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Abstract. A uniform tree is a tree that covers a finite connected graph. Let X be any

locally finite tree. Then G = Aut(X) is a locally compact group. We show that if X is

uniform, and if the restriction of G to the unique minimal G-invariant subtree X0 ⊆ X is

not discrete then G contains non-uniform lattices; that is, discrete subgroups Γ for which

Γ\G is not compact, yet carries a finite G-invariant measure. This proves a conjecture of

Bass and Lubotzky for the existence of non-uniform lattices on uniform trees.

0. Introduction

Let X be a locally finite tree and let G = Aut(X). Then G is naturally a locally
compact group ([3], [4]). For a discrete subgroup Γ ≤ G, the vertex stabilizers Γx,
x ∈ V X, are finite groups [3]. Let V (Γ\X) be the vertex set of the quotient graph Γ\X.
As in [3] and [4] we call Γ an X-lattice, or a tree lattice if

V ol(Γ\\X) =
∑

x∈V (Γ\X)

1
|Γx|

is finite, and a uniform X-lattice if Γ\X is a finite graph, non-uniform otherwise.
Following [3] we call X uniform if X is the universal cover of a finite connected graph.

We call X rigid if G = Aut(X) is discrete, and X is minimal if G acts minimally on X,
that is, there is no proper G-invariant subtree [4]. If X is uniform then there is always a
unique minimal G-invariant subtree X0 ⊆ X ([4], (5.7), (5.11), (9.7)). We call X virtually
rigid if X0 is rigid.

The following results of Bass and Tits [5] and Bass and Lubotzky [4] indicate that
uniform trees with discrete groups of automorphisms cannot give rise to non-uniform
lattices.

(0.1) Proposition ([5], (5.5)). Let X be a locally finite tree. If X is uniform and rigid
then all X-lattices are uniform.
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(0.2) Proposition ([4], (3.7)). Let X be a locally finite tree. If X is uniform and
virtually rigid then all X-lattices are uniform.

In analogy with Borel’s classical theorem establishing the co-existence of uniform
and non-uniform lattices in connected non-compact semisimple Lie groups, Bass and
Lubotzky conjectured that under some natural assumptions G = Aut(X) contains both
uniform and non-uniform lattices ([4], Ch.7,8). In particular, they conjectured that when
G contains uniform lattices, the only obstruction to the existence of non-uniform lattices
is virtual rigidity of X ([4], Ch.7,8). Here we present a proof of this conjecture. We use
a theorem of Bass and Kulkarni [3] which states that G = Aut(X) contains a uniform
lattice if and only if X is uniform. Our main theorem is the following.

(0.3) Theorem. If X is uniform and not virtually rigid then G contains a non-uniform
X-lattice.

In [6], the author proved Theorem (0.3) for minimal actions assuming also the (nec-
essary) Bass-Tits criterion for non-discreteness of G ([5], (5.5)), which is equivalent to
non-rigidity of X. That is, in [6] the author proved:

(0.4) Theorem ([6]). Let X be a uniform tree, and let G = Aut(X). If G is not
discrete and acts minimally on X, then there is a non-uniform X-lattice Γ ≤ G.

Here we no longer assume that G acts minimally. Suppose that X is a uniform tree
and let X0 ⊆ X be the unique minimal G-invariant subtree of X, also a uniform tree.
Let G0 = Aut(X) |X0 . In ([8]) we showed that G0 = Aut(X0). If X is not virtually rigid,
that is X0 is not rigid, then by Theorem (0.4) G0 contains a non-uniform X0-lattice Γ0.
Thus our task is to show that Γ0 extends to a non-uniform X-lattice Γ ≤ G = Aut(X).
This is achieved by Theorems (3.1) and (3.4) in Section 3.

Theorems (0.3) and (0.4) together give a complete proof of the Bass-Lubotzky con-
jecture for the existence of non-uniform lattices on uniform trees ([4], Ch.7,8). Together
with [2], and with [9] and [10] where we address the Bass-Lubotzky existence question in
the case that X is not uniform, we have answered the Bass-Lubotzky conjectures in full.
We refer the reader to [7] for an overview of the Bass-Lubotzky conjectures and their
proofs.

1. Tree lattices, edge-indexed graphs, volumes and coverings

Let Γ be a group acting without inversions on a tree X. The fundamental theorem
of Bass and Serre ([1], [12]) states that Γ is encoded (up to isomorphism) in a ‘quotient
graph of groups’ A = Γ\\X ([1], [12]). Conversely a graph of groups A gives rise to a

group Γ = π1(A, a), a ∈ V A, acting on a tree X = (̃A, a) without inversions, and the
vertex stabilizers Γx, x ∈ V X, are (conjugate to) the vertex groups of A ([1], [12]).

