
LATTICES ON PARABOLIC TREES

Lisa Carbone and Dennis Clark

Abstract. Let X be a locally finite tree, and let G = Aut(X). Then G is a locally compact

group. A non-uniform X-lattice is a discrete subgroup Γ ≤ G such that the quotient graph

of groups Γ\\X is infinite but has finite covolume, and a non-uniform G-lattice is a discrete

subgroup Λ such that Λ\G is not compact yet has a finite G-invariant measure. We show

that if X has a unique end and if G contains a non-uniform X-lattice, then G contains a

non-uniform G-lattice if and only if any path directed towards the end of the edge-indexed

quotient of X has unbounded index.

0. Notation and main results

Let X be a locally finite tree and G = Aut(X). Then G is naturally a locally compact
group with compact open vertex stabilizers Gx, x ∈ V X ([BL], (3.1)). A subgroup Γ ≤ G
is discrete if and only if Γx is a finite group for some (hence for every) x ∈ V X.

Let µ be a (left) Haar measure on G. By a G-lattice Γ we mean a discrete subgroup
Γ ≤ G = Aut(X) such that Γ\G has a finite measure µ(Γ\G). We call Γ a uniform G-
lattice if Γ\G is compact, and a non-uniform G-lattice if Γ\G is not compact yet µ(Γ\G)
is finite.

A discrete subgroup Γ ≤ G is called an X-lattice if

V ol(Γ\\X) :=
∑

x∈V (Γ\X)

1
|Γx|

is finite, a uniform X-lattice if Γ\X is a finite graph, and a non-uniform lattice if Γ\X
is infinite but V ol(Γ\\X) is finite.

When G is unimodular, µ(Gx) is constant on G-orbits, so we can define ([BL], (1.5)):

µ(G\\X) :=
∑

x∈V (G\X)

1
µ(Gx)

.
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(0.1) Theorem ([BL], (1.6)). For a discrete subgroup Γ ≤ G = Aut(X), the following
conditions are equivalent:

(a) Γ is an X-lattice, that is, V ol(Γ\\X) < ∞.
(b) Γ is a G-lattice (hence G is unimodular), and µ(G\\X) < ∞.

In this case:
V ol(Γ\\X) = µ(Γ\G) · µ(G\\X).

In [BCR] we prove the ‘Lattice Existence Theorem’, namely that G contains an X-
lattice if and only if G is unimodular and µ(G\\X) < ∞. In particular, it is shown in
[BCR] that if G is unimodular, µ(G\\X) < ∞, and G\X is infinite, then G contains a
(necessarily non-uniform) X-lattice Γ, which is a uniform G-lattice. In [CR1], we show
that if X has more than one end, and if G contains a non-uniform X-lattice, then G
contains a non-uniform G-lattice. Here our main result is the following:

(0.2) Theorem. Let X be a locally finite tree and let G = Aut(X). If X has a unique
end and if G contains a non-uniform X-lattice, then G contains a non-uniform G-lattice
if and only if any path directed towards the end of the edge-indexed quotient graph has
unbounded index.

Let Γ be a non-uniform X-lattice. Then the diagram of natural projections

X
pΓ

↙
pG

↘
Γ\X p−→ G\X

commutes. By Theorem (0.1), Γ is a G-lattice. To determine if Γ is uniform or non-
uniform in G, we use the following:

(0.3) Lemma ([BL], (1.5) (8)). Let x ∈ V X. The following conditions are equivalent:

(a) Γ is a uniform G-lattice.
(b) Some fiber p−1(pG(x)) ∼= Γ\G/Gx is finite.
(c) Every fiber of p is finite.

It follows that if G\X is finite, then Γ is a uniform (respectively non-uniform) X-
lattice if and only if Γ is a uniform (respectively non-uniform) G-lattice. Conversely,
the assumption that X has a unique end implies that G\X is infinite. To construct a
non-uniform G-lattice, our task is to construct a discrete group Γ with Γ\X infinite,
V ol(Γ\\X) < ∞, and some (hence every) fiber of the projection p infinite.

Locally finite trees with a unique end are called parabolic ([BL], Ch 9). Let (A, i) be
an edge-indexed graph in the sense of ([BL], Ch 1). We say that (A, i) is parabolic if
X = (̃A, i) is a parabolic tree.

Theorem (0.2) will be deduced from the following result about edge-indexed graphs.
Here we follow the notations and terminology of Section 1.
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(0.4) Theorem. Let (A, i) be a parabolic tree with finite volume. Then there is a cov-
ering p : (B, j) −→ (A, i) of edge-indexed graphs with infinite fibers such that (B, j) has
finite volume if and only if (A, i) contains a ray with unbounded index.

As a corollary of Theorem (0.4) we have the following:

(0.5) Theorem. Let (A, i) be an infinite parabolic tree with finite volume. Then there
exists a (necessarily non-uniform) X-lattice Γ ≤ G(A,i) which is a non-uniform G(A,i)-
lattice if and only if (A, i) contains a ray with unbounded index.

(0.6) Corollary. Let X be a locally finite parabolic tree, G = Aut(X), µ a (left) Haar
measure on G, and H ≤ G a unimodular closed subgroup acting without inversions with
projection pH : X −→ A = H\X, and edge-indexed quotient (A, i) = I(H\\X). Assume
that H = G(A,i) and that µ(H\\X) < ∞. If X has a unique end, and H\X is infinite,
then there exists a (necessarily non-uniform) X-lattice Γ ≤ H which is a non-uniform
H-lattice if and only if any path directed towards the end of the edge-indexed quotient
graph of X has unbounded index.

We call a lattice on a parabolic tree X a parabolic X-lattice. By ([BL], Ch 9), for
x0 ∈ V X, a parabolic lattice Γ is the infinite ascending union of the vertex stabilizers Γx

as x approaches the end ε of X along the unique path from x0.
The following gives an infinite tower of coverings with infinite fibers and finite volume

over an edge-indexed graph that admits a lattice:

(0.7) Theorem. Let (A, i) be a parabolic tree with finite volume. If (A, i) has a covering
p : (B, j) −→ (A, i) with infinite fibers and finite volume, then (A, i) has an infinite
sequence of coverings:

(B0, j0)
p0−→ (B1, j1)

p1−→ (B2, j2)
p2−→ . . . −→ (A, i)

with infinite fibers, and there exists a0 ∈ V A, bl ∈ V Bl with p0(bl) = a0 for l = 1, 2, . . .
such that

V olbl
(Bl, jl) −→ V ola0(A, i) < ∞, as l −→ ∞.

