody group of noncompact hyperbolic type
over the finite field Fq corresponding to a generalized Cartan matrix A13, A14 or A15. In the
Tits building X of G, each apartment is a copy of the hyperbolic plane, tessellated by the action
of PGL2(Z). The action of W on the upper-half plane is given by:
If ad− bc = 1 then (

a b
c d

)
· z =

az + b

cz + d
,

and if ad− bc = −1 then (
a b
c d

)
· z =

az + b

cz + d
.

The group PSL2(Z) is a subgroup of index 2 in PGL2(Z) consisting of matrices of determinant
1. Let

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
.
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Then S ≃ w3w1 and TS ≃ w2w3 generate PSL2(Z). Let F be the fundamental domain for

PSL2(Z) on H. Then S rotates F about the point i, fixing i, and TS fixes eiπ/3.
Let Y = Y3,2 be the tree of PSL2(Z) in H as in [Se]. The vertices of Y are the PSL2(Z)-

translates of the endpoints of the arc from i to eiπ/3 along the geodesic x2 + y2 = 1 bounding
the fundamental chamber in H for the action of the extended modular group PGL2(Z). The

PSL2(Z) translates of i have degree 2 in Y and the PSL2(Z) translates of eiπ/3 have degree
3. The subgroup ⟨S⟩ of PSL2(Z) stabilizes vertices of degree 2 in Y, and the subgroup ⟨TS⟩
stabilizes vertices of degree 3.

Figure 6.1 shows the upper half plane tessellated by PGL2(Z) and with the inscribed tree
Y = Y3,2. This is a modification of diagram 15 in [M].
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Figure 6.1. Upper halfplane model of Figure 4.4
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The quotient graph for PSL2(Z) on Y therefore consists of 2 vertices: one corresponding to
the orbit of vertices of degree 2 (referring to Figure 6.1, such a vertex is colored black), the other
corresponding to the orbit of vertices of degree 3 (referring to Figure 6.1, such a vertex is colored
white). The stabilizer of a lifting to Y of a black vertex is the group ⟨S⟩ ∼= Z/2Z. The stabilizer
of a lifting to Y of a white vertex is the group ⟨TS⟩ ∼= Z/3Z. The fundamental group of this
quotient graph of groups is the amalgam Z/2Z ∗Z/3Z. Applying the Bass-Serre correspondence
between group actions on trees and quotient graphs of groups, we get the familiar isomorphism
PSL2(Z) ∼= Z/2Z ∗ Z/3Z.

The building X has 3 types of vertices, denoted by cosets in G of P12, P23 and P13, which
are the maximal parabolic subgroups of G. We have P12 = B⟨w1, w2⟩B, P23 = B⟨w2, w3⟩B,
P13 = B⟨w1, w3⟩B. For a vertex gPij of type ij, the intersection of the link of gPij with any
apartment A containing this vertex is a Coxeter complex corresponding to Wij = ⟨w1, w2⟩.
Thus, this intersection is a closed circuit of length 4 for ij = 13 and of length 6 for ij = 23.
For ij = 13, the intersection of A with the link of the vertex P12 ‘at ∞’ is a bi-infinite line
isomorphic to Z. The full link of Pij in X is a generalized mij-gon (where a generalized ∞-gon
is a tree with no end points).

The tree Y has vertices corresponding to the non-boundary vertices of the fundamental
apartment. Every apartment A of X contains an isomorphic copy of Y denoted YA. Then

X =
∪

apartments A of X

YA

is connected, and is a tree on which G acts without inversions. The tree X is locally finite over
Fq and has two types of vertices - those inherited from vertices of degree 2 and of degree 3 in
Y. Vertices of degree 2 in Y correspond to cosets of P13 in G and have degree (q+1) in X , and
vertices of degree 3 in Y correspond to cosets of P23 in G and have degree (q2 + q + 1) in X .

6.3. Lorentzian but not hyperbolic. Consider the infinite family of generalized Cartan ma-
trices

A(m) =

 2 −m 0
−m 2 −1
0 −1 2


where m ≥ 3. Each generalized Cartan matrix in this infinite family is Lorentzian but not
hyperbolic since each A(m) contains the rank 2 hyperbolic generalized Cartan matrix

H(m) =

(
2 −m

−m 2

)
as a proper submatrix. The Weyl group of A(m) is the group W (3, 2,∞) for each m ≥ 3.
However the fundamental domain for W (A(m)) on the Poincaré disk no longer has finite volume.
Thus under the action of W (A(m)), there is no tessellation of the Poincaré disk in the usual
sense.1

1We thank Axel Kleinschmidt for drawing this class of examples to our attention.

