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Abstract. Let X be a locally finite tree, and let G = Aut(X). Then G is a locally compact group.

We show that if X has more than one end, and if G contains a discrete subgroup Γ such that the

quotient graph of groups Γ\\X is infinite but has finite covolume, then G contains a non-uniform

lattice, that is, a discrete subgroup Λ such that Λ\G is not compact, yet has a finite G-invariant

measure.

0. Notation, preliminaries and results

Let X be a locally finite tree, and G = Aut(X). Then G is naturally a locally compact group
with compact open vertex stabilizers Gx, x ∈ V X ([BL], (3.1)). A subgroup Γ ≤ G is discrete
if and only if Γx is a finite group for some (hence for every) x ∈ V X.

Let µ be a (left) Haar measure on G. By a G-lattice we mean a discrete subgroup Γ ≤ G =
Aut(X) such that Γ\G has finite measure µ(Γ\G). We call Γ a uniform G-lattice if Γ\G is
compact, and a non-uniform G-lattice if Γ\G is not compact yet has finite invariant measure.
Let H ≤ G be a closed subgroup. We may also refer to H-lattices, that is, discrete subgroups
Γ ≤ H such that Γ\H has finite measure.

A discrete subgroup Γ ≤ G is called an X-lattice if

V ol(Γ\\X) :=
∑

x∈V (Γ\X)

1
|Γx|

is finite, a uniform X-lattice if Γ\X is a finite graph, and a non-uniform lattice if Γ\X is infinite
but V ol(Γ\\X) is finite.

Bass and Kulkarni have shown ([BK]) that G = Aut(X) contains a uniform X-lattice if
and only if X is the universal covering of a finite connected graph, or equivalently, that G is
unimodular, and G\X is finite. In this case, we call X a uniform tree. In case G\X is infinite
we call X a non-uniform tree.

When G is unimodular, µ(Gx) is constant on G-orbits, so we can define ([BL], (1.5)):

µ(G\\X) :=
∑

x∈V (G\X)

1
µ(Gx)

.
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(0.1) Theorem ([BL], (1.6)). Let H ≤ G be a closed subgroup with compact open vertex
stabilizers. For a discrete subgroup Γ ≤ H, the following conditions are equivalent:

(a) Γ is an X-lattice, that is, V ol(Γ\\X) < ∞.
(b) Γ is an H-lattice (hence H is unimodular), and µ(H\\X) < ∞.

In this case:
V ol(Γ\\X) = µ(Γ\H) · µ(H\\X).

In [BCR] we proved the ‘Lattice existence theorem’, namely that G contains an X-lattice Γ if
and only if G is unimodular and µ(G\\X) < ∞. In particular, it is shown in [BCR] that if G is
unimodular, µ(G\\X) < ∞, and G\X is infinite, then G contains a (necessarily non-uniform)
X-lattice Γ. However, Γ turns out to be a uniform G-lattice. Here our main result is the
following:

(0.2) Theorem. Let X be a locally finite tree with more than one end, and let G = Aut(X).
The following conditions are equivalent:

(a) G contains a non-uniform X-lattice.
(b) G contains a non-uniform G-lattice and µ(G\\X) < ∞.

If X is uniform, then (a) =⇒ (b) is automatic (in light of Lemma (0.3) below), and the
question of the existence of a non-uniform (X- or G-) lattice is answered in [C1]. If X has
only one end, in [CC] we show that if G contains a non-uniform X-lattice, then G contains
a non-uniform G-lattice if and only if any path directed towards the end of the edge-indexed
quotient of X has unbounded index. We are thus reduced to proving Theorem (0.2) in the case
that X is not a uniform tree (we call X non-uniform in this case), and has more than one end.

Let Γ be a non-uniform X-lattice. Let H ≤ G be a closed subgroup with compact open
vertex stabilizers. Then the diagram of natural projections

X
pΓ

↙
pH

↘
Γ\X p−→ H\X

commutes. By Theorem (0.1), Γ is an H-lattice. To determine if Γ is uniform or non-uniform
in G, we use the following:

(0.3) Lemma ([BL], (1.5.8)). Let x ∈ V X. The following conditions are equivalent:
(a) Γ is a uniform H-lattice.
(b) Some fiber p−1(pH(x)) ∼= Γ\H/Hx is finite.
(c) Every fiber of p is finite.

It follows that if G\X is finite, then Γ is a uniform (respectively non-uniform) X-lattice
if and only if Γ is a uniform (respectively non-uniform) G-lattice. However in this work, we
assume that X is not uniform, that is, G\X is infinite. To construct a non-uniform G-lattice in
this case, our task is to construct a discrete group Γ with Γ\X infinite, V ol(Γ\\X) < ∞, and
some (hence every) fiber of the projection p infinite.
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We can now establish the implication (b) =⇒ (a) of Theorem (0.2). Let Γ be a non-
uniform G-lattice. From Theorem (0.1), Γ is an X-lattice. From Lemma (0.3) some fiber of
Γ\X p−→ G\X is infinite. We claim that Γ\X is infinite. If G\X is infinite, then Γ\X must be
infinite. Assume then that G\X is finite. Since some fiber of Γ\X p−→ G\X is infinite, Γ\X
must be infinite, and we are done.

In the case that G\X is infinite, the implication (a) =⇒ (b) of Theorem (0.2) will be deduced
from the following results about ‘edge-indexed graphs’(see Theorem (9.5)). Here we follow the
notations and terminology of Sections 1 and 2. Further, we say that an edge-indexed graph
(A, i) is parabolic, if X = (̃A, i) is a parabolic tree, that is, X has only one end.

(0.4) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume.
If (A, i) contains an arithmetic bridge β with n ≥ 2 edges, or if every ramified edge is sepa-
rating and (A, i) is not parabolic, then there is a covering p : (B, j) −→ (A, i) of edge-indexed
graphs with infinite fibers such that (B, j) is infinite, unimodular, has finite volume and bounded
denominators.

Theorem (0.4) is proven in section 7. Theorem (8.2) and Theorem (8.3) obtain the conclusion
of Theorem (0.4) in the case that there is a ramified non-separating edge. As a corollary of
Theorem (0.4) we have the following:

(0.5) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume.
If (A, i) contains an arithmetic bridge β with n ≥ 2 edges, or if every ramified edge is separating
and (A, i) is not parabolic, then there exists a (necessarily non-uniform) X-lattice Γ ≤ G(A,i),
which is a non-uniform G(A,i)-lattice.

We refer the reader to section 1 for the definition of the group G(A,i). (The terminology
‘G(A,i)-lattice’ is justified since G(A,i) is a closed subgroup of G ([BL], (3.3)). Concerning
existence of arithmetic bridges, we have the following:

(0.6) Theorem. Let (A, i) be a unimodular edge-indexed graph. Let e ∈ EA be an edge with
∆(e) = c/d, and p a prime number such that p|d. If e is not separating, then (A, i) contains an
arithmetic bridge β of n ≥ 2 edges with ramification factor p, such that e ∈ β.

(0.7) Corollary. Let X be a locally finite tree, G = Aut(X), µ a (left) Haar measure on G,
H ≤ G a unimodular closed subgroup acting without inversions, pH : X −→ A = H\X, and
(A, i) = I(H\\X). Assume that H = G(A,i) and that µ(H\\X) < ∞. If X has more than one
end, and H\X is infinite, then there exists a (necessarily non-uniform) X-lattice Γ ≤ H, which
is a non-uniform H-lattice.

When (A, i) is finite, Theorems (0.4), (0.5), (0.6) and (0.7) were proven in [C1] under some
additional assumptions, natural to the setting there. Corollary (0.7) is a generalization of
Corollary (0.9) in [BCR].