Hence we obtain an infinite ascending chain of closed subgroups of Aut(X):

G(B0,j0) ≤ G(B1,j1) ≤ G(B2,j2) ≤ . . . ≤ G(A,i),

(with notation as in (1.5)), and non-uniform G(A,i)-lattices Γl with Γl ≤ G(Bl,jl),
l = 0, 1, 2 . . . .

In Section 1, we outline the basics of parabolic edge-indexed graphs and a method for
constructing (parabolic) X-lattices. In Section 2, we prove Theorem (0.4) in the case
that (A, i) is a parabolic ray. In Section 3, we prove Theorem (0.4). In Section 4, we
prove Theorem (0.7).
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1. Constructing parabolic X-lattices

Let (A, i) be an edge-indexed graph in the sense of ([BL], Ch 2). We say that (A, i)
is parabolic if X = (̃A, i) is a parabolic tree (as in ([BL], Section 9)), that is X has a
unique end denoted ε. It follows that (A, i) is an infinite tree with a unique end denoted
εA. Moreover, in (A, i) we have

(1) i(e) = 1 for every e ∈ EA directed towards εA.

We choose e ∈ EA to be positively oriented if e is directed towards the unique end εA

of (A, i).
A parabolic edge-indexed tree (A, i) is automatically unimodular in the sense of ([BL],

(2.6)), and has bounded denominators in the sense of ([BL], (2.6)). If follows ([BK], (2.5))
that a parabolic edge-indexed tree (A, i) automatically admits a finite (faithful) grouping;
that is, there is a graph of finite groups A = (A,A) such that i(e) = [A∂0e : αeAe] for
every e ∈ EA, where αe : Ae ↪→ A∂0e.

Let (A, i) be a parabolic edge-indexed tree. For e ∈ EA, we put

(2) ∆(e) =
i(e)
i(e)

.

For an edge path γ = (e1, . . . , en) in A, we put ∆(γ) = ∆(e1) . . .∆(en). Fix a0 ∈ V A,

and let γ be the unique path from a0 to a ∈ V A. We denote ∆(γ) by
∆a

∆a0
. Following

([BL], (2.6)), we define the volume of (A, i) at a0 ∈ V A:

(3) V ola0(A, i) =
∑

a∈V A

1

(
∆a

∆a0
)
.

For a1 ∈ V A, we have ([BL], (2.6)):

V ola1(A, i) =
∆a1

∆a0
V ola0(A, i),

so the condition

V ol(A, i) < ∞

defined by V ola0(A, i) < ∞, is independent of the choice of a0.
It follows that if (A, i) is a parabolic edge-indexed tree of finite volume, then (A, i)

admits a finite (faithful) grouping A of finite volume, where

V ol(A) =
1

|Aa0 |
V ola0(A, i).
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Hence (A, i) admits a non-uniform X-lattice Γ = π1(A, a0) for a0 ∈ V A. We call a
parabolic edge-indexed tree of finite volume a parabolic lattice tree.

A covering of edge-indexed graphs ([BL], (2.5))

p : (B, j) −→ (A, i)

is a graph morphism p : B −→ A such that for all e ∈ EA with ∂0(e) = a and b ∈ p−1(a),
we have

(4) i(e) =
∑

f∈p−1
(b)(e)

j(f),

where p(b) : EB
0 (b) −→ EA

0 (a) is the local map on stars EB
0 (b) and EA

0 (a) of vertices
b ∈ V B and a ∈ V A (cf. [BL], (2.5)). If b ∈ V B, p(b) = a ∈ V A, then we can identify

˜(A, i, a) = X = ˜(B, j, b)

so that the diagram of natural projections

X
pB

↙
pA

↘
B

p−→ A

commutes.
Given (A, i) let X = (̃A, i) with projection p(A,i) : X −→ A. Let G = Aut(X) and let

(5) G(A,i) := {g ∈ G | p(A,i) ◦ g = p(A,i)}.

Then G(A,i) is a closed subgroup of G = Aut(X) ([BL], (3.3)).
If (A, i) is a parabolic lattice tree and A is a finite faithful grouping of (A, i) of finite

volume, then ([BL], (3.3)) for a0 ∈ V A we have:

(6) Γ = π1(A, a0) ≤ G(A,i).

Moreover, if p : (B, j) −→ (A, i) is a covering, then:
(a) G(B,j) ≤ G(A,i).
(b) For a0 ∈ V A, b0 ∈ V B with p(b0) = a0, we have the Bass-Rosenberg volume

formula ([R]):

V olb0(B, j) = V ola0(A, i) × V ol(B,j)(p−1(a0)),

where
V ol(B,j)(p−1(a0)) =

∑

b∈p−1(a0)

1

(
∆b

∆b0
)
.
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2. Parabolic lattice rays

In this section, we prove Theorem (0.4) in the case that (A, i) is a parabolic lattice
ray.
(2.1) We recall that if (A, i) is a parabolic edge-indexed tree, then i(e) = 1 for every
edge e directed towards the end εA of (A, i).

(2.2) Definition. A parabolic lattice ray (A, i) is an edge-indexed graph of the form:

(A, i) =

with almost all qk ≥ 2.

We shall refer to the terminal vertex a0 as the initial vertex of (A, i).
Let (A, i) be a parabolic lattice ray, let X = (̃A, i), and let G = Aut(X). Then (A, i)

has a finite grouping of finite volume and hence gives rise to a non-uniform X-lattice. We
seek a covering p : (B, j) → (A, i) such that (B, j) has infinite fibers and finite volume.
This will give rise to a non-uniform G-lattice.

(2.3) Lemma. Let (A, i) be a parabolic lattice ray. Then any covering p : (B, j) −→
(A, i) of edge-indexed graphs is an edge-indexed parabolic tree.

Proof. Let p : (B, j) −→ (A, i) be a covering. It is clear that (B, j) is a tree. Moreover,
for ak ∈ V A, the local fiber above

(EA
0 (ak), i) =

looks like:

(EB
0 (bk), j) =



1

n11

...

q1 - n1

n1s1

...

