NON-MINIMAL TREE ACTIONS AND THE EXISTENCE OF NON-UNIFORM TREE LATTICES

LISA CARBONE

ABSTRACT. A uniform tree is a tree that covers a finite connected graph. Let X be any locally finite tree. Then G = Aut(X) is a locally compact group. We show that if X is uniform, and if the restriction of G to the unique minimal G-invariant subtree $X_0 \subseteq X$ is not discrete then G contains non-uniform lattices; that is, discrete subgroups Γ for which $\Gamma \backslash G$ is not compact, yet carries a finite G-invariant measure. This proves a conjecture of Bass and Lubotzky for the existence of non-uniform lattices on uniform trees.

0. Introduction

Let X be a locally finite tree and let G = Aut(X). Then G is naturally a locally compact group ([3], [4]). For a discrete subgroup $\Gamma \leq G$, the vertex stabilizers Γ_x , $x \in VX$, are finite groups [3]. Let $V(\Gamma \setminus X)$ be the vertex set of the quotient graph $\Gamma \setminus X$. As in [3] and [4] we call Γ an X-lattice, or a tree lattice if

$$Vol(\Gamma \backslash \backslash X) = \sum_{x \in V(\Gamma \backslash X)} \frac{1}{|\Gamma_x|}$$

is finite, and a uniform X-lattice if $\Gamma \setminus X$ is a finite graph, non-uniform otherwise.

Following [3] we call X uniform if X is the universal cover of a finite connected graph. We call X rigid if G = Aut(X) is discrete, and X is minimal if G acts minimally on X, that is, there is no proper G-invariant subtree [4]. If X is uniform then there is always a unique minimal G-invariant subtree $X_0 \subseteq X$ ([4], (5.7), (5.11), (9.7)). We call X virtually rigid if X_0 is rigid.

The following results of Bass and Tits [5] and Bass and Lubotzky [4] indicate that uniform trees with discrete groups of automorphisms cannot give rise to non-uniform lattices.

(0.1) Proposition ([5], (5.5)). Let X be a locally finite tree. If X is uniform and rigid then all X-lattices are uniform.

The author was supported in part by NSF grant #DMS-9800604. 2000 Mathematics subject classification. Primary 20F32; secondary 22F50.

(0.2) Proposition ([4], (3.7)). Let X be a locally finite tree. If X is uniform and virtually rigid then all X-lattices are uniform.

In analogy with Borel's classical theorem establishing the co-existence of uniform and non-uniform lattices in connected non-compact semisimple Lie groups, Bass and Lubotzky conjectured that under some natural assumptions G = Aut(X) contains both uniform and non-uniform lattices ([4], Ch.7,8). In particular, they conjectured that when G contains uniform lattices, the only obstruction to the existence of non-uniform lattices is virtual rigidity of X ([4], Ch.7,8). Here we present a proof of this conjecture. We use a theorem of Bass and Kulkarni [3] which states that G = Aut(X) contains a uniform lattice if and only if X is uniform. Our main theorem is the following.

(0.3) **Theorem.** If X is uniform and not virtually rigid then G contains a non-uniform X-lattice.

In [6], the author proved Theorem (0.3) for minimal actions assuming also the (necessary) Bass-Tits criterion for non-discreteness of G ([5], (5.5)), which is equivalent to non-rigidity of X. That is, in [6] the author proved:

(0.4) Theorem ([6]). Let X be a uniform tree, and let G = Aut(X). If G is not discrete and acts minimally on X, then there is a non-uniform X-lattice $\Gamma \leq G$.

Here we no longer assume that G acts minimally. Suppose that X is a uniform tree and let $X_0 \subseteq X$ be the unique minimal G-invariant subtree of X, also a uniform tree. Let $G_0 = Aut(X)|_{X_0}$. In ([8]) we showed that $G_0 = Aut(X_0)$. If X is not virtually rigid, that is X_0 is not rigid, then by Theorem (0.4) G_0 contains a non-uniform X_0 -lattice Γ_0 . Thus our task is to show that Γ_0 extends to a non-uniform X-lattice $\Gamma \leq G = Aut(X)$. This is achieved by Theorems (3.1) and (3.4) in Section 3.