35



7. The Haagerup property and actions on trees

Let G be a locally compact group. We say that there is a continuous, isometric action of G
on some affine Hilbert space H if there is a a continuous map G −→ Isom(H). We say that the
action of G on H is metrically proper if for any bounded subset B in H the set

K(G,B) := {g ∈ G s.t. gB ∩B ̸= ∅}
has compact closure in G. The locally compact group G satisfies the Haagerup property, (or
is a-T-menable) if it admits a continuous, isometric, proper action on an affine Hilbert space.
The Haagerup property is a strong negation of Property (T) which states that every continuous
action of G by isometries on a Hilbert space has a fixed point.

Concerning the Haagerup property, a theorem of Haagerup ([H]) states that a free group Γ
has the Haagerup property. It follows that if Γ is a discrete group acting freely on the vertices
of a Bruhat-Tits building X of rank 2, that is, a homogeneous or bi-homogeneous tree, then
Γ is a free group and hence has the Haagerup property. If Γ is a lattice in G, then G has the
Haagerup property ([CCJJV]).

We may also ask: If a locally compact group G acts on a tree, when does G have the Haagerup
property? This question has been answered in [CMV] where the authors introduce spaces with
‘measured walls’, generalizing Haglund and Paulin’s spaces with ‘walls’ ([HP]). They show that
if a locally compact group G acts on a space with measured walls, then G has the Haagerup
property. They also conjecture that the converse is true, proving the converse in a number of
cases, including the class of discrete groups with the Haagerup property.

This conjecture has been proven in [CDH] where the authors prove that a group G has the
Haagerup property if and only if it admits a proper continuous action by isometries on a ‘median
space’. A median space of [CDH] is a metric space for which, given any triple of points, there
exists a unique median point, that is a point which is simultaneously between any two points
in that triple. Simplicial trees are examples of median spaces. Spaces with measured walls are
naturally endowed with a (pseudo)metric. In [CDH] the authors showed that a (pseudo)metric
on a space is induced by a structure of measured walls if and only if it is induced by an embedding
of the space into a median space.

Let G be a symmetrizable locally compact Kac-Moody group of rank 3 noncompact hyper-
bolic type. It is known that the minimal parabolic subgroup B− of the negative BN -pair for
G is a nonuniform lattice subgroup of G ([CG], [Re]). We recall that for all symmetrizable
locally compact Kac-Moody groups G of either rank 2 (affine or hyperbolic type) or of rank 3
noncompact hyperbolic type, the nonuniform lattice subgroup B− has the Haagerup property.

In the next section, we explicitly construct a proper action of the lattice B− ≤ G on the
homogeneous or bihomogeneous bipartite tree X , which is an example of a median space, for
each of the possible 33 symmetrizable locally compact rank 3 Kac-Moody groups of noncompact
hyperbolic type that occur.

We mention also Proposition 2.1 of [DJ] where the authors showed that subgroups of finite
covolume in groups without Property (T) admit actions on trees without fixed points.

Proposition 2.1 of [DJ]. Let X be a building corresponding to a BN -pair for a group G.
Suppose that one of the entries of the Coxeter matrix is ∞. Let H be a subgroup of finite
covolume in G = Aut+(X). Then H acts without a fixed point on an infinite tree T .

However the tree T in Proposition 2.1 of [DJ] may not be locally finite and the action of H
on T is not proper in general.
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8. Proper actions on inscribed trees

In this section, we prove our main theorem, that the lattice subgroup B− of a locally compact
symmetrizable rank 3 Kac-Moody group of noncompact hyperbolic type acts properly on the
tree X .

Theorem 8.1. Let G be a symmetrizable locally compact Kac-Moody group of rank 3 noncompact
hyperbolic type. Let X be the Tits building of G. Let X be the bihomogeneous tree inscribed in
X as in Theorem 5.2. Let B− be the minimal parabolic subgroup of the negative BN -pair for
G. Then B− acts on X with finite vertex stabilizers.

Proof: As in previous sections, we consider the following cases:

(i) W is of type (∞,∞,∞).

(ii) W is of type (∞, r,∞), r = 2, 3.

(iii) W is of type (∞, r, 2), r = 3, 4, 6.

(iv) W is of type (∞, r, r), r = 3, 4, 6.

We recall that for case (i), there are two possible types of vertices of X : those at barycenters of
ideal triangles in the tessellation and those at barycenters of edges of the ideal triangles.

For case (ii), there are two possible types of vertices of X : those at (non-boundary) corners of
triangles in the tessellation and those at barycenters of edges of the triangles.

For case (iii), there are two possible types of vertices of X , but both are at (non-boundary)
corners of triangles in the tessellation.

For case (iv), vertices of X occur at every (non-boundary) corner of the triangles in the tessel-
lation.