1 1

1
b2

...

1 1

1 q2 - n2 q3 - n31

n21 n2s2

b0
0 b1

0

1 1

b1
1 b1

s1

b2
0 b3

0

1
...

1
b3 b3

s3b2
s2

(T2  ,j)
1

(T2  ,j)
s2

(T3  ,j)
1

(T3  ,j)
s3

n31 n3s3
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where p(bk) = ak and since p : (B, j) −→ (A, i) is a covering, we have

q′1 + q′2 + · · · + q′n = qk.

Furthermore, since p is a covering, for every f ∈ p−1(ek) we must have j(f) = 1 for every
k = 1, 2, . . . . Any vertex b0 in the fiber p−1(a0) above a0 must be a terminal vertex. It
follows that any infinite reduced path from b0 is a sequence (f1, f2, f3, . . . ) of edges with
j(fk) = 1 for each k. Hence (B, j) is parabolic.�
(2.4) Coverings of parabolic lattice rays.

Let (A, i) be a parabolic lattice ray. Let p : (B, j) −→ (A, i) be a covering of edge-
indexed graphs. It follows from Lemma (2.3) that (B, j) is of the form:
(B, j) =

where
nk ≥ 0 for each k ≥ 1,

nk1 + · · · + nksk
= nk for each k ≥ 1,

and we have chosen a ‘base-ray’ in (B, j), say with vertex sequence b0
0, b0

1, . . . . For each
k ≥ 1, let b1

k, . . . , bsk

k be the vertices at distance 1 from b0
k other than b0

k−1 and b0
k+1. For

k ≥ 2, to each vertex blk
k , lk = 1, . . . , sk is attached a finite (possibly empty) ‘dominant-

rooted edge-indexed tree’, denoted (T lk
k , j). (For l1 = 1, . . . , s1, (T l1

1 , j) is necessarily
empty since bl1

1 is necessarily a terminal vertex) , where ‘dominant-rooted’ is defined as
follows: Let (T, j) be a finite edge-indexed tree, and suppose that (T, j) is attached to
an edge-indexed graph (A, i) at a vertex v ∈ V T ∩ V A. We will refer to the vertex v as
the root of (T, j). We call (T, j) dominant-rooted if all edges pointing towards the root
have index 1.
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Let v ∈ V T . The height ht(v) of v in T is defined to be the length of the (unique)
redeuced path in T from the root v0 to v. Let

k = maxv∈V T ht(v).

For each vertex x at height 1 ≤ s ≤ k, let Σx
s be the sum of the indices of edges

emanating from x.
Let c1, . . . , ck ∈ Z>0. We say that a finite edge-indexed tree (T, j) is (c1, . . . , ck)-

regular if the following conditions hold:

(a) (T, j) is dominant rooted.
(b) All terminal vertices in V T − {v0} have height k.
(c) For all vertices x at height s, 1 ≤ s ≤ k, we have:

Σx
s = cs.

(2.5) Lemma. Let c1, . . . , ck ∈ Z>0 and let (T, j) be a (c1, . . . , ck)-regular tree with root
v0. Then:

V olv0(T, j) = 1 +
k−1∑

s=1

s−1∏

l=0

ck−l−1

for each k ≥ 2.

Proof. We use induction on k ≥ 2. For k = 2, we have:
(T2, j) =

for some r1, . . . , rt2 with
r1 + · · · + rt2 = c1.



1

r1

(Tk-1  ,j)
tk

(Tk-1  ,j)
1

1

...

r tk

tkv1
1

v1

v0
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Then

V olv0(T2, j) = 1 + r1 + · · · + rt2

= 1 + c1

= 1 +
1∑

s=1

s−1∏

l=0

c2−l−1.

Assume that for some k > 3 and for each (c1, . . . , ck−1)-regular tree (Tk−1, j) we have

(1) Vk−1 := V olv0(Tk−1, j) = 1 +
k−2∑

s=1

s−1∏

l=0

c(k−1)−l−1

Then
(Tk, j) =

where (T 1
k−1, j), . . . , (T

tk

k−1, j) are (c1, . . . , ck−1)-regular trees and therefore (by induction)
have volume Vk−1.

Then
r1 + · · · + rtk

= ck−1,

thus

Vk := V olv0(Tk, j)
(1)
= 1 + r1Vk−1 + · · · + rtk

Vk−1

= 1 + Vk−1(r1 + · · · + rtk
)

= 1 + Vk−1ck−1

(1)
= 1 + ck−1[1 +

k−2∑

s=1

s−1∏

l=0

c(k−1)−l−1]

= 1 +
k−1∑

s=1

s−1∏

l=0

ck−l−1.�



1

nk1

...
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nksk

bk
0
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As a corollary, we observe that the trees (Tm
n , j) of (B, j) as in (2.4) satisfy the

hypothesis of Lemma (2.5) for (c1, . . . , cn) = (q1, . . . , qn), and therefore have volume

1 +
k−1∑

s=1

s−1∏

l=0

qk−l−1.

(2.6) Corollary. Let (A, i) be a parabolic lattice ray, let p : (B, j) −→ (A, i) be the
covering as in (2.4) ‘Coverings of parabolic lattice rays’, and let Vk be as in Lemma
(2.5). Then

V olb00(B, j) = 1 +
∞∑

k=1

[1 + Vk(nk1 + · · · + nksk
)]

(q1 − n1)(q2 − n2) . . . (qk − nk)

= 1 +
∞∑

k=1

[1 + Vknk]
(q1 − n1)(q2 − n2) . . . (qk − nk)

Proof. Immediate from (2.4) ‘Coverings of parabolic lattice rays’ and Lemma (2.5). �
(2.7) Lemma (Decreasing covolume). Let (A, i) be a parabolic lattice ray, and let
p : (B, j) −→ (A, i) be a covering. Choose a base-ray in (B, j), say with vertex sequence
b0
0, b

0
1, b

0
2, . . . . If for some k ≥ 1, we have:

(EB
0 (bk

0), j) =

for some nk such that 1 < nk < qk, and for nk1, . . . , nksk
satisfying

nk1 + · · · + nksk
= nk,

then:
(i) V olb00(B, j) decreases if we replace (EB

0 (bk
0), j) by:



1
bk

qk - 1 0

1

1

bk

qk

0
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that is, if we replace nk by 1.
(ii) V olb00(B, j) decreases if we replace (EB

0 (bk
0), j) by:

that is, if we replace nk by 0.