Theorems (0.3) and (0.4) together give a complete proof of the Bass-Lubotzky conjecture for the existence of non-uniform lattices on uniform trees ([4], Ch.7,8). Together with [2], and with [9] and [10] where we address the Bass-Lubotzky existence question in the case that X is not uniform, we have answered the Bass-Lubotzky conjectures in full. We refer the reader to [7] for an overview of the Bass-Lubotzky conjectures and their proofs.

1. Tree lattices, edge-indexed graphs, volumes and coverings

Let Γ be a group acting without inversions on a tree X. The fundamental theorem of Bass and Serre ([1], [12]) states that Γ is encoded (up to isomorphism) in a 'quotient graph of groups' $\mathbb{A} = \Gamma \setminus X$ ([1], [12]). Conversely a graph of groups \mathbb{A} gives rise to a group $\Gamma = \pi_1(\mathbb{A}, a)$, $a \in V\mathbb{A}$, acting on a tree $X = (\mathbb{A}, a)$ without inversions, and the vertex stabilizers Γ_x , $x \in VX$, are (conjugate to) the vertex groups of \mathbb{A} ([1], [12]).

Now assume that X is locally finite, and that Γ acts on X with quotient graph of groups $\mathbb{A} = \Gamma \backslash X$. Then \mathbb{A} naturally gives rise to an 'edge-indexed' graph (A, i), defined as follows. The graph A is the underlying graph of \mathbb{A} with vertex set VA, edge set EA, initial and terminal functions $\partial_0, \partial_1 : EA \longmapsto VA$ which pick out the endpoints of an

edge and with fixed point free involution $-: EA \longmapsto EA$ which reverses the orientation. The indexing $i: EA \longrightarrow \mathbb{Z}_{>0}$ of (A, i) is defined to be the group theoretic index

$$i(e) = [\mathcal{A}_{\partial_0 e} : \alpha_e(\mathcal{A}_e)],$$

where

$$(\mathcal{A}_a)_{a \in VA}$$
 and $(\mathcal{A}_e = \mathcal{A}_{\overline{e}})_{e \in EA}$

are the vertex and edge groups of \mathbb{A} , and $\alpha_e: \mathcal{A}_e \hookrightarrow \mathcal{A}_{\partial_0 e}$ are the boundary monomorphisms of \mathbb{A} . We write $(A, i) = I(\mathbb{A})$ when $i(e) = [\mathcal{A}_{\partial_0 e} : \alpha_e(\mathcal{A}_e)]$ for data

$$\{\mathcal{A}_a, \ \mathcal{A}_e = \mathcal{A}_{\overline{e}}, \ \alpha_e : \mathcal{A}_e \hookrightarrow \mathcal{A}_{\partial_0 e}\}$$

from A. Conversely, an edge-indexed graph (A,i) is defined to be a graph A and an assignment $i: EA \longrightarrow \mathbb{Z}_{>0}$ of a positive integer to each oriented edge. Then (A,i)determines a universal covering tree X = (A, i) up to isomorphism ([3], [4]), and every edge-indexed graph arises from a tree action [4]. Here we assume i(e) is finite for each $e \in EA$. Under this assumption the universal covering tree X = (A, i) is locally finite ([3], [4]).

Given an edge-indexed graph (A, i), a graph of groups A such that I(A) = (A, i), is called a grouping of (A, i). We call \mathbb{A} a finite grouping if the vertex groups \mathcal{A}_a are finite and a faithful grouping if A is a faithful graph of groups, that is if $\pi_1(A, a)$, $a \in VA$ acts faithfully on $X = (\mathbb{A}, a)$ [3]. If \mathbb{A} is not faithful, then a faithful quotient of \mathbb{A} always exists ([1]).

(1.1) Lemma ([3], [4]). Let (A, i) be an edge-indexed graph and let \mathbb{A} be a finite faithful grouping of (A, i). Then for $a \in VA$, $\Gamma = \pi_1(A, a)$ is a discrete subgroup of G = Aut(X), where X = (A, i). \square

For an edge e in (A, i), define:

$$\Delta(e) = \frac{i(\overline{e})}{i(e)}.$$

If $\gamma = (e_1, \ldots, e_n)$ is a path, set $\Delta(\gamma) = \Delta(e_1) \ldots \Delta(e_n)$. An indexed graph (A, i) is then called unimodular if $\Delta(\gamma) = 1$ for all closed paths γ in A. This is equivalent to unimodularity of G = Aut(X) where X = (A, i) [3].