In section 1, we outline the basics of edge-indexed graphs and a method for constructing X-
lattices. In section 2, we introduce the notion of an arithmetic bridge in an edge-indexed graph.
In sections 3-6, we give some constructions with edge-indexed graphs containing arithmetic
bridges. The material in sections 2-6 is taken from [C1] and adapted to infinite edge-indexed
graphs, but is included here for reference.
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In section 7, we prove Theorem (0.5) in the case that (A, i) contains an arithmetic bridge β
with n ≥ 2 edges, and in section 8, we prove Theorem (0.5) in the case that (A, i) is has more
than one end, considering separately the cases where every ramified edge is separating or else
there is a ramified non-separating edge. In section 9, we prove Theorem (0.6), the existence
theorem for arithmetic bridges and deduce Theorem (0.2) and Corollary (0.7). In section 10 we
exhibit an infinite tower of coverings with infinite fibers and finite volume over an edge-indexed
graph that admits an X-lattice and contains an arithmetic bridge with n ≥ 2 edges.

1. Edge-indexed graphs and constructing X-lattices

An edge-indexed graph (A, i) consists of an underlying graph A , and an assignment of a
positive integer i(e) > 0 to each oriented edge e ∈ EA. Our underlying graph A will always be
assumed to be locally finite. We assume that all indices i(e) are finite. If i(e) > 1, we say that
e is a ramified edge. Otherwise, we say that e is unramified.

Let (A, i) be an edge-indexed graph. For e ∈ EA, we put

∆(e) =
i(e)
i(e)

.

For an edge path γ = (e1, . . . , en) in A, we put ∆(γ) = ∆(e1) . . .∆(en).
We say that (A, i) is unimodular if ∆(γ) = 1 for all closed paths γ in A.
Now assume that (A, i) is unimodular. Pick a base point a0 ∈ V A, and define, for a ∈ V A,

Na0(a) =
∆a

∆a0
(= ∆(γ) for any path γ from a0 to a) ∈ Q>0.

For e ∈ EA, put

Na0(e) =
Na0(∂0(e))

i(e)
.

Following ([BL], (2.6)), we say that (A, i) has bounded denominators if

{Na0(e) | e ∈ EA}

has bounded denominators, that is, if for some integer D > 0, D ·Na0 takes only integer values
on edges. Since

Na1 =
∆a0

∆a1
Na0 ,

this condition is independent of a0 ∈ V A.
Following ([BL], (2.6)), we define the volume of an edge-indexed graph (A, i) at a base point

a0 ∈ V A:

V ola0(A, i) :=
∑

a∈V A

1
Na0(a)

=
∑

a∈V A

(
∆a0

∆a
).
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We have ([BL], Ch. 2)

V ola1(A, i) =
∆a1

∆a0
V ola0(A, i),

so the condition

V ol(A, i) < ∞,

defined by V ola0(A, i) < ∞, is independent of the choice of a0.

Moreover, (A, i, a0) admits a covering tree X = ˜(A, i, a0) with a projection

p(A,i) : X −→ A

([BL], (2.5)). We put G = Aut(X) and G(A,i) = {g ∈ G | p(A,i) ◦ g = p(A,i)}. Then G(A,i) is a
closed subgroup of G with compact open vertex stabilizers ([BL], (3.3)).

We explain the notion of a covering of edge-indexed graphs ([BL], (2.5)),

p : (B, j) −→ (A, i).

Here p : B −→ A is a graph morphism such that for all e ∈ EA, ∂0(e) = a, and b ∈ p−1(a), we
have

i(e) =
∑

f∈p−1
(b)(e)

j(f),

where p(b) : EB
0 (b) −→ EA

0 (a) is the local map on stars EB
0 (b) and EA

0 (a) of vertices b ∈ V B
and a ∈ V A (cf. [BL], (2.5)). If b ∈ V B, p(b) = a ∈ V A, then we can identify

˜(A, i, a) = X = ˜(B, j, b)

so that the diagram of natural projections

X
pB

↙
pA

↘
B

p−→ A

commutes. Hence G(B,j) ≤ G(A,i).
Let A = (A,A) be a graph of groups, with underlying graph A, vertex groups (Aa)a∈V A, edge

groups (Ae = Ae)e∈EA and monomorphisms αe:Ae ↪→ A∂0e. A graph of groups A naturally
gives rise to an edge-indexed graph I(A) = (A, i) whose indices are the indices of the edge-
groups as subgroups of the adjacent vertex groups: that is, i(e) = [A∂0e : αeAe], which we
assume to be finite, for all e ∈ EA.

Given an edge-indexed graph (A, i), a graph of groups A such that I(A) = (A, i), is called a
grouping of (A, i). We call A a finite grouping if the vertex groups Aa are finite and a faithful

grouping if A is a faithful graph of groups, that is if π1(A, a) acts faithfully on X = (̃A, a).
We can now describe a method for constructing X-lattices. We begin with an edge-indexed

graph (A, i) which determines X = ˜(A, i, a0) up to isomorphism. We have the following:
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(1.7) Theorem ([BK], (2.4)). Let (A, i) be an edge-indexed graph. Then (A, i) admits a finite
faithful grouping A = (A,A), if and only if (A, i) is unimodular, and has bounded denominators.

Assume that (A, i) is unimodular and has bounded denominators (which is automatic if A
if finite). By Theorem (1.7), we can find a finite (faithful) grouping A of (A, i) and a group
Γ = π1(A, a0) acting (faithfully) on X. Then we have

(i) Γ is discrete, since A is a graph of finite groups.
(ii) Γ is an X-lattice if and only if

V ol(Γ\\X) = V ol(A)(:=
∑

a∈V A

1
|Aa|

=
1

|Aa|
V ola(A, i)) < ∞.

(iii) Γ is a uniform X-lattice if and only if A is finite.
(iv) Γ is a non-uniform X-lattice if and only if A is infinite.
(v) Γ ≤ G(A,i).

We will say that a subgroup H ≤ G = Aut(X) is saturated if H = G(A,i) where (A, i) =
I(H\\X).

2. Geometric and arithmetic bridges in
indexed graphs

In this section, following [C1], we recall the definition of an arithmetic bridge in an edge-
indexed graph.

(2.1) Definition ((p,q)-geometric bridge). Let p, q ∈ Z>0 ∪ {∞}. Let A be a connected
locally finite graph (finite or infinite). We say that β ⊂ EA is a (p,q)-geometric bridge for
A if:

(i) β = ∅, β is oriented, β ∩ β = ∅,
(ii) A\(β ∪ β) has p + q connected components, A1, A2, . . . Ap, B1, B2, . . . Bq,
(iii) for every e ∈ β we have ∂0e ∈ Sβ = A1 ∪A2 ∪ · · · ∪Ap, the source of β and ∂1e ∈ Tβ =

B1 ∪ B2 ∪ · · · ∪ Bq, the target of β,
(iv) the source Sβ of β does not contain any target vertex, and the target Tβ of β does not

contain any source vertex; that is, for every v ∈ A1 ∪ A2 ∪ · · · ∪ Ap, v = ∂1e for any
e ∈ β, for every v ∈ B1 ∪ B2 ∪ · · · ∪ Bq, v = ∂0e for any e ∈ β:

A (1, 1)-geometric bridge β will be called a geometric bridge.

(2.2) Definition ((p,q)-arithmetic bridge). A (p, q)-geometric bridge β for A is called a
(p,q)-arithmetic bridge for (A, i) if there exists a positive integer d > 1 such that d | i(e)
for every e ∈ β, say i(e) = di0(e).

We call d the ramification factor of β. A (1, 1)-arithmetic bridge will be called an arithmetic
bridge: Our objective is to prove the following:
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(2.3) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume. If
(A, i) contains an arithmetic bridge β with n ≥ 2 edges, then there is a covering p : (B, j) −→
(A, i) of edge-indexed graphs with infinite fibers such that (B, j) is infinite, unimodular, has
finite volume and bounded denominators.

We prove Theorem (2.3) in Section 7 after describing some constructions with edge-indexed
graphs in Sections 3-6.