We recall that we can identify each vertex of X with a simplex of X: if x ∈ V X is a vertex at a
barycenter of a face in some copy of Y = YA in an apartment A, we identify x with a maximal
simplex (chamber) of X. If x ∈ V X is a vertex at a barycenter of an edge in some copy of
Y = YA, we identify x with an edge of X. If x ∈ V X is a vertex at a corner of a triangle in an
apartment A, we identify x with a vertex at a corner of a triangle in X.

We therefore identify vertices at corners of triangles not on the boundary of X with cosets
G/Pij where Pij are the maximal standard parabolic subgroups. We identify vertices at barycen-
ters of edges of triangles with cosets G/Pi where Pi, i = 1, 2, 3 are the non-maximal standard
parabolic subgroups. We identify vertices at barycenters of faces of triangles with cosets G/B
for the minimal standard parabolic subgroup B.

In case (i), W = W (∞,∞,∞), all vertices at corners of triangles are on the boundary of
X: these vertices are also on the boundary of the tree X . We associate only non-boundary
vertices of X with cosets in the Tits building. There are 2 types of such vertices here, those
at barycenters of edges of triangles which we identify with cosets G/Pi, i = 1, 2, 3 and those at
barycenters of faces of triangles which we identify with cosets G/B.

We claim that the isotropy groups of the (non-boundary) vertices for the action of B− on
X are finite. It suffices to do this for the vertices on the fundamental apartment A0 since all
other vertices (cosets gPi and gPij ) are conjugate to these. Each vertex on the interior of the
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fundamental apartment is a coset of the form wPi or wPij , w ∈ W . We let Γ denote the group
B−, and let ΓwB, w ∈ W , denote the isotropy group of the chamber wB:

ΓwB = {γ ∈ Γ | γwB = wB}.

From [CG], we have that if G is constructed over the finite field Fq, then

| ΓwB | = ql(w)(q − 1)3,

where l(·) is the length function of the Weyl group W . It remains to show that for a vertex wPi

or wPij , w ∈ W , the groups ΓwPi and ΓwPij are finite. But each coset wPi or wPij is its own
stabilizer, so ΓwPi = Γ ∩ wPi and ΓwPij = Γ ∩ wPij . Then ΓwB ≤ ΓwPi ≤ ΓwPij and ΓwB is a

subgroup of finite index in both ΓwPi and ΓwPij . Since | ΓwB |= ql(w)(q − 1)3 < ∞, ΓwPi and
ΓwPij are finite groups. �

8.1. Kac-Moody groups of ranks 2 and ≥ 4. If G is a rank 2 locally compact Kac-Moody
group (of affine or hyperbolic type), then the Tits building of G is itself a homogeneous tree X
([CG], [RR]). It is known that G has the Haagerup property and that the subgroup B− acts
properly on X ([CG], [Re]).

Let G be a rank r symmetrizable locally compact Kac-Moody group of affine or hyperbolic
type (compact or noncompact). The conclusion of Theorem 8.1, that the minimal parabolic
subgroup B− of the negative BN -pair for G acts on the tree X inscribed in the Tits building
with finite vertex stabilizers, is available in rank r = 3 (for noncompact hyperbolic type) but
not ranks r ≥ 4. This follows from the fact that minimal parabolic subgroup B− of the negative
BN -pair for G of rank r ≥ 4 has Kazhdan’s Property (T) ([C] and [DJ]). We now apply a well
known theorem of de la Harpe and Valette that states that if a Property (T) group H acts on
a tree, then the group H must fix a vertex ([HV]). Thus if G has rank r ≥ 4, a lattice subgroup
Γ of G fixes a vertex for any action of Γ on a tree. In particular, this applies to Γ = B−.

8.2. Quotient graph of groups. Let G be a symmetrizable locally compact Kac-Moody group
of rank 3 noncompact hyperbolic type. Let X be the Tits building of G. Let B− be the minimal
parabolic subgroup of the negative BN -pair for G. As we have discussed, B− acts on X with
finite covolume. As proven in Theorem 8.1, B− acts on the inscribed bihomogeneous tree X
with finite vertex stabilizers. We may thus ask the following:

Question. What is the structure of the quotient graph of groups of for the action of B− on X ?