Assume now that (A, i) is unimodular. Pick a base point $a_0 \in VA$, and define, for $a \in VA$,

$$N_{a_0}(a) = \frac{\Delta a}{\Delta a_0}$$
 (= $\Delta(\gamma)$ for any path γ from a_0 to a) $\in \mathbb{Q}_{>0}$.

For $e \in EA$, set

$$N_{a_0}(e) = \frac{N_{a_0}(\partial_0(e))}{i(e)}.$$

Following ([4], (2.6)), we say that (A, i) has bounded denominators if $\{N_{a_0}(e) \mid e \in EA\}$ has bounded denominators, that is, if for some integer D > 0, $D \cdot N_{a_0}$ takes only integer values on edges. This condition is automatic if A is finite, and since

$$N_{a_1} = \frac{\Delta a_0}{\Delta a_1} N_{a_0},$$

this condition is independent of $a_0 \in VA$. As in [3] the functions $N: A \longrightarrow \mathbb{Q}_{>0}^{\times}$ as above are called *vertex orderings* of (A, i). We call N integral if for all $e \in EA$, we have $N(\partial_0(e))/i(e) \in \mathbb{Z}$ and hence $N(a) \in \mathbb{Z}$ for $a \in VA$.

(1.2) **Theorem.** ([3], (2.4)) The following conditions on an edge-indexed graph (A, i) are equivalent.

- (a) (A, i) admits a finite (faithful) grouping.
- (b) (A, i) is unimodular and has bounded denominators.
- (c) (A, i) admits an integral vertex ordering.

We define the *volume* of an indexed graph (A, i) at a basepoint $a_0 \in VA$:

$$Vol_{a_0}(A, i) = \sum_{a \in VA} \frac{1}{\left(\frac{\Delta a}{\Delta a_0}\right)} = \sum_{a \in VA} \left(\frac{\Delta a_0}{\Delta a}\right).$$

Then

$$Vol_{a_1}(A,i) = \frac{\Delta a_0}{\Delta a_1} Vol_{a_0}(A,i),$$

as in ([4], Ch.2). We write $Vol(A, i) < \infty$ if $Vol_a(A, i) < \infty$ for some, and hence every $a \in VA$.

If A is a finite grouping of (A, i), then we have ([4], (2.6.15)):

$$Vol(\mathbb{A}) = \frac{1}{|\mathcal{A}_a|} Vol_a(A, i),$$

which is automatically finite if $Vol(A, i) < \infty$.

We now describe a method for constructing X-lattices which follows naturally from the fundamental theory of Bass and Serre, and was first suggested in [3]. We begin with an edge-indexed graph (A, i). Then (A, i) determines its universal covering tree X = (A, i) up to isomorphism ([4], Ch.2). If (A, i) is unimodular and has bounded denominators, then by Theorem (1.2) we can find a finite (faithful) grouping \mathbb{A} of (A, i). By Lemma (1.1), $\Gamma = \pi_1(\mathbb{A}, a_0)$, $a_0 \in VA$, is a discrete subgroup of G = Aut(X). If further (A, i) has finite volume, then $\mathbb{A} \cong \Gamma \setminus X$ has finite volume $Vol(\mathbb{A}) = Vol(\Gamma \setminus X)$. It follows that $\Gamma = \pi_1(\mathbb{A}, a_0)$ is an X-lattice, uniform if $A = \Gamma \setminus X$ is a finite graph, non-uniform otherwise.

A covering $p:(B,j) \longrightarrow (A,i)$ of edge-indexed graphs ([4], (2.5)), is a graph morphism $p:B \longrightarrow A$ such that for all $e \in EA$, $\partial_0(e)=a$, and $b \in p^{-1}(a)$, we have

$$i(e) = \sum_{\substack{f \in p_{(b)}^{-1}(e)\\4}} j(f),$$

where $p_{(b)}: E_0^B(b) \longrightarrow E_0^A(a)$ is the local map on the star $E_0(v)$ of a vertex v, that is, the set of edges with initial vertex v. If $b \in VB$, $p(b) = a \in VA$, then we can identify

$$(\widetilde{A,i,a}) = X = (\widetilde{B,j,b})$$

so that the diagram of natural projections

$$\begin{array}{ccc}
 & X & \\
 & \swarrow & & \searrow \\
 & B & \xrightarrow{p} & A
\end{array}$$