Proof. Immediate from Corollary (2.6). �
(2.8) Theorem (Canonical reduction of covering). Let (A, i) be a parabolic lattice
ray with initial vertex a0. Let p′ : (B′, j′) −→ (A, i) be a covering of (A, i). Then (B′, j′)
has a canonical ‘reduction’ (B, j) such that

(i) (B, j) is a covering of (A, i).
(ii) If (B′, j′) has infinite fibers then (B, j) has infinite fibers.
(iii) If b′0 ∈ p−1

B′ (a0), then there is a vertex b0 ∈ p−1
B (a0) such that

V olb0(B, j) ≤ V olb′0(B
′, j′).

Thus (B, j) has finite volume if (B′, j′) has finite volume.

Proof. The canonical reduction of (B′, j′) is defined as follows: Let ak ∈ V A and suppose
EA

0 (ak) = {eka, ekb} where i(eka) = qk and i(ekb) = 1, that is, eka points towards a0

and ekb points towards the unique end of (A, i). Choose a base-ray in (B′, j′) with
initial vertex b′0, and let (f ′

1, f
′
2, . . . ) be the edge sequence of the base-ray of (B′, j′) with

∂0f
′
t = b′t−1, t = 1, 2, . . . .
For k ≥ 1, let b′k ∈ p′−1(ak) be the unique inverse image of ak along the base-ray of

(B′, j′). Then as in (2.4) (‘Coverings of parabolic lattice rays’) we have

EB′

0 (b′k) := FB′

0 (b′k) ∪ {f ′
ka, f ′

kb},

where f ′
ka and f ′

kb are on the chosen base-ray, f ′
ka points towards the initial vertex of the

base-ray and f ′
kb points towards the end, with

j′(f ′
ka) = qk − nk



11 11

1

1

q2

bk
qk-1 1 qk - 1...

.

.

.

.

.

.

bk-1

q1
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j′(f ′
kb) = 1,

and
FB′

0 (b′k) := {f ′
k1, f

′
k2, . . . f

′
ksk

},
with

j′(f ′
k1) = nk1

j′(f ′
k2) = nk2

...

j′(f ′
ksk

) = nksk

say, where
nk1 + nk2 + · · · + nksk

= nk.

We define the canonical reduction (B, j) of (B′, j′) as follows. The (edge-indexed)
graph (B, j) will be a parabolic edge-indexed tree. Let (f1, f2, . . . ) be the edge sequence
of the base-ray of (B, j). For each t = 1, 2, . . . we set

j(ft) = 1

j(f t) = qt − 1, if nt > 0 in (B′, j′),

qt, if nt = 0 in (B′, j′).

To each vertex bk on the base-ray of (B, j) such that |EB′
0 (b′k)| > 2 in (B′, j′) we

attach a ‘branch’ to bk of the form:

By construction, (B, j) is a covering of (A, i). It is clear that (B, j) has infinite fibers
if and only if (B′, j′) has infinite fibers. Further, using Lemma (2.7)(i) (‘Decreasing
covolume’), we can easily check that

V olb0(B, j) < V olb′0(B
′, j′).
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Therefore, if (B′, j′) has finite volume, (B, j) also has finite volume. �
We will sometimes use the fact that the canonical reduction (B, j) has a distinguished

base-ray, and we will refer to this as ‘the’ base-ray of (B, j).

(2.9) Corollary. If the canonical reduction (B, j) of (B′, j′) has infinite volume, then
(B′, j′) has infinite volume.�
(2.10) Remark. We may apply the Bass-Rosenberg volume formula (1.6 (b) and [R]):

V olb0(B, j) = V ola0(A, i) × V ol(B,j)(p−1(a0))

where a0 = p(b0), to compute the volume of the canoncial reduction (B, j).

This yields the following:

(2.11) Lemma. Let (A, i) be a parabolic lattice ray with initial vertex a0:

(A, i) =

with almost all qk ≥ 2. Let p′ : (B′, j′) → (A, i) be a covering of (A, i). For the canonical
reduction (B, j) of (B′, j′) we have

V ol(B,j)(p−1(a0)) = 1 +
∑

k s.t. ∆(fk)<qk

q1q2 · · · qk−1

∆(f1)∆(f2) · · ·∆(fk)
,

where (f1, f2, . . . ) is the edge sequence of the base-ray of (B, j), (hence 1 = j(f1) =
j(f2) = . . . ), and so ∆(fk) = j(fk)/j(fk) = j(fk). Let b0 ∈ p−1

B (a0) denote the initial
vertex of the base-ray of (B, j). We have V olb0(B, j) < ∞ if and only if

∑

k s.t. ∆(fk)<qk

q1q2 · · · qk−1

j(f1)j(f2) . . . j(fk)
< ∞.�

(2.12) Ray classification theorem. Let (A, i) be a parabolic lattice ray with notation
as in Lemma (2.11). Then (A, i) has a covering p : (B, j) → (A, i) with infinite fibers
and finite volume if and only if the sequence {qk}∞k=1 is unbounded.

Proof. Suppose that the sequence {qk}∞k=1 is bounded. That is, suppose that there exists
N such that qk < N for each k ≥ 1. Asume that we have a covering p′ : (B′, j′) → (A, i)
such that (B′, j′) has infinite fibers. We show that (B′, j′) has infinite volume.

Let (B, j) be the canonical reduction of (B′, j′) and let p : (B, j) → (A, i) be the
induced covering of (A, i). Let b0 ∈ p−1

B (a0) be the initial vertex of the base-ray of (B, j).



1
bk

qk - 1

1
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By Lemma (2.11), we have V olb0(B, j) < ∞ if and only if

S : =
∑

k s.t. ∆(fk)<qk

q1q2 . . . qk−1

∆(f1)∆(f2) . . .∆(fk)

=
∑

k s.t. ∆(fk)<qk

q1

∆(f1)
q2

∆(f2)
. . .

qk−1

∆(fk−1)
1

∆(fk)

< ∞.