3. Changing the ramification factor of an
arithmetic bridge

In this section, we show how one may modify a unimodular edge-indexed graph containing
an arithmetic bridge in such a way as to preserve unimodularity.

(3.1) Construction ([C1], (4.2.1)) (Changing the ramification factor of an arithmetic
bridge).

If (A, i) is an indexed graph with arithmetic bridge β of ramification factor d, then we
can make β an arithmetic bridge of ramification factor d′, for any positive integer d′ > 0, by

replacing di0(e) by d′i0(e) for each positively oriented edge e of β. We write (
d′

d
)β for the new

arithmetic bridge.

(3.2) Lemma ([C1], (4.2.2)) (Changing the ramification factor is unimodular). If
(A, i) is a unimodular edge-indexed graph with arithmetic bridge β, then the indexed graph (A, i′)

obtained from (A, i) by replacing β by (
d′

d
)β is also unimodular.

Proof. Let E+(β) be the set of positively oriented edges of β. For e ∈ EA we define a new
indexing i′(e) as follows:

i′(e) = i(e), if e /∈ E+(β),

d′i0(e) =
d′

d
i(e), if e ∈ E+(β).

For e ∈ EA, set ∆(e) =
i(e)
i(e)

, and ∆′(e) =
i′(e)
i′(e)

. Then for any e ∈ EA, we have:

∆′(e) = (
d

d′
) · ∆(e), e ∈ E+(β),

(
d′

d
) · ∆(e), e ∈ E+(β),

∆(e), e /∈ β.

Let γ be a (sufficiently long) closed path in A with initial (and hence terminal) vertex in
the connected component A0. Then γ crosses back and forth between A0 and A1, each time
traversing an edge of β, returning finally to A0.
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It follows that γ traverses β and β an equal number of times, say r times. Thus:

∆′
(A,i′)(γ) = (

d

d′
)r(

d′

d
)r∆(γ)

= ∆(A,i)(γ)

= 1, since (A, i) is unimodular.�

4. Gluing unimodular subgraphs along connected intersections

In this section, we use a technique from [C1] for ‘gluing’ together unimodular edge-indexed
graphs in such a way that unimodularity is preserved.

(4.1) Lemma ([C1], (4.3.1)) (Gluing unimodular subgraphs along connected inter-
section). Let (A, i), (A0, i), and (A1, i) be indexed graphs such that (A, i) = (A0, i) ∪ (A1, i),
and A0, A1 and A0 ∩ A1 are connected. If (A0, i) and (A1, i) are unimodular, then (A, i) is
unimodular.

Proof. Observe that (A0 ∩ A1, i) is unimodular since it is a subgraph of a unimodular edge-
indexed graph ((A0, i) or (A1, i)).

Let γ be a (sufficiently long) closed path in A = A0 ∪ A1 with initial (and hence terminal)
vertex a0 in A0 ∩ A1. Then γ crosses back and forth between A0 and A1, say n times, each
time passing through A0 ∩ A1, returning finally to a0 in A0 ∩ A1.

Suppose that the j-th time γ passes through A0∩A1, γ passes through a vertex aj ∈ A0∩A1

(there are n such vertices a1, . . . , an). For each j = 1, 2, . . . , n , let γj be a closed path initiating
at aj ∈ A0 ∩ A1, passing through aj−1 ∈ A0 ∩ A1, and remaining entirely in A0 ∩ A1. Since
(A0 ∩ A1, i) is unimodular, we have ∆(A0∩A1,i)(γj) = 1.

For t = 1, 2, and s = 0, 1, . . . , n, let γAt
asas+1

denote the sub-path of γ initiating at as ∈ A0∩A1,
passing through At and terminating at as+1 ∈ A0 ∩ A1. For t = 1, 2, and s = 0, 1, . . . , n, let
γj

asas+1
denote the subpath of (the closed path) γj initiating at as ∈ A0 ∩ A1 and terminating

at as+1 ∈ A0 ∩ A1.
Consider the closed path γ′ based at a0 ∈ A0 ∩ A1:

γ′ = γA1
a0a1

· γ1 · γA0
a1a2

· γ2 · γA1
a2a3

· γ3 . . . · γA1
an−1an

· γn · γA0
anq0

.

Then ∆(γ′) = ∆(γ) since γ′ is obtained from γ by inserting closed paths γj , j = 1, 2, . . . , n
between as and as+1, s = 0, 1, . . . , n (and we have ∆(A0∩A1,i)(γj) = 1, j = 1, 2, . . . , n).

Moreover, γ′ can be expressed as a product of paths γ′ = σ1σ2 . . . σl such that σj is contained
entirely in either A0 or A1; namely

σ1 = γA1
a0a1

· γ1
a1a0

σ2 = γ1
a0a1

· γA0
a1a2

· γ2
a2a1

· γ1
a1a0

σ3 = γ1
a0a1

· γ2
a1a2

· γA1
a2a3

· γ3
a3a2

· γ2
a2a1

· γ1
a1a0

...
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Then each σ2j is a closed path through A0 based at a0 ∈ A0 ∩ A1, each σ2j+1 is a closed
path through A1 based at a0 ∈ A0 ∩ A1, and therefore:

∆A(γ) = ∆A(γ′)

= ∆A1(σ1)∆A0(σ2) . . .∆A0(σl)
= 1,

since (A0, i) and (A1, i) are unimodular. �

5. Open fanning of arithmetic bridges

In this section, we use a technique from [C1] to modify a unimodular edge indexed graph
(A, i) with an arithmetic bridge β, in such a way that we preserve unimodularity, and obtain a
new arithmetic bridge with a different ramification factor.

(5.1) Construction ([C1], (4.4.1)) (Open fanning of arithmetic bridges I).

Suppose that (A, i) is an edge-indexed graph containing an arithmetic bridge β with ram-
ification factor d. The open fanning of β in (A, i) is the edge-indexed graph (B, j) obtained

by replacing β by d copies of
1
d
β; β1, . . . βd, such that each positively oriented edge e of βl in

(B, j) has index i0(e), for l = 1, . . . d.
We observe that p : (B, j) −→ (A, i) is a covering of indexed graphs. When β consists of a

single (ramified) edge, the open fanning of β in (A, i) coincides with the notion of ‘open fanning
of a separating edge’ in ([BL], (7.2)). In this case, the edge β with its ramification index m is

replaced by m copies of
1
m

β, each with index 1.

(5.2) Construction ([C1], (4.4.3)) (Open fanning of arithmetic bridges II).

We shall also consider the following modification of open fanning:
Suppose that (A, i) is an edge-indexed graph containing an arithmetic bridge β. Rather

than fanning open the arithmetic bridge β with its ramification factor d into d copies of
1
d
β,

we obtain an indexed graph (B, j) by replacing β with β+ =
1
d
β and β− =

d − 1
d

β. Thus each

edge e of β+ has index i0(e), and each edge e of β− has index (d − 1)i0(e). We observe that
p : (B, j) −→ (A, i) is a covering of indexed graphs.

The following lemma indicates that the process of open fanning preserves unimodularity:

(5.3) Lemma ([C1], (4.4.4)) (Open fanning is unimodular). Let (A, i) be a unimodular
edge-indexed graph containing an arithmetic bridge β. Then the open fanning (I and II) of β
in (A, i) is unimodular.