commutes. Let $G_{(B,j)} = \{g \in G \mid g \circ p_B = p_B\}$ and $G_{(A,i)} = \{g \in G \mid g \circ p_A = p_A\}$ be the groups of deck transformations of (B,j) and (A,i) respectively. If $p:(B,j) \longrightarrow (A,i)$ is a covering of edge-indexed graphs, then we have $G_{(B,j)} \leq G_{(A,i)}$ ([4], Ch.2). If \mathbb{A} is a grouping of (A,i) and \mathbb{B} is a grouping of (B,j) then by ([4], Ch.2) we have

$$\pi_1(\mathbb{A}, a) \leq G_{(A,i)}$$
 and $\pi_1(\mathbb{B}, b) \leq G_{(B,i)}$.

2. Existence and Structure of Unique Minimal Subtree and its Quotient

Let X be a locally finite tree, and let G = Aut(X). We recall that X is minimal if there is no proper G-invariant subtree. The following gives an existence theorem for minimal invariant subtrees of X.

(2.1) Proposition ([4], (5.5), (5.11), (9.7)). Let X be a tree and let G = Aut(X). If X is a uniform tree then there is a unique minimal G-invariant subtree $X_G \leq X$. Moreover the (hyperbolic) length function $l(G) \neq 0$, and if Γ is any X-lattice, $l(\Gamma) \neq 0$ and $X_G = X_{\Gamma}$.

In this section we describe minimality of a group action $H \leq G = Aut(X)$ in terms of its edge-indexed quotient graph, $(A, i) = I(H \setminus X)$, as in [4] and [8].

Let (A, i) be any edge-indexed graph. We say that (A, i) is minimal if (A, i) is the edge-indexed quotient of a minimal tree action. A vertex $a \in VA$ is called a terminal vertex of (A, i) if $deg_{(A, i)}(a) = 1$, where

$$deg_{(A,i)}(a) = \sum_{e \in E_0(a)} i(e),$$

and $E_0(a) = \{e \in EA \mid \partial_0 e = a\}$. A terminal vertex in (A, i) is then a geometrically terminal vertex in the graph A, that is, there is a unique edge e with $\partial_0 e = a$. The following gives a geometric characterization of a minimal edge-indexed graph.

- (2.2) Proposition ([8]). Let Γ be a group acting without inversions on a tree X with quotient graph of groups $\mathbb{A} = \Gamma \backslash X$ and edge-indexed quotient graph $(A, i) = I(\mathbb{A})$.
 - (1) If (A, i) is minimal then (A, i) has no terminal vertices.
 - (2) If (A, i) is finite and has no terminal vertices then (A, i) is minimal.

Let (T, i) be an edge-indexed graph. As in ([4], [11]) say that (T, i) is a dominant rooted edge-indexed tree if T is a tree and there is a vertex $a \in VT$ such that for all $e \in ET$

$$d(\partial_0 e, a) > d(\partial_1 e, a) \implies i(e) = 1.$$

We call such a vertex $a \in VT$ a dominant root of (T, i) and we write (T, i, a) when (T, i) is a dominant edge-indexed tree rooted at $a \in VT$.

- (2.3) **Theorem** ([8]). Let (A, i) be a finite edge-indexed graph. Then
 - (1) (A, i) contains a unique minimal connected subgraph (A_0, i_0) .
 - (2) (A, i) has the form

$$(A, i) = (A_0, i_0) \coprod \coprod_{a_j \in \Delta} (T_j, i_j, a_j),$$

where (T_j, i_j, a_j) are finite dominant-rooted edge-indexed trees with root vertices $a_j \in \Delta$, j = 1 ... n, $\Delta \subseteq VA_0$ and (A_0, i_0) has no terminal vertices.

Note that for (A, i) as in Theorem (2.3) the covering tree $X = \widetilde{(A, i)}$ has the form

$$X = X_0 \coprod_{x_{j,k} \in p^{-1}(a_j), \ a_j \in \Delta \subseteq VA_0} (\widetilde{T_{j,k}, i_{j,k}, x_{j,k}}),$$

where $j = 1 \dots n$, $k \ge 1$, $X_0 = (\widetilde{A_0, i_0})$, p is the covering map and $p(\widetilde{T_{j,k}}) = T_j$ ([8]).