Since ∆(fk) ≤ qk < N for each k ≥ 1, we have

S >
1
N




∑

k s.t. ∆(fk)<qk

q1

∆(f1)
q2

∆(f2)
. . .

qk−1

∆(fk−1)



 ,

but ∆(fk) ≤ qk for each k ≥ 1, so

qk

∆(fk)
≥ 1.

Hence

S >
1
N

∞∑

k=1

1 = ∞.

Conversely, suppose that (A, i) has unbounded index. We construct a covering p :
(B, j) → (A, i) with infinite fibers and finite volume.

We choose the least k such that qk > 1. For l = 0, . . . k we define b0, . . . , bk to be
vertices of B, with p(bl) = al, and for l = 0, . . . , k − 1, we define:

(EB
0 (bl), j) := (EA

0 (al), i).

We define (EB
0 (bk), j) to be:

The vertices b0, . . . , bk become part of the base-ray of (B, j). To construct the desired
covering (B, j) of (A, i), we imitate the construction of the canonical reduction of a
covering of (A, i). We construct a branch denoted Bk from the vertex bk on the base-ray
of the form:



11 11

1

1

q2

bk
qk-1 1 qk - 1...

.

.

.

.

.

.

bk-1

q1

bk
0

1

1

q         - 1k+n0 b        k+n0
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(2)

Bk :=

Let b0
k be the terminal vertex of the branch Bk, other than b0. Then b0

k ∈ p−1
B (a0). By

Lemma (2.11), we have:

Vk := V ol(B,j)(b0
k) =

q1q2 . . . qk−1

∆(f1)∆(f2) . . .∆(fk)
.

(2.13) Branch vertices.

Next we choose ak+n0 ∈ V A such that

qk+n0 − 1 > 2qk,

which is possible since the sequence {qk} is unbounded. We define bk+1, . . . , bk+n0 to be
vertices of B, with p(bk+l) = ak+l, l = 1, . . . , n0. For l = 1, . . . , n0 − 1, we choose

(EB
0 (bk+l), j) := (EA

0 (ak+l), i).

We choose (EB
0 (bk+n0), j) as follows:



11 11

1

1

q2 1
...

.

.

.

.

.

.

q1

bk+n  
0

0
qk+n   - 10

bk+n   0

bk+n  0 -1

qk+n   - 10
fk+n   0
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The vertices bk+1, . . . , bk+n0 also become part of the base-ray of (B, j). We construct a
branch denoted Bk+n0 from bk+n0 of the form:

(3)

Bk+n0 :=

Let b0
k+n0

be the terminal vertex of the branch Bk+n0 , other than b0. Then
b0
k+n0

∈ p−1
B (a0). Let (f1, f2, . . . , fk+n0) be the edge sequence of the base-ray constructed

so far. By Lemma (2.11), we have:

Vk+n0 := V ol(B,j)(b0
k+n0

) =
q1q2 . . . qk+n0−1

∆(f1)∆(f2) . . .∆(fk+n0)

=
q1q2 . . . qk−1

∆(f1)∆(f2) . . .∆(fk)
qk

qk+1 . . . qk+n0−1

∆(fk+1) . . .∆(fk+n0−1)
1

∆f(k+n0)

= Vkqk
qk+1

qk+1
. . .

qk+n0−1

qk+n0−1

1
qk+n0−1

= Vk
qk

qk+n0 − 1

< Vk
qk

2qk

=
Vk

2
.

We iterate the definition of (B, j) in this way, repeating the construction from (2.13),
for each l = 1, 2, . . . , choosing bk+nl

for nl > nl−1, such that

qk+nl
− 1 > 2qk+nl−1 .



1

1

q         - 1k+nl b        k+nl

11 11

1

1

q2 1
...

.

.

.

.

.

.

q1

bk+n  
0

l
qk+n   - 1l

bk+n   l

bk+n  l -1

qk+n   - 1l
fk+n   l

LATTICES ON PARABOLIC TREES 17

(This is possible, as the sequence {qk} is unbounded). We choose vertices bk+nl−1 , . . . , bk+nl

which will become part of the base-ray of (B, j), with p(bk+nl−1) = ak+nl−1 , . . . , p(bk+nl
) =

ak+nl
, and we choose

(EB
0 (bk+nl−1), j) := (EA

0 (ak+nl−1), i)

...

(EB
0 (bk+nl−1), j) := (EA

0 (ak+nl−1), i).

We choose (EB
0 (bk+nl

), j) as follows:

For each l = 1, 2, . . . , we construct a branch denoted Bk+nl
from bk+nl

with terminal
vertex b0

k+nl
other than b0:

(4)

Bk+nl
:=

For each l = 1, 2, . . . we have:



(T4 , i)(T3 , i)(T2 , i)(T1 , i)

...
a0 a1 a2 a3 a4
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Vk+nl
: = V ol(B,j)(b0

k+nl
)

=
q1q2 . . . qk+nl−1

∆(f1)∆(f2) . . .∆(fk+nl
)

(14)
= Vk

(
qk

qk+n0 − 1

) (
qk+n0

qk+n1 − 1

) (
qk+n1

qk+n2 − 1

)
. . .

(
qk+n(l−1)

qk+nl
− 1

)

since we branch only at vertices bk+n0 , bk+n1 , . . .

< Vk

(
qk

2qk

) (
qk+n0

2qk+n0

) (
qk+n1

2qk+n1

)
. . .

(
qk+n(l−1)

2qk+n(l−1)

)

=
Vk

2l+1
.

It follows that:

V ol(B,j)(p−1(a0)) := V ol(B,j)(b0
k) + V ol(B,j)(b0

k+n0
) + V ol(B,j)(b0

k+n1
) + . . .

< Vk +
Vk

2
+

Vk

22
+ . . .

< ∞.

By construction, (B, j) is a covering of (A, i), and (B, j) has infinite fibers, since the
sequence {qk} is unbounded.�

3. Parabolic lattice trees

In this section we prove Theorem (0.2) in the case that (A, i) is a parabolic lattice
tree. We seek a covering p : (B, j) −→ (A, i) with infinite fibers and finite volume. This
gives rise to a non-uniform G-lattice, where G = Aut(X), X = (̃A, i).