Proof. Let (A, i′) and (A, i′′) denote the indexed graphs obtained by changing the ramfication
factor of β from d to 1, and from d to d − 1 respectively. By Lemma (3.2) (Changing the
ramification factor is unimodular), (A, i′) and (A, i′′) are unimodular.
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The open fanning (I) of β in (A, i) (see (5.1)) is an indexed graph (B, j) obtained by ‘gluing’
d copies of (A, i′) together along the connected subgraph A0. Similarly, in open fanning (II)
(see (5.2)), we glue (A, i′) and (A, i′′) together along the connected subgraph A0. By Lemma
(4.1) (Gluing unimodular subgraphs along connected intersection), the result of open fanning
(I) (5.1) or open fanning (II) (5.2) is unimodular.�

6. Indexed topological coverings

In this section, we use a technique from ([C1], Section 4) for constructing coverings of edge-
indexed graphs by taking topological coverings of the underlying graph, and lifting the indexing
in such a way that the projection is index preserving. The resulting indexed topological covering
will automatically be unimodular, and an edge-indexed covering of the original indexed graph.

(6.1) Definition (Indexed topological coverings).

Let p : B −→ A be a graph morphism. If i : EA −→ Z is an indexing on A, we can lift it
to an indexing j = i ◦ p on B so that p : (B, j) −→ (A, i) is index preserving: i(p(f)) = j(f)
for each f ∈ B. If (A, i) is unimodular, then so also is (B, j). In fact, if γ = (e1, . . . , en) be a
closed path in (B, j), then

∆(B,j)(γ) = ∆(A,i)(p(γ)) since p is index preserving.

Since p(γ) is closed and (A, i) is unimodular, we have ∆(A,i)(p(γ)) = 1, and so ∆(B,j)(γ) = 1.
We call a graph morphism p : B −→ A a topological covering if the local map:

p(b) : E0(b) −→ E0(p(b))

is bijective, for every b ∈ V B.
If (A, i) and (B, j) are indexed graphs, and p : B −→ A is an index preserving topological

covering, then p : (B, j) −→ (A, i) is a covering of edge-indexed graphs.

7. A covering with infinite fibers for an edge-indexed graph
with an arithmetic bridge

We are now able to prove:

(7.1) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume.
If (A, i) contains an arithmetic bridge β with n ≥ 2 edges, then there exists a (necessarily
non-uniform) X-lattice Γ ≤ G(A,i), which is a non-uniform G(A,i)-lattice.

The terminology ‘G(A,i)-lattice’ is justified since G(A,i) is a closed subgroup of G ([BL], (3.3).
Theorem (7.1) follows immediately from the following:



i([ββββ]]]]    )=di0([ββββ]]]])

ββββ

(A,i) = (A0,i)

i([ββββ]]]]))))
_

(A1,i)

di0(e1) i( e1 )
_

di0(en) i( en )
_

e1

en
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(7.2) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume. If
(A, i) contains an arithmetic bridge β with n ≥ 2 edges, then there is a covering p : (B, j) −→
(A, i) of edge-indexed graphs with infinite fibers such that (B, j) is infinite, unimodular, has
finite volume and bounded denominators.

Proof of Theorem (7.2). The proof follows the proof of Theorem (4.1.6) in [C1], adapted to
infinite edge-indexed graphs. For convenience, we represent (A, i) schematically as follows:

(7.3) We assume that β has n ≥ 2 edges. In fact the number of edges of β may be infinite. We
choose two edges e1 and en of β, and we let [β] = β −{e1, en}. We have schematically denoted
the indexing of [β] as ‘i([β]) = di0([β])’; more precisely, i(e) = di0(e) for every e ∈ [β].

(7.4) We form a 3-fold topological covering p:A3 → A and lift the indexing iA to an indexing
(i ◦ p) on A3 such that p is index preserving. We also denote this indexing on A3 by i. Then



i( e1 )
_

i( en )
_

(A1R,i)

(A1T,i) (A0T,i)

(A1B,i) (A0B,i)

(A0R,i)
[[[[ββββ1111]]]]    

i(e1)=di0(e1)

i(en)=di0(en)

i( en )
_

i( e1 )
_

i( en )
_

i(en)

i( e1 )
_

i(e1)

(A3,i) =

i(en)=di0(en)

i(e1)=di0(e1)

a2a1 a5a4a3

b1 b2 b4 b5b3

e1T enT

enB

enR

e1R

e1B

i([[[[ββββ2222]]]]    ))))

i([[[[ββββ2222]]]]    ))))
_

[[[[ββββ2222]]]]    

[[[[ββββ3333]]]]    

i([[[[ββββ3333]]]]    ))))
i([[[[ββββ3333]]]]    ))))

_

i([[[[ββββ1111]]]]    ))))
_

i([[[[ββββ1111]]]]    ))))
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by (6.1), (A3, i) is unimodular and p: (A3, i) → (A, i) is a covering of edge-indexed graphs.

We have denoted the three copies of β, as β1, β2, β3 and the corresponding copies of A0 and A1

as A0R, AOT , AOB , A1T , A1L, A1B where the lower labels ‘T’, ‘B’, ‘R’, ‘L’; ‘top’, ‘bottom’,
‘right’, ‘left’, respectively, signify the position in the schematic diagram of (A3, i). The vertex
and edge labels are suggested by the notation. We observe that β1, β2, and β3 are each
arithmetic bridges for (A3, i).

Observe that the paths from a1 to a5 and b1 to b5, are both liftings of closed paths in (A, i),
and since p is index-preserving:

∆a5

∆a1
=

∆b5

∆b1
= 1

since (A, i) is unimodular.

(7.5) We form a new indexed graph (R(0)
0 , i) from (A3, i) as follows: we open fan β1 to ‘d−1

d β1’
and ‘ 1dβ1’ (that is, we apply ‘open fanning II’ (5.2)) to β1 which is an arithmetic bridge in



i( e1 )
_

i( en )
_

(d-1)i0(e1) i( en )
_

i(en)

i( e1 )
_

i(e1)(d-1)i0(en)

i( en )
_

i( e1 )
_

(R0
(0),i) =

i( e1 )
_

i( en )
_

i0(en)

i0(e1)

i(e1)=di0(e1)

i(en)=di0(en)

(A1R
(0),i)

(A1T(0),i) (A0T
(0),i)

(A1B
(0),i) (A0B

(0),i)

(A0R
(0),i)

a2a1 a5a4a3

b1 b2 b4 b5b3

e1TR
(0)

enT(0)

enR
(0)

e1R(0)

e1B
(0)

a0

b0

[1  ββββ1111L](0)

  d
_

e1TL
(0)

enBL
(0)

enBR
(0)

[d-1  ββββ1111R](0)

   d
__

i([[[[ββββ2222]]]]    ))))

i([[[[ββββ2222]]]]    ))))
_

[[[[ββββ2222]]]]    ((((0000))))

[[[[ββββ3333]]]]    ((((0000))))

i([[[[ββββ3333]]]]    ))))
i([[[[ββββ3333]]]]    ))))

_

i([[[[ββββ1111]]]]    ))))
_

(d-1)i0([[[[ββββ1111]]]]    ))))i([[[[ββββ1111]]]]    ))))
_

i0([[[[ββββ1111]]]]    ))))

(A1L
(0),i)
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(A3, i) from AOR to A3 − {β1 ∪ A1T }) :

By Lemma (5.3) (Open fanning is unimodular), (R(0)
0 , i) is unimodular. We observe that:

∆a5

∆a1
=

i(e1)
(d − 1)i0(e1)

· ∆(A1,i)a3

∆(A1,i)a2
· di0(en)

i(en)
· ∆(A0,i)a5

∆(A0,i)a4
=

d

d − 1

by unimodularity of (A, i). Similarly,

∆b5

∆b1
=

d

d − 1
.

Moreover, the projection p: (R(0)
0 , i) → (A, i) is a covering of edge-indexed graphs.