Now assume that X is locally finite, and that Γ acts on X with quotient graph of
groups A = Γ\\X. Then A naturally gives rise to an ‘edge-indexed’ graph (A, i), defined
as follows. The graph A is the underlying graph of A with vertex set V A, edge set EA,
initial and terminal functions ∂0, ∂1 : EA �−→ V A which pick out the endpoints of an
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edge and with fixed point free involution − : EA �−→ EA which reverses the orientation.
The indexing i : EA �−→ Z>0 of (A, i) is defined to be the group theoretic index

i(e) = [A∂0e : αe(Ae)],

where
(Aa)a∈V A and (Ae = Ae)e∈EA

are the vertex and edge groups of A, and αe : Ae ↪→ A∂0e are the boundary monomor-
phisms of A. We write (A, i) = I(A) when i(e) = [A∂0e : αe(Ae)] for data

{Aa, Ae = Ae, αe : Ae ↪→ A∂0e}

from A. Conversely, an edge-indexed graph (A, i) is defined to be a graph A and an
assignment i : EA �−→ Z>0 of a positive integer to each oriented edge. Then (A, i)
determines a universal covering tree X = (̃A, i) up to isomorphism ([3], [4]), and every
edge-indexed graph arises from a tree action [4]. Here we assume i(e) is finite for each
e ∈ EA. Under this assumption the universal covering tree X = (̃A, i) is locally finite
([3], [4]).

Given an edge-indexed graph (A, i), a graph of groups A such that I(A) = (A, i), is
called a grouping of (A, i). We call A a finite grouping if the vertex groups Aa are finite
and a faithful grouping if A is a faithful graph of groups, that is if π1(A, a), a ∈ V A acts

faithfully on X = (̃A, a) [3]. If A is not faithful, then a faithful quotient of A always
exists ([1]).

(1.1) Lemma ([3], [4]). Let (A, i) be an edge-indexed graph and let A be a finite faithful
grouping of (A, i). Then for a ∈ V A, Γ = π1(A, a) is a discrete subgroup of G = Aut(X),
where X = (̃A, i). �

For an edge e in (A, i), define:

∆(e) =
i(e)
i(e)

.

If γ = (e1, . . . , en) is a path, set ∆(γ) = ∆(e1) . . .∆(en). An indexed graph (A, i) is
then called unimodular if ∆(γ) = 1 for all closed paths γ in A. This is equivalent to
unimodularity of G = Aut(X) where X = (̃A, i) [3].

Assume now that (A, i) is unimodular. Pick a base point a0 ∈ V A, and define, for
a ∈ V A,

Na0(a) =
∆a

∆a0
(= ∆(γ) for any path γ from a0 to a) ∈ Q>0.

For e ∈ EA, set

Na0(e) =
Na0(∂0(e))

i(e)
.
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Following ([4], (2.6)), we say that (A, i) has bounded denominators if {Na0(e) | e ∈ EA}
has bounded denominators, that is, if for some integer D > 0, D ·Na0 takes only integer
values on edges. This condition is automatic if A is finite, and since

Na1 =
∆a0

∆a1
Na0 ,

this condition is independent of a0 ∈ V A. As in [3] the functions N : A −→ Q×
>0 as

above are called vertex orderings of (A, i). We call N integral if for all e ∈ EA, we have
N(∂0(e))/i(e) ∈ Z and hence N(a) ∈ Z for a ∈ V A.

(1.2) Theorem. ([3], (2.4)) The following conditions on an edge-indexed graph (A, i)
are equivalent.

(a) (A, i) admits a finite (faithful) grouping.
(b) (A, i) is unimodular and has bounded denominators.
(c) (A, i) admits an integral vertex ordering.

We define the volume of an indexed graph (A, i) at a basepoint a0 ∈ V A:

V ola0(A, i) =
∑

a∈V A

1

(
∆a

∆a0
)

=
∑

a∈V A

(
∆a0

∆a
).

Then
V ola1(A, i) =

∆a0

∆a1
V ola0(A, i),

as in ([4], Ch.2). We write V ol(A, i) < ∞ if V ola(A, i) < ∞ for some, and hence every
a ∈ V A.