Fix a terminal vertex a0 ∈ V A and let (A0, i) = (a0, a1, a2, . . . ) be the (vertex sequence
of the) path from a0 to the end εA. Then we may view (A, i) as a ‘decoration’ of the
chosen base-ray (A0, i). That is, (A, i) =

where (Tk, i) is a finite (possibly empty) dominant-rooted edge-indexed subtree attatched
to ak ∈ V A0.

(3.1) Lemma. Let (A, i) be a parabolic lattice tree and (A0, i) a chosen base ray of
(A, i). Let p0 : (B0, j) −→ (A0, i) be a covering and let (B, j) be obtained by attaching
the finite dominant-rooted edge-indexed subtree (Tk, i) (specified above) to every vertex in
p−1

B0
(ak). Then p : (B, j) −→ (A, i) is a covering.

Proof. Obvious. �
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Let (A, i) be a parabolic lattice tree. Choose (A0, i) = (e1, e2, e3, . . . ) to be a base-ray
of (A, i). By Theorem (2.12),

(A0, i) has a covering with infinite fibers and finite volume if and

only if the sequence {qk = i(ek)}∞k=0 is unbounded.

(3.2) Decorated cover of a base-ray of (A, i).

We assume that (A, i) has a base-ray with the sequence {qk = i(ek)}∞k=0 unbounded,
and let p′ : (B′, j′) −→ (A0, i) be a covering of the base-ray (A0, i) with infinite fibers
and finite volume. We construct the canonical reduction (B0, j) of (B′, j′) as in Theorem
(2.8). Then (B0, j) has infinite fibers and finite volume. At every vertex ak in V A0 is
attached a (finite, possibly empty) dominant-rooted edge-indexed subtree, called (Tk, i).
We now construct a covering of (A, i) by ‘decorating’ (B0, j). We attach a copy of (Tk, i)
to each bk in p−1(ak), and call the resulting edge-indexed graph (B, j). The following
theorem shows that this gives the desired covering of (A, i).

(3.3) Theorem. Let (A, i) be a parabolic lattice tree. Fix a terminal vertex a0 of (A, i)
such that the path (e1, e2, . . . ) from a0 to the (unique) end of (A, i) has unbounded index.
Then there is a covering p : (B, j) −→ (A, i) with infinite fibers and finite volume.

(3.4) Remark.

The following example shows that a parabolic lattice tree may have unbounded index,
however, every path directed towards the end of the edge-indexed quotient has bounded
index.
(A, i) =

Proof of (3.3). Let (A0, i) = (e1, e2, . . . ) be a base-ray of (A, i) and let p0 : (B0, j) −→
(A0, i) be the covering of (A0, i) with infinite fibers and finite volume as in (3.2). Let
p : (B, j) −→ (A, i) be the decorated covering of (B0, j) as in (3.2). Let b0 ∈ p−1(a0) be
the distinguished initial vertex of the base-ray of (B0, j).

By Lemma (3.1), we readily see that (B, j) is a covering of (A, i), since (B0, j) is a
covering of (A0, i). Clearly

(B, j) has infinite fibers ⇐⇒ (B0, j) has infinite fibers.
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Using the Bass-Rosenberg Volume Formula ([R]), we compute the volume of (B, j):

V ol(b0)(B, j) = V ol(a0)(A, i) × V ol(B,j)p
−1(a0).

The volume at a single vertex b in the fiber p−1(a0) depends only on the indices along the
unique path from b0 to b, and these indices are unchanged by decorating (B0, j). Hence
it follows that

V ol(B0,j)p
−1(a0) = V ol(B,j)p

−1(a0).

Since (B0, j) has finite volume, so does (B, j).�

(3.5) Remark.

Let (A, i) be a parabolic lattice tree. The fact that (A, i) has a unique end implies
that

some ray of (A, i) has bounded index

if and only if

every ray of (A, i) has bounded index.

(3.6) Lemma. Let p : (B, j) −→ (A, i) be a covering of edge-indexed trees, and let
b0 ∈ (B, j). Then if p−1(a0) = b0, we have V olb0(B, j) = V ola0(A, i). �

This lemma is a special case of the Bass-Rosenberg volume formula and was discovered
independently in [CE] in the case that (A, i) and (B, j) are edge-indexed trees.

(3.7) Theorem. Let (A, i) be a parabolic lattice tree. If every path towards the end of
(A, i) has bounded index, then (A, i) has no covering with infinite fibers and finite volume.

Proof. Fix a terminal vertex a0 of (A, i) and let (a1, a2, . . . ) be the vertex sequence from
a0 to the unique end of (A, i). Assume that there is a covering p : (B, j) −→ (A, i) with
infinite fibers and finite volume. Traversing the path γ = (a1, a2, . . . ), we consider the
preimages p−1(a1), p−1(a2), . . . for r ≥ 1, and l ≥ 1. Let bl

r ∈ p−1(ar). Let Tr be a finite
(possibly empty) subtree attached to ar. We have

deg(ar) := qr−1 + 1 + sr,

where qr−1 is the index of the incoming edge to ar along the chosen base-ray and sr is
the sum of the indices of edges in Tr emanating from ar. Then p−1

bl
r

(ar) looks like



f(r-1)1

bl
        r

ar

er-1

f(r-1)2

f(r-1)s

.

.

.

p
bl        r

Yl
        r

T       r

f(r-1)1

bl
        r

ar

er-1

f(r-1)2

f(r-1)s

.

.

.

(p0)bl
        r
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where
j(f (r−1)1) + · · · + j(f (r−1)s) = i(er−1) = qr−1,

and Y l
r is a covering of Tr.

We replace Y l
r by a copy of Tr, called T l

r, and by Lemma (3.6) (and the fact that the
trees Y l

r and Tr are dominant rooted), this does not change the volume of (B, j). We
‘prune’ the finite subtrees T l

r, for r ≥ 1, from (B, j) and call the resulting edge-indexed
graph (B0, j0). We claim that there is a covering p0 : (B0, j) −→ (A0, i). For ar ∈ V A0,
we have the local picture:
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where
j(f (r−1)1) + · · · + j(f (r−1)s) = i(er−1) = qr−1,

and hence p0 is a covering.
Repeating this for every l = 2, 3, . . . and for each r = 2, 3, . . . we obtain a covering

(B′, j′) of the base-ray (A0, i) to which finite trees Tr are attached to each ar ∈ V A0.
Moreover

(B′, j′) has infinite fibers and finite volume

⇐⇒
(B, j) has infinite fibers and finite volume.