3. Existence of Non-uniform Lattices

Let X be a locally finite tree. Let $H \leq G = Aut(X)$ and let $G_H = \{g \in G \mid p \circ g = p\}$ be the deck transformation group of H, where $p: X \longrightarrow H \setminus X$ is the quotient morphism. Let $(A, i) = I(H \setminus X)$. Then $G_{(A, i)} = G_H$. Let (A_0, i_0) be the unique minimal subgraph of (A, i) as in Theorem (2.3). Let $X_0 \subseteq X$ be the unique minimal subtree of X. Then by [8], $X_0 = \widehat{(A_0, i_0)}$ and H acts minimally on X_0 . Our main theorem is the following.

- **(3.1) Theorem.** Let X be a uniform tree and let $H \leq G = Aut(X)$. Let $X_0 \subseteq X$ be the unique minimal G-invariant subtree of X. Let $G_0 = Aut(X) \mid_{X_0} = Aut(X_0)$, $(A,i) = I(H \setminus X)$, and let (A_0,i_0) be the unique minimal subgraph of (A,i). Assume that G_0 is not discrete $(X_0$ is not rigid). Then
 - (i) There is a non-uniform X_0 -lattice $\Gamma_0 \leq G_{(A_0,i_0)} \leq G_0$.
 - (ii) Γ_0 extends to a non-uniform X-lattice $\Gamma \leq G_{(A,i)} \leq G = Aut(X)$.

The author proved (i) of Theorem (3.1) in [6] where the assumptions on X and G were restated as combinatorial conditions on (A, i). It remains to prove (ii). We shall give a

constructive proof of (ii) by constructing the appropriate (infinite) edge-indexed graph (B, j) and taking a finite faithful grouping \mathbb{B} of (B, j) of finite volume so that $\pi_1(\mathbb{B}, b)$ is a lattice, for $b \in VB$. In order to do this we describe the combinatorial restatement of the assumptions of Theorem (3.1) used in [6].

By [3] we have the following equivalent conditions:

- (1) X is a uniform tree.
- (2) There is a uniform X-lattice $\Lambda \leq G_H = G_{(A,i)}$.
- (3) (A, i) is unimodular and finite.
- (4) \overline{H} is unimodular and $H \setminus X$ is finite, where \overline{H} denotes the closure of H. Similarly we have the following equivalent conditions:
 - $(1)_0 X_0 \subseteq X$ is uniform.
 - (2)₀ There is a uniform X_0 -lattice $\Lambda_0 \leq G_{(A_0,i_0)}$.
 - $(3)_0$ (A_0, i_0) is unimodular and finite.

The assumption that X_0 is not rigid (G_0 is not discrete) is equivalent (by [5]) to the assumption that (A_0, i_0) is 'non-discretely ramified'. As in ([4], [5]) we say that an edge-indexed graph (A, i) is non-discretely ramified if:

there exists $e \in EA$ such that $i(e) \ge 3$, or i(e) = 2 and e is not separating, or i(e) = 2, and $(A_1(e), i)$ is either a ramified tree, or an unramified graph,

where

$$(A_1(e), i) = \{v \in VA \mid d(v, \partial_1(e)) > d(v, \partial_0(e))\}.$$

If (A, i) is minimal this simplifies to:

there exists $e \in EA$ such that $i(e) \ge 3$, or i(e) = 2 and $\partial_0 e$ is not a geometrically terminal vertex.

- Let (A, i) be a finite edge-indexed graph. We say that (A, i) is virtually discretely ramified if the unique minimal subgraph (A_0, i_0) is discretely ramified. We can now describe our combinatorial restatement of (i) of Theorem (3.1) proven in [6].
- (3.2) **Theorem** ([6]). Let X_0 be a uniform tree, let $H_0 \leq G_0 = Aut(X_0)$ and let $(A_0, i_0) = I(H_0 \setminus X_0)$. If H_0 acts minimally on X_0 and is not discrete $(X_0$ is not rigid) then there is a non-uniform X_0 -lattice $\Gamma_0 \leq G_{(A_0, i_0)} \leq G_0$. Equivalently, assume that (A_0, i_0) is finite, unimodular, minimal and non-discretely ramified. Then (A_0, i_0) has a covering $p_0 : (B_0, j_0) \longrightarrow (A_0, i_0)$ such that (B_0, j_0) is infinite, unimodular, has finite volume and bounded denominators.