If A is a finite grouping of (A, i), then we have ([4], (2.6.15)):

V ol(A) =
1

|Aa|
V ola(A, i),

which is automatically finite if V ol(A, i) < ∞.
We now describe a method for constructing X-lattices which follows naturally from the

fundamental theory of Bass and Serre, and was first suggested in [3]. We begin with an
edge-indexed graph (A, i). Then (A, i) determines its universal covering tree X = (̃A, i)
up to isomorphism ([4], Ch.2). If (A, i) is unimodular and has bounded denominators,
then by Theorem (1.2) we can find a finite (faithful) grouping A of (A, i). By Lemma
(1.1), Γ = π1(A, a0), a0 ∈ V A, is a discrete subgroup of G = Aut(X). If further (A, i)
has finite volume, then A ∼= Γ\\X has finite volume V ol(A) = V ol(Γ\\X). It follows
that Γ = π1(A, a0) is an X-lattice, uniform if A = Γ\X is a finite graph, non-uniform
otherwise.

A covering p : (B, j) −→ (A, i) of edge-indexed graphs ([4], (2.5)), is a graph morphism
p : B −→ A such that for all e ∈ EA, ∂0(e) = a, and b ∈ p−1(a), we have

i(e) =
∑

f∈p−1
(b)(e)

j(f),
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where p(b) : EB
0 (b) −→ EA

0 (a) is the local map on the star E0(v) of a vertex v, that is,
the set of edges with initial vertex v. If b ∈ V B, p(b) = a ∈ V A, then we can identify

˜(A, i, a) = X = ˜(B, j, b)

so that the diagram of natural projections

X
pB

↙
pA

↘
B

p−→ A

commutes. Let G(B,j) = {g ∈ G | g◦pB = pB} and G(A,i) = {g ∈ G | g◦pA = pA} be the
groups of deck transformations of (B, j) and (A, i) respectively. If p : (B, j) −→ (A, i)
is a covering of edge-indexed graphs, then we have G(B,j) ≤ G(A,i) ([4], Ch.2). If A is a
grouping of (A, i) and B is a grouping of (B, j) then by ([4], Ch.2) we have

π1(A, a) ≤ G(A,i) and π1(B, b) ≤ G(B,j).

2. Existence and Structure of Unique Minimal Subtree and its Quotient

Let X be a locally finite tree, and let G = Aut(X). We recall that X is minimal
if there is no proper G-invariant subtree. The following gives an existence theorem for
minimal invariant subtrees of X.

(2.1) Proposition ([4], (5.5), (5.11), (9.7)). Let X be a tree and let G = Aut(X).
If X is a uniform tree then there is a unique minimal G-invariant subtree XG ≤ X.
Moreover the (hyperbolic) length function l(G) �= 0, and if Γ is any X-lattice, l(Γ) �= 0
and XG = XΓ.

In this section we describe minimality of a group action H ≤ G = Aut(X) in terms of
its edge-indexed quotient graph, (A, i) = I(H\\X), as in [4] and [8].

Let (A, i) be any edge-indexed graph. We say that (A, i) is minimal if (A, i) is the
edge-indexed quotient of a minimal tree action. A vertex a ∈ V A is called a terminal
vertex of (A, i) if deg(A,i)(a) = 1, where

deg(A,i)(a) =
∑

e∈E0(a)

i(e),

and E0(a) = {e ∈ EA | ∂0e = a}. A terminal vertex in (A, i) is then a geometrically
terminal vertex in the graph A, that is, there is a unique edge e with ∂0e = a. The
following gives a geometric characterization of a minimal edge-indexed graph.
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(2.2) Proposition ([8]). Let Γ be a group acting without inversions on a tree X with
quotient graph of groups A = Γ\\X and edge-indexed quotient graph (A, i) = I(A).

(1) If (A, i) is minimal then (A, i) has no terminal vertices.
(2) If (A, i) is finite and has no terminal vertices then (A, i) is minimal.

Let (T, i) be an edge-indexed graph. As in ([4], [11]) say that (T, i) is a dominant
rooted edge-indexed tree if T is a tree and there is a vertex a ∈ V T such that for all
e ∈ ET

d(∂0e, a) > d(∂1e, a) =⇒ i(e) = 1.

We call such a vertex a ∈ V T a dominant root of (T, i) and we write (T, i, a) when (T, i)
is a dominant edge-indexed tree rooted at a ∈ V T .

(2.3) Theorem ([8]). Let (A, i) be a finite edge-indexed graph. Then
(1) (A, i) contains a unique minimal connected subgraph (A0, i0).
(2) (A, i) has the form

(A, i) = (A0, i0) 

∐

aj∈∆

(Tj , ij , aj),

where (Tj , ij , aj) are finite dominant-rooted edge-indexed trees with root vertices aj ∈ ∆,
j = 1 . . . n, ∆ ⊆ V A0 and (A0, i0) has no terminal vertices.