We observe that [β2] ∪ e
(0)
1R ∪ e

(0)
nR is an arithmetic bridge in (R(0)

0 , i) from

R
(0)
0 − {[β2] ∪ e

(0)
1R ∪ e

(0)
nR ∪ A

(0)
1R}

to A
(0)
1R. Next, we form a new indexed graph (R(0), i), from (R(0)

0 , i), by changing the ramification



i( e1 )
_

i( en )
_

(d-1)i0(e1) i( en )
_

i(en)

i( e1 )
_

i(e1)(d-1)i0(en)

i( en )
_

i( e1 )
_

(R(0),i) =

i( e1 )
_

i( en )
_

i0(en)

i0(e1)

i(e1)=i0(e1)

i(en)=i0(en)

a2a1 a5a4a3

b1 b2
b4 b5b3

a0

b0

(A1R
(0),i)

(A1T
(0),i) (A0T

(0),i)

(A1B
(0),i) (A0B

(0),i)

(A0R
(0),i)

e1TR
(0)

enT
(0)

enR(0)

e1R
(0)

e1B
(0)

[1  ββββ1111L](0)
  d_

e1TL(0)

enBL
(0)

enBR
(0)

[d-1  ββββ1111R](0)
      d
__

i0([[[[ββββ2222]]]]    ))))

i([[[[ββββ2222]]]]    ))))
_

[[[[ββββ3333]]]]    ((((0000))))

i([[[[ββββ3333]]]]    ))))
i([[[[ββββ3333]]]]    ))))

_

i([[[[ββββ1111]]]]    ))))
_

(d-1)i0([[[[ββββ1111]]]]    ))))i([[[[ββββ1111]]]]    ))))
_

i0([[[[ββββ1111]]]]    ))))

(A1L
(0),i)

[1/d  ββββ2222](0)
  

(d-1)i0(e1)

(d-1)i0(en)

i( e1 )
_

i( en )
_

i( en )
_

i(en)

i( e1 )
_

i(e1)

i( en )
_

i( e1 )
_

i0(e1)

i0(en)

i( en )
_

i( e1 )
_

i0(e1)

i0(en)

(R(k),i)=

(A1L
(k),i) (A1R

(k),i)=(A1L
(k+1),i)

(A1T
(k),i) (A0T

(k),i)

(A0B(k),i)(A1B
(k),i)

e1L
(k)

enL
(k)

enB
(k)

e1T(k) enT(k)

e1B
(k)

e1R
(k)=e1L

(k+1)

enR
(k)=enL

(k+1)

a4k+2a4k+1 a4k+5=a4(k+1)+1a4k+4a4k+3

b4k+1 b4k+2
b4k+4b4k+3 b4k+5=b4(k+1)+1

d4k+5=d4(k+1)+1

c4k+5=c4(k+1)+1c4k+1

d4k+1
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factor of the arithmetic bridge [β2] ∪ e
(0)
1R ∪ e

(0)
nR in (R(0)

0 , i) from d to 1 (using (3.1)):

and by Lemma (3.2) (Changing the ramification factor is unimodular), (R(0), i) is unimodular.
The notation [ 1dβ1L](0) denotes [β1] with its ramification factor changed from d to 1,

[
d−1

d β1R

](0)

denotes [β1] with its ramification-factor changed from d to d-1. The upper label (0) signifies
that [ 1dβ1L] and [d−1

d β1R] belong to R(0); the lower labels ‘L’ and ‘R’ denote ‘left’ and ‘right’
respectively.
(7.6) For k = 1, 2, 3, . . . let (R(k), i) be the following edge-indexed graph:
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where the lower labels ‘T’, ‘B’, ‘L’, ‘R’ on edges e
(k)
1 , e

(k)
n and graphs A

(k)
1 , A

(k)
0 indicate ‘top’,

‘bottom’, ‘left’ and ‘right’ respectively and signify the position within R(k).
For each k = 1, 2, 3, . . . the ‘rectangle’ (R(k), i) has as its ‘top’ a path from a4k+1 to a4k+5

which coincides with the path from a1 to a5 in (R(0), i), a path from b4k+1 to b4k+5 which
coincides with the path from b1 to b5 in (R(0), i), and paths from a4k+1 to b4k+1 and a4k+5 to
b4k+5 each of which coincide with the path from a5 to b5 in (R(0), i). Therefore,

∆a4k+5

∆a4k+1
=

∆b4k+5

∆b4k+1
=

d

d − 1
∆b4k+1

∆a4k+1
=

∆b4k+5

∆a4k+5
,

and it follows easily that (R(k), i) is unimodular.
(7.7) We construct an infinite indexed graph from (R(0), i) and (R(k), i), k = 1, 2, 3, . . . by
an infinite sequence of gluings: we identify the edges e

(0)
1R and e

(0)
nR and the subgraph A

(0)
1R of

(R(0), i) with e
(1)
1L and e

(1)
nL and A

(1)
1L of (R(1), i), respectively.

For k = 1, 2, 3, . . . we identify e
(k)
1R and e

(k)
nR and A

(k)
1R of (R(k), i) with e

(k+1)
1L , e

(k+1)
nL and

A
(k+1)
1L of (R(k+1), i), respectively.
We denote the resulting indexed graph by (R(∞), i). We refer the reader to fig 4.10.2 in [C1]

for a detailed schematic diagram. By (7.3), the indexed graph (R(0), i) is unimodular, and by
(7.4), (R(k), i) is unimodular, for k = 1, 2, 3, . . . . Moreover, we have glued (R(0), i) to (R(1), i)
and (R(k), i) to (R(k+1), i) respectively, for k = 1, 2, 3, . . . along connected subgraphs:

{e(k)
1R = e

(k+1)
1L } ∪ {A(k)

1R = A
(k+1)
1L } ∪ {e(k)

nR = e
(k+1)
nL }.

We apply Lemma (4.1) (Gluing unimodular subgraphs along connected intersection) to verify
that the indexed graph (R(∞), i) is unimodular.

We compute in (R(∞), i) for each s = 1, 2, 3, . . .

∆a4s+1

∆a1
= (

d

d − 1
)s =

∆b4s+1

∆b1
,

∆c4s+1

∆a1
= (

d

d − 1
)s i(e1)

i0(e1)
,

∆d4s+1

∆b1
= (

d

d − 1
)s i(en)

i0(en)
.

Since d > 1, it follows easily that (R(∞), i) has finite volume. We observe, however, that
(R(∞), i) does not have bounded denominators.�
(7.8) Lemma (Adjoining an edge). let (A, i) and (A0, i) be indexed graphs such that (A, i)
is obtained from (A0, i) by attaching an edge e to vertices a, b ∈ V A0. If (A0, i) is unimodular
and

∆A0b

∆A0a
=

i(e)
i(e)



i( e )
_

i(e)
(A,i)=

(A0,i)

a b
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then (A, i) is unimodular.

Proof. Obvious.�
The lemma extends easily to adjoining a set of edges satisfying the hypothesis of the lemma.
We fix the following notation: for k = 1, 2, 3, . . .

[
d − 1

d
β2T ](k) denotes [β2] with its ramification

factor changed from d to d-1,

[
1
d
β2R](k) denotes [β2] with its ramification

factor changed from d to 1,

[β3](k) denotes [β3].

The upper labels (k) indicate the k-th rectangle. The lower labels ‘T’, ‘R’ denote ‘top’ and
‘right’.
(7.9) Next we construct an indexed graph (B−, j−) from (R(∞), i) as follows: for k = 1, 2, 3, . . .
we adjoin:

[
1
d
β2R](k) to (R(∞), i) from A

(k)
OT toA

(k)
1R ,

[
d − 1

d
β2T ](k) to (R(∞), i) from A

(k)
OT toA

(k+1)
1T ,

[β3](k) to (R(∞), i) from A
(k)
OB to A

(k)
1B .

We refer the reader to Fig (4.11.2) in [C1] for a detailed schematic diagram of (B−, j−).

(7.10) Proposition. The indexed graph (B−, j−) is unimodular and has finite volume.