If instead X_0 is the unique minimal invariant subtree of a uniform tree X, we obtain:

(3.3) Corollary. Let X be a uniform tree and let $H \leq G = Aut(X)$. Let $X_0 \subseteq X$ be the unique minimal G-invariant subtree of X, also a uniform tree. Let $G_0 = Aut(X) \mid_{X_0} = Aut(X_0)$, $(A, i) = I(H \setminus X)$, and let (A_0, i_0) be the unique minimal subgraph of (A, i). If X_0 is not rigid then there is a non-uniform X_0 -lattice $\Gamma_0 \leq G_{(A_0, i_0)} \leq G_0$. Equivalently,

assume that (A_0, i_0) is finite, unimodular, minimal and non-discretely ramified. Then (A_0, i_0) has a covering $p_0 : (B_0, j_0) \longrightarrow (A_0, i_0)$ such that (B_0, j_0) is infinite, unimodular, has finite volume and bounded denominators.

It remains to show that Γ_0 extends to a non-uniform X-lattice $\Gamma \leq G_{(A,i)} \leq G$. We achieve this with the following theorem. Our strategy is to start with a minimal edge-indexed graph (B_0, j_0) that admits a non-uniform lattice, and extend this to a non-minimal edge-indexed graph (B, j) that also admits a non-uniform lattice.

(3.4) **Theorem.** Let (A_0, i_0) be an edge-indexed graph that is finite, unimodular, minimal and non-discretely ramified. Let $p_0: (B_0, j_0) \longrightarrow (A_0, i_0)$ be a covering such that (B_0, j_0) is infinite, unimodular, has finite volume and bounded denominators. Let (A, i) be obtained from (A_0, i_0) by attaching to vertices $a_k \in \Delta$, k = 1 ... n, $\Delta \subseteq VA_0$ finite dominant-rooted edge-indexed trees (T_k, i_k, a_k) , k = 1 ... n. Let (B, j) be obtained from (B_0, j_0) by attaching to each $b_k^t \in p_0^{-1}(a_k)$ a copy of (T_k, i_k, a_k) , k = 1, ..., n, t > 0, denoted (T_k, i_k, a_k) . Then there is a covering $p: (B, j) \longrightarrow (A, i)$ such that (B, j) is infinite, unimodular, has finite volume and bounded denominators.

Proof. The existence of a covering $p_0:(B_0,j_0)\longrightarrow (A_0,i_0)$ is guaranteed by Theorem (3.2), and p_0 extends to $p:(B,j)\longrightarrow (A,i)$ in such a way that

$$p|_{(B_0,j_0)} = p_0$$
 and $p(T_k, i_k, a_k) = (T_k, i_k, a_k).$

Moreover (B, j) is automatically infinite. Since we are attaching finite trees (T_k, i_k, a_k) , $k = 1, \ldots, n$, to (A_0, i_0) at single vertices, (A, i) is unimodular, and since (B_0, j_0) is unimodular, it follows that (B, j) is unimodular. Let

$$V_k = Vol_{v_k}(T_k, i_k, a_k), \qquad k = 1, \dots, n.$$

Let $V = max\{V_1, V_2, \dots, V_n\}$. Choose $b_0 \in VB_0$ and let $V_0 = Vol_{b_0}(B_0, j_0)$. Then

$$Vol_{b_0}(B, j) = \sum_{v \in VB} \frac{1}{\left(\frac{\Delta v}{\Delta b_0}\right)}$$

$$= \sum_{v \in p^{-1}(v_1)} \frac{V_1}{\left(\frac{\Delta v}{\Delta b_0}\right)} + \sum_{v \in p^{-1}(v_2)} \frac{V_2}{\left(\frac{\Delta v}{\Delta b_0}\right)} + \dots + \sum_{v \in p^{-1}(v_n)} \frac{V_n}{\left(\frac{\Delta v}{\Delta b_0}\right)}$$

$$\leq \sum_{v \in p^{-1}(v_1)} \frac{V}{\left(\frac{\Delta v}{\Delta b_0}\right)} + \sum_{v \in p^{-1}(v_2)} \frac{V}{\left(\frac{\Delta v}{\Delta b_0}\right)} + \dots + \sum_{v \in p^{-1}(v_n)} \frac{V}{\left(\frac{\Delta v}{\Delta b_0}\right)}$$