Note that for (A, i) as in Theorem (2.3) the covering tree X = (̃A, i) has the form

X = X0 

∐

xj,k∈p−1(aj), aj∈∆⊆V A0

( ˜Tj,k, ij,k, xj,k),

where j = 1 . . . n, k ≥ 1, X0 = ˜(A0, i0), p is the covering map and p(T̃j,k) = Tj ([8]).

3. Existence of Non-uniform Lattices

Let X be a locally finite tree. Let H ≤ G = Aut(X) and let GH = {g ∈ G | p ◦ g = p}
be the deck transformation group of H, where p : X −→ H\X is the quotient morphism.
Let (A, i) = I(H\\X). Then G(A,i) = GH . Let (A0, i0) be the unique minimal subgraph
of (A, i) as in Theorem (2.3). Let X0 ⊆ X be the unique minimal subtree of X. Then

by [8], X0 = ˜(A0, i0) and H acts minimally on X0. Our main theorem is the following.

(3.1) Theorem. Let X be a uniform tree and let H ≤ G = Aut(X). Let X0 ⊆ X
be the unique minimal G-invariant subtree of X. Let G0 = Aut(X) |X0= Aut(X0),
(A, i) = I(H\\X), and let (A0, i0) be the unique minimal subgraph of (A, i). Assume
that G0 is not discrete (X0 is not rigid). Then

(i) There is a non-uniform X0-lattice Γ0 ≤ G(A0,i0) ≤ G0.
(ii) Γ0 extends to a non-uniform X-lattice Γ ≤ G(A,i) ≤ G = Aut(X).

The author proved (i) of Theorem (3.1) in [6] where the assumptions on X and G were
restated as combinatorial conditions on (A, i). It remains to prove (ii). We shall give a
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constructive proof of (ii) by constructing the appropriate (infinite) edge-indexed graph
(B, j) and taking a finite faithful grouping B of (B, j) of finite volume so that π1(B, b) is
a lattice, for b ∈ V B. In order to do this we describe the combinatorial restatement of
the assumptions of Theorem (3.1) used in [6].
By [3] we have the following equivalent conditions:

(1) X is a uniform tree.
(2) There is a uniform X-lattice Λ ≤ GH = G(A,i).
(3) (A, i) is unimodular and finite.
(4) H is unimodular and H\X is finite, where H denotes the closure of H.

Similarly we have the following equivalent conditions:
(1)0 X0 ⊆ X is uniform.
(2)0 There is a uniform X0-lattice Λ0 ≤ G(A0,i0).
(3)0 (A0, i0) is unimodular and finite.
The assumption that X0 is not rigid (G0 is not discrete) is equivalent (by [5]) to

the assumption that (A0, i0) is ‘non-discretely ramified’. As in ([4], [5]) we say that an
edge-indexed graph (A, i) is non-discretely ramified if:

there exists e ∈ EA such that i(e) ≥ 3, or i(e) = 2 and e is not separating,

or i(e) = 2, and (A1(e), i) is either a ramified tree, or an unramified graph,

where
(A1(e), i) = {v ∈ V A | d(v, ∂1(e)) > d(v, ∂0(e))}.

If (A, i) is minimal this simplifies to:

there exists e ∈ EA such that i(e) ≥ 3, or i(e) = 2 and ∂0e is not a
geometrically terminal vertex.

Let (A, i) be a finite edge-indexed graph. We say that (A, i) is virtually discretely ramified
if the unique minimal subgraph (A0, i0) is discretely ramified. We can now describe our
combinatorial restatement of (i) of Theorem (3.1) proven in [6].

(3.2) Theorem ([6]). Let X0 be a uniform tree, let H0 ≤ G0 = Aut(X0) and let
(A0, i0) = I(H0\\X0). If H0 acts minimally on X0 and is not discrete (X0 is not rigid)
then there is a non-uniform X0-lattice Γ0 ≤ G(A0,i0) ≤ G0. Equivalently, assume that
(A0, i0) is finite, unimodular, minimal and non-discretely ramified. Then (A0, i0) has a
covering p0 : (B0, j0) −→ (A0, i0) such that (B0, j0) is infinite, unimodular, has finite
volume and bounded denominators.

If instead X0 is the unique minimal invariant subtree of a uniform tree X, we obtain:

(3.3) Corollary. Let X be a uniform tree and let H ≤ G = Aut(X). Let X0 ⊆ X be the
unique minimal G-invariant subtree of X, also a uniform tree. Let G0 = Aut(X) |X0=
Aut(X0), (A, i) = I(H\\X), and let (A0, i0) be the unique minimal subgraph of (A, i). If
X0 is not rigid then there is a non-uniform X0-lattice Γ0 ≤ G(A0,i0) ≤ G0. Equivalently,
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assume that (A0, i0) is finite, unimodular, minimal and non-discretely ramified. Then
(A0, i0) has a covering p0 : (B0, j0) −→ (A0, i0) such that (B0, j0) is infinite, unimodular,
has finite volume and bounded denominators.