We know that the quotient B−\X is infinite and has finite vertex stabilizers. It follows that
B−\X also has finite covolume. Here the covolume of B−\X is defined as the sum over all
vertices of the reciprocals of orders of vertex stabilizers. Thus B− is also an ‘X -lattice’, that
is, a lattice in the automorphism group of the tree X . We can then apply the full theory of
tree lattices ([BL]) to investigate the structure of the group B−. We also claim that a graph of
groups presentation for B− in rank 3 noncompact hyperbolic type would give a solution to the
Kac-Peterson conjecture on the structure of U−, where B− = HU− ([KP]). We hope to take
this up elsewhere.
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Appendix A. Billiard tables for cosmological billiards

In 2002, Damour, Henneaux and Nicolai investigated how theories of gravity, and in particular
supergravity, close to a spacelike cosmological singularity decouple in the sense that nearby
spacetime points become causally disconnected ([DHN]). This leads to a local dynamics in the
presence of effective ‘potential walls which can be modeled by a billiard moving in a region of
hyperbolic space. This phenomenon, known as ‘cosmological billiards’ was first discovered in
relation to pure gravity in D = 4 spacetime dimensions by Belinskii, Khalatnikov and Lifschitz
([BKL]) and was reformulated by Chitre ([Ch]) and Misner ([Mis]) in terms of billiard motion
in hyperbolic space.

Under some natural assumptions on the Lagrangian, the billiard table for this dynamics is a
Coxeter polyhedron ([DH]). Remarkably, the hyperbolic billiard table can be identified with the
fundamental chamber of the Weyl group of a hyperbolic Kac-Moody Lie algebra determined by
the inner products of the ‘wall forms’.

In [dBS], the authors identify the hyperbolic Kac-Moody algebras for which there exists a La-
grangian of gravity, dilatons and p-forms which gives rise to a billiard motion whose billiard
table can be identified with the fundamental chamber of the corresponding Weyl group. In
[dBS] it is not assumed that the corresponding Kac-Moody groups or algebras are symmetries
of the gravity or supergravity theories. In Table A.1 there are 2 Lagrangians of [dBS] that come
from supergravity theories in D = 4 spacetime dimensions. The remaining Lagrangians of [dBS]
in D = 3 spacetime dimensions may also correspond to higher dimensional gravity theories but
these would not be supersymmetric.

In [HJ], Henneaux and Julia compute the billiards that emerge in the Belinskii-Khalatnikov-
Lifschitz limit for all pure supergravities in D = 4 spacetime dimensions, as well as for D = 4,
N = 4 supergravities coupled to an arbitrary number k of Maxwell supermultiplets. They show
that the billiards tables for all these models are the Weyl chambers of hyperbolic Kac-Moody
algebras. Their explicit computations for D = 4, N = 2, N = 3 supergravities reveal rank 3
hyperbolic noncompact Weyl chambers arising from a twisted form of the Kac-Moody algebra.

In Table A.1 we summarize the results of [BKL], [DHN], [dBS] and [HJ] for gravity and super-
gravity in D = 3 and D = 4 spacetime dimensions, where N denotes the number of supersym-
metries in the supergravity theory. These results give rise to 5 distinct billiard tables which can
be identified with fundamental chambers of Weyl groups of rank 3 noncompact hyperbolic type.
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Table A.1. Lagrangians of gravity and supergravity that admit a billiard table
which can be identified with the fundamental chamber of a rank 3 Kac-Moody
Weyl group of noncompact hyperbolic type.

Gen. Cartan matrix Gravity / billiard Lagrangian Billiard table

A =

 2 −1 0
−1 2 −2
0 −2 2

 D = 4, N = 1 supergravity ([DHN])
Corresponds to a Lagrangian of pure

gravity in D = 3 ([dBS])
(∞, 3, 2)

A =

 2 −1 0
−1 2 −1
0 −4 2

 D = 4, N = 2, 3 supergravity ([HJ])
Corresponds to a Lagrangian of gravity
coupled to a one form (without dilaton)

in D = 3 ([dBS])

(∞, 3, 2)

A =

 2 −1 0
−2 2 −2
0 −2 2

 Corresponds to a Lagrangian of gravity
with 1 dilaton in D = 3 ([dBS])

(∞, 4, 2)

A =

 2 −1 0
−2 2 −1
0 −4 2

 Corresponds to a Lagrangian of gravity
with 1 dilaton in D = 3 ([dBS])

(∞, 4, 2)

A =

 2 −1 0
−3 2 −2
0 −2 2

 Corresponds to a Lagrangian of gravity
with 1 dilaton in D = 3 ([dBS])

(∞, 6, 2)

A =

 2 −1 0
−3 2 −1
0 −4 2

 Corresponds to a Lagrangian of gravity
with 1 dilaton in D = 3 ([dBS])

(∞, 6, 2)

A =

 2 −1 0
−4 2 −2
0 −2 2

 Corresponds to a Lagrangian of gravity
with 1 dilaton in D = 3 ([dBS])

(∞,∞, 2)

A =

 2 −1 0
−4 2 −1
0 −4 2

 Corresponds to a Lagrangian of gravity
with 1 dilaton in D = 3 ([dBS])

(∞,∞, 2)

A =

 2 −2 −2
−2 2 −2
−2 −2 2

 D = 4 pure gravity ([BKL], [DHN]) without the
presence of symmetry walls

(∞,∞,∞)
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