Proof. By (7.7), the indexed graph (R(∞), i) is unimodular. For k = 1, 2, 3, . . . , Let e ∈
[ 1dβ2R](k) we attach

∂0e to (R(∞), i) at a ∈ A
(k)
OT ,

∂1e to (R(∞), i) at b ∈ A
(k)
1R .
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Let ‘ 1d ( ∆Ab
∆Aa )’ denote ∆Ab

∆Aa with all occurences of d changed to 1. Then

∆R(∞)b

∆R(∞)a
=

1
d
(
∆Ab

∆Aa
)

=A
d

1
(

i(e)
di0(e)

)

=A
i(e)
i0(e)

=R(∞)
j−(e)
j−(e)

,

and thus by Lemma (7.8) (Adjoining an edge), the result of adjoining [ 1dβ2R](k) is unimodular.
Let e ∈ [d−1

d β2T ](k) we attach

∂0e to (R(∞), i) at a ∈ A
(k)
OT ,

∂1e to (R(∞), i) at b ∈ A
(k)
1T .

Let ‘d−1
d ( ∆Ab

∆Aa )’ denote ∆Ab
∆Aa with all occurences of d changed to d-1. Then

∆R(∞)b

∆R(∞)a
=

d − 1
d

(
∆Ab

∆Aa
)

=A
d

d − 1
(

i(e)
di0(e)

)

=A
i(e)

(d − 1)i0(e)

=R(∞)
j−(e)
j−(e)

.

By Lemma (7.8) (Adjoining an edge), the result of adjoining [d−1
d β2T ](k) is unimodular.

Let e ∈ [β3](k) we attach

∂0e to a ∈ A
(k)
0B ,

∂1e to b ∈ A
(k)
1B .

Then
∆R(∞)b

∆R(∞)a
=

∆Ab

∆Aa
=A

i(e)
i(e)

=R(∞)
j−(e)
j−(e)

and by Lemma (7.8) (Adjoining an edge), the result of adjoining [β3](k) is unimodular.
Since the result of adjoining [ 1dβ2R](k), [d−1

d β2T ](k), [β3](k) is unimodular for k = 1, 2, 3, . . .

it follows that the resulting indexed graph (B−, j−) inherits finite volume from (R(∞), i).�
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(7.11) Remark. The indexed graph (B−, j−) does not have bounded denominators.

(7.12) Proposition. There is a morphism q: (B−, j−) → (A, i) which is a covering of indexed
graphs.

Proof. Recall that for the arithmetic bridge β ⊂ EA, [β] denotes β − {e1, en} ⊂ EA. For
j = 1, 2, 3 and k = 1, 2, . . . [βj ](k) ⊂ EB− denotes the j-th copy of [β] in R(k).

We define a morphism q:B− → A:

q |
A

(0)
1R

:A(0)
1R

∼=−→ A1

q(e(0)
1T L) = e1

q |[β1L](0) : [β1L](0)
∼=−→ [β]

q(e(0)
nBL) = en

q(e(0)
1T R) = e1

q |[β1R](0) : [β1R](0)
∼=−→ [β]

q(e(0)
nbR) = en

for k = 1, 2, 3, . . .

q |
A

(k)
1T

:A(k)
1T

∼=−→ A1

q |
A

(k)
0T

:A(k)
0T

∼=−→ A0

q |
A

(k)
0B

:A(k)
0B

∼=−→ A1

q |
A

(k)
1B

:A(k)
1B

∼=−→ A1

q |
A

(k)
1L

:A(k)
1L

∼=−→ A1

q(e(k)
nT ) = en

q(e(k)
1B) = e1

q(e(k+1)
1T ) = e1

q(e(k+1)
nB ) = en

q(e(k+1)
1L ) = e1

q(e(k+1)
nL ) = en
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q |1
d

[β2R](k)

: [
1
d
β2R](k) ∼=−→ [β]

q | (d − 1)
d

[β2T ](k)

: [
(d − 1)

d
β2T ](k) ∼=−→ [β]

q |[β3](k) : [β3](k) ∼=−→ [β]

The projection q : (B−, j−) → (A, i) ‘erases upper and lower indices’.

Let e ∈ EA0 with q−1(∂0e) = b ∈ V B−. Then q−1
(b) (e) is isomorphic to e, so

∑

f∈q−1
(b) (e)

j−(f) = i(e).

For e ∈ EA1, with q−1(∂0e) = b ∈ V B−, q−1
(b) (e) is isomorphic to e, so

∑

f∈q−1
(b) (e)

j−(f) = i(e).

Now let e ∈ β, with q−1(∂0e) = b ∈ V B−, then q−1
(b) (e) is isomorphic to e so

∑

f∈q−1
(b) (e)

j−(f) = i(e).

It is a routine check that the morphism q : (B−, j−) → (A, i) is a covering of edge-indexed
graphs by computing the local fibers over each e ∈ β. The reader is referred to ([C1], (4.11.5))
for a detailed computation. �

(7.13) By the ‘Bounding denominators theorem’ ([BCR], (0.6)) we can construct a covering
p : (B, j) −→ (B−, j−) such that (B, j) is unimodular with finite volume and bounded denom-
inators. The composition q · p : (B, j) −→ (A, i) is the desired covering of Theorem (7.2). This
completes the proof of Theorem (7.2).�

The reader is referred to Fig (7.14) for a schematic diagram of the covering q · p : (B, j) −→
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)
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(A, i) of Theorem (7.2), and to [C1] for more detailed diagrams.



u

(A, i) =

sr

c0 c1

v

d0 d1

m t
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8. A covering with infinite fibers for an edge-indexed graph
with a ramified separating edge

We recall (section 0) that an edge-indexed graph (A, i) is called parabolic, if X = (̃A, i) is
a parabolic tree, that is, X has only one end. If (A, i) is parabolic, and (e1, e2, e3, ) is any
infinite reduced path in (A, i), then we have

1 = i(e1) = i(e2) = i(e3) = . . .

In this section we prove:

(8.1) Theorem. Let (A, i) be an infinite edge-indexed graph with finite volume. Assume that
every ramified edge of (A, i) is separating. If (A, i) is not parabolic, then there exists a (neces-
sarily non-uniform) X-lattice Γ ≤ G(A,i), which is a non-uniform G(A,i) lattice.

Theorem (8.1) follows immediately from Theorem (8.3):

(8.2) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume.
Suppose that

for u ≥ 2, v ≥ 2, m ≥ 2. Then there is a covering p : (B, j) −→ (A, i) of edge-indexed
graphs with infinite fibers such that (B, j) is infinite, unimodular, has finite volume and bounded
denominators.

Proof of Theorem (8.2). The proof follows easily from ([C1], (5.21)). �

(8.3) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume.
Assume that (A, i) is not parabolic, and that every ramified edge of (A, i) is separating. Then
there is a covering p : (B, j) −→ (A, i) of edge-indexed graphs with infinite fibers such that
(B, j) is infinite, unimodular, has finite volume and bounded denominators.

Proof. Choose an infinite reduced path γ = (e1, e2, . . . ) in (A, i). Since (A, i) has finite volume,
i(ek) > 1 for almost all k = 1, 2, . . . .

Assume first that (A, i) is a tree. Since (A, i) is infinite and not parabolic, there is an infinite
reduced path τ = (f1, f2, . . . ) in (A, i) with i(fk) > 1 for some k ≥ 1. Then we are in the case
of Theorem (8.2) and we are done.

Now suppose that (A, i) is not a tree. Since every ramified edge is separating, (A, i) contains
an (unramified) closed path γ0 = (g1, . . . , gn) of length n ≥ 1. Since (A, i) is infinite, we can find



(A, i) =

v>1m>1
γ0
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an infinite reduced path γ = (e1, e2, . . . ) in (A, i) such that ∂0e1 = ∂0gk for some k ∈ {1, . . . n}:

Once again, since (A, i) has finite volume, i(ek) > 1 for almost all k = 1, 2, . . . . We take a
2-sheeted topological cover (D, j) of (A, i) and then (D, j) satisfies the hypotheses of Theorem
(8.2) and we are done. �

(8.4) Lemma. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume. Let
e be a ramified non-separating edge with ∆(e) = c/d (in lowest terms). Then either d > 1, (in
which case e satisfies the conditions of Theorem (0.6) (Theorem (9.4))), or c > 1 (in which case
e satisfies the conditions of Theorem (0.6) (Theorem (9.4))), or ∆(e) = 1 (that is, i(e) = i(e)),
in which case e satisfies the conditions of Theorem (8.5) below.