It remains to show that Γ0 extends to a non-uniform X-lattice Γ ≤ G(A,i) ≤ G.
We achieve this with the following theorem. Our strategy is to start with a minimal
edge-indexed graph (B0, j0) that admits a non-uniform lattice, and extend this to a
non-minimal edge-indexed graph (B, j) that also admits a non-uniform lattice.

(3.4) Theorem. Let (A0, i0) be an edge-indexed graph that is finite, unimodular, min-
imal and non-discretely ramified. Let p0 : (B0, j0) −→ (A0, i0) be a covering such that
(B0, j0) is infinite, unimodular, has finite volume and bounded denominators. Let (A, i)
be obtained from (A0, i0) by attaching to vertices ak ∈ ∆, k = 1 . . . n, ∆ ⊆ V A0 finite
dominant-rooted edge-indexed trees (Tk, ik, ak), k = 1 . . . n. Let (B, j) be obtained from
(B0, j0) by attaching to each bt

k ∈ p−1
0 (ak) a copy of (Tk, ik, ak), k = 1, . . . , n, t > 0,

denoted ˜(Tk, ik, ak). Then there is a covering p : (B, j) −→ (A, i) such that (B, j) is
infinite, unimodular, has finite volume and bounded denominators.

Proof. The existence of a covering p0 : (B0, j0) −→ (A0, i0) is guaranteed by Theorem
(3.2), and p0 extends to p : (B, j) −→ (A, i) in such a way that

p |(B0,j0) = p0 and p( ˜Tk, ik, ak) = (Tk, ik, ak).

Moreover (B, j) is automatically infinite. Since we are attaching finite trees (Tk, ik, ak),
k = 1, . . . , n, to (A0, i0) at single vertices, (A, i) is unimodular, and since (B0, j0) is
unimodular, it follows that (B, j) is unimodular. Let

Vk = V olvk
(Tk, ik, ak), k = 1, . . . , n.

Let V = max{V1, V2, . . . , Vn}. Choose b0 ∈ V B0 and let V0 = V olb0(B0, j0). Then

V olb0(B, j) =
∑

v∈V B

1(
∆v

∆b0

)

=
∑

v∈p−1(v1)

V1(
∆v

∆b0

) +
∑

v∈p−1(v2)

V2(
∆v

∆b0

) + · · · +
∑

v∈p−1(vn)

Vn(
∆v

∆b0

)

≤
∑

v∈p−1(v1)

V(
∆v

∆b0

) +
∑

v∈p−1(v2)

V(
∆v

∆b0

) + · · · +
∑

v∈p−1(vn)

V(
∆v

∆b0

)

= V
∑

v∈V B0

1(
∆v

∆b0

)
= V V0

< ∞
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Hence (B, j) has finite volume. Let b0 ∈ V B0. Then

{ ∆x

∆b0
| x ∈ V B0} ⊂ Q

has bounded denominators, since (B0, j0) has bounded denominators. Consider

{ ∆y

∆b0
| y ∈ p−1

B (Tk)} = { ∆y

∆vk

∆vk

∆b0
| y ∈ p−1

B (Tk)}.

Then the denominator of
∆vk

∆b0
is bounded, since vk ∈ V B0, and the denominator of

∆y

∆vk
can increase only by a bounded amount for y ∈ p−1

B (Tk), since Tk is finite for each

k = 1, . . . , n. It follows that (B, j) has bounded denominators. �
(3.5) Corollary. In the setting of Theorem (3.4), there is a non-uniform lattice
Γ ≤ G(B,j) ≤ G(A,i).

Proof. Since (B, j) is unimodular and has bounded denominators, by Theorem (1.2)
(B, j) admits a finite faithful grouping B. Let b ∈ V B, p(b) = a ∈ V A, and set

Γ = π1(B, b) and X = ˜(A, i, a) = ˜(B, j, b).

Then Γ ≤ G(B,j) ≤ G(A,i) ≤ G = Aut(X). By Lemma (1.1), Γ is a discrete subgroup of
G. Since V ol(B, j) < ∞,

V ol(B) = V ol(Γ\\X) < ∞.

Thus Γ is an X-lattice, non-uniform since (B, j) is infinite. �
The subgroup Γ ≤ G is the non-uniform lattice, conjectured to exist in ([4], Ch.7,8) and
our proofs of Theorems (0.3) and (3.1) are complete.
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