However, (A0, i) has bounded index by hypothesis, so by Theorem (2.12), the coverings
(B′, j′) and (B0, j) cannot exist. Hence there can be no covering p : (B, j) −→ (A, i)
with infinite fibers and finite volume. �
(3.8) Corollary. In the notation of Theorem (3.7) and its proof we see that a covering
p : (B, j) −→ (A, i) with infinite fibers and finite volume induces a decoration (B′, j′) of
a covering p0 : (B0, j) −→ (A0, i) with infinite fibers and finite volume of the base-ray
(A0, i).

As a corollary to Theorems (3.3) and (3.7) we obtain:

(3.9) Theorem. Let (A, i) be a parabolic lattice tree. Then (A, i) has a covering
p : (B, j) −→ (A, i) with infinite fibers and finite volume if and only if (A, i) contains a
ray with unbounded index.�

In private communication, G. Rosenberg observed the following:

(3.10) Lemma (G. Rosenberg). Let (A, i) be a parabolic edge-indexed tree with unique
end ε. Let (e1, e2, . . . ) be an infinite path towards ε. Set a1 = ∂0e1 and qk = i(ek). Note
that i(ek) = 1. Let p : (B, j) −→ (A, i) be a covering of edge-indexed graphs (thus
(B, j) is a parabolic edge-indexed tree with unique end ε̃). Let (f1, f2, . . . ) be a lifting of
(e1, e2, . . . ) and set b0 = ∂0f1 (so p(b0) = a0) and q̃k = j(f̃k) (again, j(fk) = 1). Then
we have

V olb0(B, j) =

( ∞∏

k=1

qk

q̃k

)
V ola0(A, i).

(cf. Corollary (2.6) and Lemma (2.11). This is a generalization of Lemma (2.11) to
parabolic lattice trees).

Proof. : Since A is a tree, every edge is separating. For each n ∈ Z≥0, let (A0
n, i)

and (A1
n, i) be the two connected components obtained by removing the separating edge

en+1, where we assume that (A1
n, i) is the connected component that contains the end of

(A, i). Let an = ∂0en+1. Then (A0
n, i, an) is a (finite) dominant rooted edge-indexed tree.

Similarly, for each n ∈ Z≥0, let (B0
n, j) and (B1

n, j) be the two connected components
obtained by removing the separating edge fn+1 in (B, j), where we assume that (B1

n, j)
is the connected component that contains the end of (B, j). Let bn = ∂0fn+1. Then
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(B0
n, j, bn) is also a (finite) dominant rooted edge-indexed tree, and for each n ∈ Z≥0,

pn = p|(B0
n,j) : (B0

n, j) −→ (A0
n, i) is a covering of edge-indexed graphs with p−1(an) = bn.

Hence by the Bass-Rosenberg volume formula, we have:

V olbn(B0
n, j) = V olan(A0

n, i).

The change of base-point formula ([BL], (2.6)) gives:

V olbn
(B0

n, j) =

(
n∏

k=1

q̃k

)
V olb0(B

0
n, j)

= V olan(A0
n, i)

=

(
n∏

k=1

qk

)
V ola0(A

0
n, i).

So

V olb0(B
0
n, j) =

(
n∏

k=1

qk

q̃k

)
V ola0(A

0
n, i).

Taking the limit as n −→ ∞, we get:

V olb0(B, j) =

( ∞∏

k=1

qk

q̃k

)
V ola0(A, i).�

(3.11) Remarks.

(1) q̃k ≤ qk.
(2) If p has infinite fibers, then we must have q̃k < qk for infinitely many k.
(3) Although the q̃k depend on the choice of lifting, the finiteness of the infinite

product does not. Also, the qk are bounded (not necessarily uniformly) for some
ray in (A, i) if and only if the qk are bounded for every ray in (A, i).

At the time of publication, G. Rosenberg observed that the lemma can be applied
to give an alternate proof of Theorems (2.12) and (3.3). We give Rosenberg’s proof of
Theorem (3.3) below (Theorem (3.12)).

Let (A, i) be a parabolic edge-indexed tree. We say that (A, i) has the bounded ray
condition if for some, hence every, ray (e1, e2, . . . ) towards the unique end of (A, i), there
exists an N > 0 (which may depend on the chosen ray) such that i(en) < N for all
n = 1, 2, . . . .

(3.12) Theorem (G. Rosenberg). Let (A, i) be a parabolic tree with finite volume. If
(A, i) does not satisfy the bounded ray condition, then there is a covering p : (B, j) −→
(A, i) with infinite fibers and finite volume.

Proof. Let (e1, e2, . . . ) be a ray of (A, i). Let qk = i(ek). Since {qk} is unbounded, there
exists a subsequence {qkn} which grows exponentially, that is, qkn+1 > cqkn for some
c > 0.
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We fan (A, i) at each ekn
to create a cover (B, j) which has a lifting (f1, f2, . . . )

of (e1, e2, . . . ) with j(fkn
) = i(ekn

) − 1 for kn in our subsequence. (This process is
described in detail in the proof of Theorem (2.12) for parabolic rays, and Theorem (3.3)
for parabolic trees.) Then (B, j) has infinite fibers. Moreover for basepoints a0 ∈ V A
and b0 ∈ V B:

V olb0(B, j) =

( ∞∏

k=1

qk

q̃k

)
V ola0(A, i)

=
∞∏

k=1

(
1 +

1
(qkn

− 1)

)
,

which converges since {qkn} (and hence {qkn − 1}) grows exponentially. �

4. Towers of coverings with infinite fibers and finite volume

Let (A, i) be the following parabolic lattice ray:

(A, i) =

with q ≥ 2. Since (A, i) has unbounded index, we may use the technique of Theorem
(2.12) to construct a covering p : (B, j) −→ (A, i) such that (B, j) as infinite fibers and
finite volume. For q ≥ 3, the resulting covering looks like:



q-1

...