Proof. Immediate. �

(8.5) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume.
If there exists e ∈ EA such that i(e) = i(e) > 1, then there is a covering p : (B, j) −→ (A, i)
of edge-indexed graphs with infinite fibers such that (B, j) is infinite, unimodular, has finite
volume and bounded denominators.

Proof. Let e ∈ EA be such that i(e) = i(e) > 1. Let (A′, i′) be obtained from (A, i) by
subdividing the single edge e. That is, the edge pair (e, e) is replaced by two edge pairs (f1, f1)
and (f2, f2) and a new vertex m with

∂0(f1) = ∂0(e), ∂0(f2) = ∂1(e), ∂1(f1) = ∂1(f2) = m

and
i′(f1) = i′(f2) = i(e) = i(e)

i′(f1) = i′(f2) = 1.

Then (A′, i′) is infinite, unimodular and has finite volume. Moreover, (A′, i′) contains an
arithmetic bridge consisting of the edges f1 and f2 with ramification factor i(e) > 1. By
Theorem (7.2), there is a covering p′ : (B′, j′) −→ (A′, i′) with infinite fibers such that (B′, j′)
is infinite, unimodular, has finite volume and bounded denominators. We modify (B′, j′) to
obtain a covering of (A, i) in the following way. Each local fiber above the vertex m in (B′, j′)
consists of 2 edges with index 1 emanating from vertices that lie over m. We replace each of these
stars by a single edge pair (hence removing the subdivision that was induced by subdividing
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e). The resulting edge-indexed graph, denoted (B, j), has all of the desired properties and is a
covering of (A, i). �

9. Existence of arithmetic bridges

In this section, we prove Theorem (0.6). We make use of the following notation to provide
an alternate way of considering bridges. Let A be a connected graph, finite or infinite. Let
X ⊆ V A and Y ⊆ V A be subsets of vertices of A then we define:

(X, Y ) = {e ∈ EA | ∂0e ∈ X, ∂1e ∈ Y },
X̂ = subgraph of A with vertices X and edges (X, X).

(9.1) Lemma. Let A be a connected graph with EA = ∅. Let X ⊂ V A and Y ⊂ V A be proper
subsets of vertices of A satisfying the following conditions:

(1) X ∩ Y = ∅, X ∪ Y = V A,
(2) X̂ has p path components and Ŷ has q path components.

Then (X, Y ) is a (p, q)-geometric bridge for A.

Proof. Let X and Y satisfy the conditions above. Then (X, Y ) = ∅ as A is connected. Further,
(X, Y ) ∩ (Y, X) = ∅ as X ∩ Y = ∅. Finally, A \ ((X, Y ) ∪ (Y, X)) consists of X̂ and Ŷ . �
(9.2) Lemma. Let A be a connected graph and let X ′ and Y ′ be proper subsets of V A satisfying
the conditions as in Lemma (9.1). Choose vertices x0 ∈ X ′ and y0 ∈ Y ′. Then there exists
proper subsets X and Y of V A satisfying the following conditions:

(1) X ∩ Y = ∅, X ∪ Y = V A,
(2) X̂ and Ŷ are connected,
(3) (X, Y ) ⊆ (X ′, Y ′),
(4) x0 ∈ X and y0 ∈ Y .

(9.3) Remarks.

We note the first two conditions of Lemma (9.2) imply, by Lemma (9.1), that (X, Y ) is a
geometric bridge. Together we have, with the third condition, that if (X ′, Y ′) was a (p, q)-
arithmetic bridge then (X, Y ) is an arithmetic bridge. Finally the last condition implies that
if (X ′, Y ′) contained a chosen edge e ∈ EA, then X and Y can also be chosen to contain e
(simply let x0 = ∂0e and y0 = ∂1e).

Proof of Lemma (9.2). First we consider the case that X̂ ′ is already connected. That is, (X ′, Y ′)
forms a (1, q)-geometric bridge. If Ŷ ′ is also connected there is nothing to show. Assume Ŷ ′

is not connected. Let Y be the vertices of the connected component of Ŷ ′ containing y0. Let
X = X ′∪(Y ′ \Y ). It follows that X∩Y = ∅ and X∪Y = X ′∪Y ′ = V A. We still have x0 ∈ X

and y0 ∈ Y . We chose Y so that Ŷ would be connected. We claim that X̂ is also connected.
As X̂ ⊇ X̂ ′ and X̂ ′ is connected it suffices to prove that for y ∈ (Y ′ \ Y ) there exists a path γ

in X̂ ′ from y to some vertex x ∈ X ′. As A is connected and Ŷ ′ is not connected there is a path

(y = a0, e1, a1, e2, . . . , en, an = y0)
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in A from y to y0 which intersects X ′ before intersecting Y . Let ak be the first vertex in the
above sequence such that ak ∈ X ′. The path

(y = a0, e1, a1, e2, . . . , ek, ak)

then lies entirely in X̂ as desired thus showing X̂ is connected. Finally let e ∈ (X, Y ). Then
∂1e ∈ Y ⊆ Y ′. If x = ∂0e /∈ X ′ then we must have x ∈ (Y ′\Y ). Thus e ∈ (Y ′, Y ′) contradicting
our definiton of Y as the vertices of a connected component of Ŷ ′ thus completing the proof in
the case that X̂ ′ is connected.

Now let us assume that X̂ ′ is not connected. By the preceeding argument it suffices to
construct the sets of vertices X and Y satisfying only:

(1) X ∩ Y = ∅, X ∪ Y = V A,
(2) X̂ is connected,
(3) (X, Y ) ⊆ (X ′, Y ′),
(4) x0 ∈ X and y0 ∈ Y .

Let X be the vertices of the connected component of X̂ ′ containing x0. Let Y = Y ′ ∪ (X ′ \X).
Then X ∩ Y = ∅ and X ∪ Y = X ′ ∪ Y ′ = V A. We chose X so that X̂ is connected and
x0 ∈ X. As Y ′ ⊂ Y we also have y0 ∈ Y . Finally let e ∈ (X, Y ) with x = ∂0e ∈ X ⊂ X ′

and y = ∂1e ∈ Y . We wish to show that y ∈ Y ′. If not we must have y ∈ (X ′ \ X). Thus
e ∈ (X ′, X ′) contradicting our definiton of X as the vertices of a connected component of X̂ ′.
�

In the following theorem any fraction will assume to be in lowest terms unless otherwise
stated.

(9.4) Theorem. Let (A, i) be a connected locally finite unimodular edge-indexed graph. Let
e ∈ EA be an edge with ∆(e) = c

d and p ≥ 2 a prime number such that p | d. If e is
not separating, then there exists an arithmetic bridge β of (A, i) with n ≥ 2 edges,and with
ramification factor p such that e ∈ β.

Proof. Let a0 = ∂0e and a1 = ∂1e. By Lemmas (9.1) and(9.2) above, it suffices to show that
there exists set X0 ⊂ V A and X1 ⊂ V A such that

(i) X0 ∩ X1 = ∅, X0 ∪ X1 = V A,
(ii) p | i(e) for all e ∈ (X0, X1),
(iii) a0 ∈ X0 and a1 ∈ X1.

As (A, i) is unimodular, the rational numbers
∆b

∆a
are well-defined for all a, b ∈ V A. Let

the vertices V A be labeled {a0, a1, a2, . . . , an} if A is finite and labeled {a0, a1, a2, . . . } if A is
infinite. For 1 ≤ k ≤ |V A| we define

Ak := the full subgraph with vertices {a0, a1, . . . , ak}.