$$= V \sum_{v \in VB_0} \frac{1}{\left(\frac{\Delta v}{\Delta b_0}\right)}$$

$$= VV_0$$

$$< \infty$$

Hence (B, j) has finite volume. Let $b_0 \in VB_0$. Then

$$\left\{ \frac{\Delta x}{\Delta b_0} \mid x \in VB_0 \right\} \subset \mathbb{Q}$$

has bounded denominators, since (B_0, j_0) has bounded denominators. Consider

$$\{\frac{\Delta y}{\Delta b_0} \mid y \in p_B^{-1}(T_k)\} = \{\frac{\Delta y}{\Delta v_k} \frac{\Delta v_k}{\Delta b_0} \mid y \in p_B^{-1}(T_k)\}.$$

Then the denominator of $\frac{\Delta v_k}{\Delta b_0}$ is bounded, since $v_k \in VB_0$, and the denominator of $\frac{\Delta y}{\Delta v_k}$ can increase only by a bounded amount for $y \in p_B^{-1}(T_k)$, since T_k is finite for each $k = 1, \ldots, n$. It follows that (B, j) has bounded denominators. \square

(3.5) Corollary. In the setting of Theorem (3.4), there is a non-uniform lattice $\Gamma \leq G_{(B,j)} \leq G_{(A,i)}$.

Proof. Since (B, j) is unimodular and has bounded denominators, by Theorem (1.2) (B, j) admits a finite faithful grouping \mathbb{B} . Let $b \in VB$, $p(b) = a \in VA$, and set

$$\Gamma = \pi_1(\mathbb{B}, b)$$
 and $X = (\widetilde{A, i, a}) = (\widetilde{B, j, b}).$

Then $\Gamma \leq G_{(B,j)} \leq G_{(A,i)} \leq G = Aut(X)$. By Lemma (1.1), Γ is a discrete subgroup of G. Since $Vol(B,j) < \infty$,

$$Vol(\mathbb{B}) = Vol(\Gamma \backslash \backslash X) < \infty.$$

Thus Γ is an X-lattice, non-uniform since (B,j) is infinite. \square

The subgroup $\Gamma \leq G$ is the non-uniform lattice, conjectured to exist in ([4], Ch.7,8) and our proofs of Theorems (0.3) and (3.1) are complete.

References

- [1] Bass, H, Covering Theory for Graphs of Groups, Journal of Pure and Applied Algebra (1993), 3-47.
- [2] Bass, H, Carbone, L, and Rosenberg, G, *The Existence Theorem for Tree Lattices*, Appendix [BCR] in '*Tree Lattices*' by Hyman Bass and Alex Lubotzky (2000), Progress in Mathematics 176, Birkhauser, Boston, 167-184.
- [3] Bass H and Kulkarni R, Uniform Tree Lattices, Journal of the Amer Math Society 3 (4) (1990).
- [4] Bass H and Lubotzky A, Tree Lattices, Progress in Mathematics 176, Birkhauser, Boston (2000).
- [5] Bass H and Tits J, A Discreteness Criterion for Certain Tree Automorphism Groups, Appendix [BT], 'Tree Lattices' by Hyman Bass and Alex Lubotzky (2000), Progress in Mathematics 176, Birkhauser, Boston.
- [6] Carbone, L, Non-uniform Lattices on Uniform Trees, Memoirs of the AMS, vol. 152, no. 724, 127 pages (2001).
- [7] Carbone, L, *The Tree Lattice Existence Theorems*, Comptes Rendus de l'Academie des Sciences. Serie I, Mathematique, 335 (2002), 223-228.
- [8] Carbone, L and Ciobanu, L, Characterization of Non-minimal Tree Actions, Submitted, Feb (2004).
- [9] Carbone, L and Clark, D, *Lattices on Parabolic Trees*, Communications in Algebra, Vol. 30, Issue 4 (2002), 1853-1886.
- [10] Carbone, L and Rosenberg, G, Lattices on Non-uniform Trees, Geometriae Dedicata 98 (2003), 161-188.
- [11] Rosenberg, G, Towers and Covolumes of Tree Lattices, PhD. Thesis, Columbia University (2001).
- [12] Serre, J.P, Trees (Translated from the French by John Stilwell) (1980), Springer-Verlag, Berlin Heidelberg.

Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd Piscataway, NJ 08854-8019, USA carbonel@math.rutgers.edu