1

1

11 11 11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11 11

q2-1 q3-1 q4-1 q5-1

q

q

q

q

q2

q2

q2

q3

q3

q4

LATTICES ON PARABOLIC TREES 25

(B, j) =

We set (B0, j0) = (B, j), and we use Lemma (2.7)(ii) (‘Decreasing covolume’) to
modify (B0, j0) to obtain coverings (Bl, jl) for l = 1, 2, . . . of (A, i) with infinite fibers
and finite covolume, but smaller covolume than (B0, j). We set
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(B1, j1) =



q
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1
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and (B2, j2) =

and so on. In this way, we obtain an infinite sequence of coverings:

(B0, j0) −→ (B1, j1) −→ (B2, j2) −→ . . . −→ (A, i)

with infinite fibers and

V olb0(Bl, jl) −→ V ola0(A, i) < ∞, as l −→ ∞.

(For q = 2, our covering p : (B0, j0) −→ (A, i) has branches off the base-ray of (B0, j0)
only at odd vertices b2l−1, l = 1, 2, . . . , since our method for constructing such coverings
relies on a sequence of vertices {al} in V A with ql+1 − 1 > 2ql, and this is not true for
consecutive terms of the sequence a0, a1, . . . when q = 2.)

We have the following:



11

1

1

1 1

qk  -1 1...q1
qk+n   - 10

b'k+n  0

... ... qk+n   - 11

b'0 b'1 b'k b'k+n  1

B'k B'k+n   0 B'k+n   1

...
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(4.1) Theorem. Let (A, i) be a parabolic lattice tree. If (A, i) has a covering
p̃ : (B̃, j̃) −→ (A, i) with infinite fibers and finite volume, then (A, i) has an infinite
sequence of coverings:

(B0, j0)
p0−→ (B1, j1)

p1−→ (B2, j2)
p2−→ . . . −→ (A, i)

with infinite fibers, and there exists a0 ∈ V A, bl ∈ V Bl with p0(bl) = a0 for l = 1, 2, . . .
such that

V olbl
(Bl, jl) −→ V ola0(A, i) < ∞, as l −→ ∞.

Hence we obtain an infinite ascending chain of closed subgroups of Aut(X):

G(B0,j0) ≤ G(B1,j1) ≤ G(B2,j2) ≤ . . . ≤ G(A,i),

(with notation as in (1.5)), and non-uniform G(A,i)-lattices Γl with Γl ≤ G(Bl,jl),
l = 0, 1, 2 . . . .

Proof. Fix a terminal vertex a0 ∈ V A, and let (e1, e2, . . . ) be the unique path from a0

to the end of (A, i), a base-ray for (A, i), denoted (A′, i). Corollary (3.8) shows that a
covering p̃ : (B̃, j̃) −→ (A, i) with infinite fibers and finite volume induces a ‘decoration’
(B, j) of a covering p′ : (B′, j′) −→ (A′, i) with infinite fibers and finite volume of the
base-ray (A′, i).

Let (B̃′, j̃′) be the canonical reduction of (B′, j′) as in Theorem (2.8), and set (B′
0, j

′) =
(B̃′, j̃′). Let (b′0, b

′
1, . . . ) denote the vertex sequence of the base-ray of (B′

0, j
′
0). Suppose

that (B′
0, j

′
0) has branches B′

k, B′
k+n0

, B′
k+n1

. . . , as defined in Section 2, (2), (3), (4), at
vertices b′k, b′k+n0

, b′k+n1
. . . along the base-ray of (B′

0, j
′
0):

(B′
0, j

′
0) =

We define the covering p′0 : (B′
0, j

′
0) −→ (B′

1, j
′
1) by ‘collapsing’ the branch B′

k onto the
base-ray:
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1

1

1

qk  1...q1
qk+n   - 10

b'k+n  0

... ... qk+n   - 11

b'0 b'1 b'k b'k+n   1

B'k+n   0 B'k+n   1

...
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(B′
1, j

′
1) =

We define an infinite sequence of coverings p′l−1 : (B′
l−1, j

′
l−1) −→ (B′

l, j
′
l), for l =

2, 3, . . . by collapsing branches B′
k+nl−2

onto the base-ray. Since (B′
l−1, j

′
l−1) has infinite

fibers, (B′
l, j

′
l) has infinite fibers, for each l = 1, 2, . . . .

Moreover, it is clear that

V olb′0(B
′
l, j

′) −→ V ola0(A
′, i) < ∞, as l −→ ∞.

By ‘decorating’ the sequence of coverings p′l−1 : (B′
l−1, j

′
l−1) −→ (B′

l, j
′
l), for l = 2, 3, . . .

with finite subtrees, as in (3.2), we obtain a sequence of coverings

(B0, j0)
p0−→ (B1, j1)

p1−→ (B2, j2)
p2−→ . . . −→ (A, i)

with infinite fibers, and it follows easily that

V olb′0(Bl, jl) −→ V ola0(A, i) < ∞, as l −→ ∞.

The existence of the infinite ascending chain of closed subgroups of Aut(X)

G(B0,j0) ≤ G(B1,j1) ≤ G(B2,j2) ≤ . . . ≤ G(A,i)

follows from (1.6) (a).
Finally, each (Bl, jl) admits a finite faithful grouping, denoted Bl, l = 0, 1, 2, . . . which

gives rise to a non-uniform lattice

Γl = π1(Bl, bl) ≤ G(Bl,jl), l = 0, 1, 2, . . . ,

for bl ∈ V Bl, l = 0, 1, 2, . . . . �



1

Bk+n   

1

Bk

11

1

1qk  -1 1...q1
qk+n   - 10

bk+n   0

... ... qk+n   - 11

b0 b1 bk
bk+n   1

0 Bk+n   1

...
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(4.2) Question. Let (A, i) be a parabolic lattice ray with unbounded index, let
p′ : (B′, j′) −→ (A, i) be a covering with infinite fibers and finite volume, and let (B, j)
be the canonical reduction of (B′, j′) as in Theorem (2.8):

(B, j) =

For l = 1, 2, . . . let pl−1 : (Bl−1, jl−1) −→ (Bl, jl) be the sequence of coverings obtained in
Theorem (4.1), with (B0, j0) = (B, j), and let G(Bl−1,jl−1) be the corresponding sequence

of closed subgroups of Aut(X), for X = (̃A, i). Is it true that

G(Bl,jl) = G(B(l−1),jl−1) � Aut(Tk+nl−2)

where Tk+nl−2 is a lifting to X of the branch Bk+nl−2 at the vertex bk+nl−2 (with n−1 =
0)?
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