We prove by induction on k that for 1 ≤ k ≤ |V A| there exists sets Xk
0 ⊂ V Ak and Xk

1 ⊂ V Ak

such that
(a) Xk

0 ∩ Xk
1 = ∅, Xk

0 ∪ Xk
1 = V Ak,
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(b) For x0 ∈ Xk
0 and x1 ∈ Xk

1 with
∆x1

∆x0
=

c

d
we have p | d,

(c) a0 ∈ Xk
0 and a1 ∈ Xk

1 .
Note that condition (b) implies that p | i(e) for all e ∈ (Xk

0 , Xk
1 ). Thus this suffices to prove the

existence of our arithmetic bridge. If k = 1 then we let A1
0 = a0 and A1

1 = a1. Then conditions

(a) and (c) are satisfied. As
∆a1

∆a0
= ∆(e), condition (b) follows from the hypotheses of our

theorem.
For the finite induction step, assume we have sets Xk

0 and Xk
1 satisfying the inductive

hypotheses. We claim either

{Xk+1
0 = Xk

0 ∪ {ak+1}, Xk+1
1 = Xk

1 }

or
{Xk+1

0 = Xk
0 , Xk+1

1 = Xk
1 ∪ {ak+1}}

also satisfy the inductive hypotheses. Certianly both possibilities satisfy conditions (a) and (c).
Suppose, however that neither satisfy condition (b). Then there exists x0 ∈ Xk

0 and x1 ∈ Xk
1

such that writing
c0

d0
=

∆ak+1

∆x0
and

c1

d1
=

∆x1

∆ak+1

we have p � d0 and p � d1. But

∆x1

∆x0
=

∆ak+1

∆x0
· ∆x1

∆ak+1
=

c0c1

d0d1
.

While the latter is not in lowest terms, it follows that p � d where d is the denominator of
∆x1

∆x0

written in lowest terms, thus contradicting our assumptions on the sets Xk
0 and Xk

1 .
Finally for the transfinite induction step, let X∞

0 =
⋃∞

k=1 Xk
0 and X∞

1 =
⋃∞

k=1 Xk
1 . Then

X∞
0 ∩ X∞

1 = ∅. If a ∈ A∞ = V A then a ∈ Ak for some finite k and hence a ∈ X∞
0 ∪ X∞

1 .
Likewise if x0 ∈ X∞

0 and x1 ∈ X∞
1 then choosing k large enough but finite we have x0 ∈ Xk

0

and x1 ∈ Xk
1 . Thus writing

∆x1

∆x0
=

c

d
we have p | d as desired. Finally we clearly have a0 ∈ X∞

0

and a1 ∈ X∞
1 , thus completing our proof. �

(9.5) Theorem. Let X be a locally finite tree with more than one end, and let H ≤ G =
Aut(X) be a closed, saturated subgroup. If H contains a non-uniform X-lattice then H contains
a non-uniform H-lattice.

Proof. Let (A, i) = I(H\\X). Since H is saturated, we may translate the assumptions on
H into properties of (A, i). Since H contains a non-uniform X-lattice, V ola0(A, i) < ∞, for
a0 ∈ V A so (A, i) contains a ramified edge. By Theorem (8.3), if every ramified edge of (A, i) is
separating, then we obtain a covering p : (B, j) −→ (A, i) with the desired properties to give rise
to a non-uniform X-lattice which is also a non-uniform H-lattice, that is, (B, j) is unimodular,
has finite volume, bounded denominators, and the projection p has infinite fibers. Otherwise
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there exists a ramified non-separating edge e, and by Lemma (8.4) either e or e satisfies the
hypothesis of Theorem (0.6) (Theorem (9.4)) and hence e (or e) is contained in an arithmetic
bridge β in (A, i) of n ≥ 2 edges. By Theorem (0.4) (Theorem (7.2)) we obtain a covering with
the desired properties to give rise to a non-uniform H-lattice. The only remaining possibility
is that E satisfies the conditions of Theorem (8.5) and hence we obtain a covering with infinite
fibers that gives rise to a non-uniform H-lattice. �

Applying Theorem (0.1) we also have µ(H\\X) < ∞ and we obtain the implication (a) =⇒
(b) of Theorem (0.2) as a corollary of Theorem (9.5).

We obtain Corollary (0.7) from Theorem (9.5). This is a generalization of Corollary (0.9) in
[BCR].

(9.6) Corollary. Let X be a locally finite tree, G = Aut(X), µ a (left) Haar measure on G,
H ≤ G a unimodular closed subgroup acting without inversions, pH : X −→ A = H\X, and
(A, i) = I(H\\X). Assume that H = G(A,i) and that µ(H\\X) < ∞. If X has more than one
end, and H\X is infinite, then there exists a (necessarily non-uniform) X-lattice Γ ≤ H, which
is a non-uniform H-lattice.

Proof. Since H is unimodular, µ(H\\X) < ∞ and H\X is infinite, H contains a (necessarily
non-uniform) X-lattice by ([BCR], Theorem (0.5)). Since X has more than one end and H =
G(A,i), that is H is saturated, we apply Theorem (9.5) to obtain a non-uniform X-lattice which
is also a non-uniform H-lattice. �

10. Towers of coverings with infinite fibers and finite volume

In this section we prove:

(10.1) Theorem. Let (A, i) be an infinite, unimodular edge-indexed graph with finite volume.
If (A, i) contains an arithmetic bridge with n ≥ 2 edges, then (A, i) has an infinite sequence of
coverings:

(B0, j0)
p0−→ (B1, j1)

p1−→ (B2, j2)
p2−→ . . . −→ (A, i)

with infinite fibers such that each (Bk, jk) is infinite, unimodular, has finite volume and bounded
denominators. Hence we obtain an infinite ascending chain of closed subgroups of Aut(X):

G(B0,j0) ≤ G(B1,j1) ≤ G(B2,j2) ≤ . . . ≤ G(A,i),

and non-uniform G(A,i)-lattices Γk with Γk ≤ G(Bk,jk), k = 0, 1, 2 . . . .

Proof. Theorem (7.2) provides us with a single covering p : (B, j) −→ (A, i) with the de-
sired properties. We refer to the notation of Fig (7.14) to describe the sequence of cov-
erings (B0, j0)

p0−→ (B1, j1)
p1−→ (B2, j2)

p2−→ . . . −→ (A, i) indicated above. We set
(B0, j0) = (B, j), and the projection p0 : (B0, j0) −→ (B1, j1) projects the first ‘vertical sheet’
onto the ‘bottom sheet’, as indicated in Fig (10.2). Continuing to project the next vertical
sheet onto the bottom sheet defines the next projection p1 : (B1, j1) −→ (B2, j2), and so on.

It is obvious that each pk, k = 0, 1, 2 . . . is a covering of edge-indexed graphs with infinite
fibers, and it is clear that each (Bk, jk) is infinite, unimodular and has bounded denominators.
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An easy application of the Bass-Rosenberg volume formula ([R]) shows that each (Bk, jk) has
finite volume k = 0, 1, 2 . . . , and so we obtain a sequence of coverings with the desired properties.

The existence of the infinite ascending chain of closed subgroups of Aut(X)

G(B0,j0) ≤ G(B1,j1) ≤ G(B2,j2) ≤ . . . ≤ G(A,i)

follows from (1.6).

Finally, each (Bk, jk) admits a finite faithful grouping, denoted Bk, k = 0, 1, 2, . . . which
gives rise to a non-uniform lattice

Γk = π1(Bk, bk) ≤ G(Bk,jk), k = 0, 1, 2, . . . ,

for bk ∈ V Bk, k = 0, 1, 2, . . . . �

In [CC] we prove Theorem (10.1) in the case that (A, i) is parabolic and hence has no
arithmetic bridge with n ≥ 2 edges.
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