
TREE LATTICE SUBGROUPS

LISA CARBONE, LEIGH COBBS AND GABRIEL ROSENBERG

Abstract. Let X be a locally finite tree and let G = Aut(X). Then G is naturally a locally
compact group. A discrete subgroup Γ ≤ G is called an X-lattice, or a tree lattice if Γ has finite
covolume in G. The lattice Γ is encoded in a graph of finite groups of finite volume. We describe
several methods for constructing a pair of X-lattices (Γ′,Γ) with Γ ≤ Γ′, starting from ‘edge-
indexed graphs’ (A′, i′) and (A, i) which correspond to the edge-indexed quotient graphs of their
(common) universal covering tree by Γ′ and Γ respectively. We determine when finite sheeted
topological coverings of edge-indexed graphs give rise to a pair of lattice subgroups (Γ,Γ′) with
an inclusion Γ ≤ Γ′. We describe when a ‘full graph of subgroups’ and a ‘subgraph of subgroups’
constructed from the graph of groups encoding a lattice Γ′ gives rise to a lattice subgroup Γ
and an inclusion Γ ≤ Γ′. We show that a nonuniform X-lattice Γ contains an infinite chain
of subgroups Λ1 ≤ Λ2 ≤ Λ3 ≤ . . . where each Λk is a uniform Xk-lattice and Xk is a subtree
of X. Our techniques, which are a combination of topological graph theory, covering theory
for graphs of groups, and covering theory for edge-indexed graphs, have no analog in classical
covering theory. We obtain a local necessary condition for extending coverings of edge-indexed
graphs to covering morphisms of graphs of groups with abelian groupings. This gives rise to a
combinatorial method for constructing lattice inclusions Γ ≤ Γ′ ≤ H ≤ G with abelian vertex
stabilizers inside a closed and hence locally compact subgroup H of G. We give examples of
lattice pairs Γ ≤ Γ′ when H is a simple algebraic group of K-rank 1 over a nonarchimedean
local field K and a rank 2 locally compact complete Kac-Moody group over a finite field. We
also construct an infinite descending chain of lattices . . .Γ2 ≤ Γ1 ≤ Γ ≤ H ≤ G with abelian
vertex stabilizers.

1. Introduction

Let X be a locally finite tree and let G = Aut(X). Then G is naturally a locally compact
group. A discrete subgroup Γ ≤ G is called an X-lattice, or a tree lattice if

V ol(Γ\\X) :=
∑

x∈V (Γ\X)

1

|Γx|

is finite, and a uniform X-lattice if Γ\X is a finite graph, non-uniform otherwise.
In [C2] and [BCR] the authors gave the necessary and sufficient conditions for the existence

of X-lattices. In this work we determine how to construct pairs (Γ,Γ′) of tree lattice subgroups
with Γ ≤ Γ′ ≤ G. We also extend these methods to construct pairs (Γ,Γ′) with Γ ≤ Γ′ ≤ H
where H is a closed and hence locally compact subgroup of G, as well as infinite descending
chain of lattices . . .Γ2 ≤ Γ1 ≤ Γ ≤ H ≤ G with abelian vertex stabilizers.

In the setting of topological covering theory, there is a correspondence between coverings,
p : X → A, and subgroups of π1(A), and this gives essentially ‘one’ subgroup up to conjugacy.
Here with lattices given by their quotient graphs of groups, we are in an ‘orbifold’ setting where
coverings have an extra ingredient, namely isotropy groups. We make use of this additional data
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to construct lattice subgroups by using subgroups of isotropy (vertex) groups. This will give
rise to zero, one, finitely many, or infinitely many possible subgroups up to isomorphism. In fact
in [CR1] the authors exhibited infinite ascending chain of lattice subgroups, all with the same
quotient graph.

We describe several methods (Sections 2 and 3) for constructing a pair of X-lattices (Γ′,Γ)
with Γ ≤ Γ′, starting from ‘edge-indexed graphs’ (A′, i′) and (A, i) which will correspond to the
edge-indexed quotient graphs of their (common) universal covering tree by Γ′ and Γ respectively.
We determine when finite sheeted topological coverings of edge-indexed graphs give rise to a pair
of lattice subgroups (Γ,Γ′) with an inclusion Γ ≤ Γ′. We describe when a ‘full graph of subgroups’
and a ‘subgraph of subgroups’ constructed from the graph of groups encoding a lattice Γ′ gives
rise to a lattice subgroup Γ and an inclusion Γ ≤ Γ′.

Our techniques are a combination of topological graph theory, covering theory for graphs of
groups ([B]), and covering theory for edge-indexed graphs developed in [C1] and [BCR]. As an
application, we show (Section 4) that a non-uniform X-lattice Γ contains an infinite chain of
subgroups Λ1 < Λ2 < Λ3 < . . . where each Λk is a uniform Xj-lattice, Xk a subtree of X.

Let φ : (A, i) → (A′, i′) be a covering of edge-indexed graphs (defined in Section 2). We wish
to determine if it is possible to extend φ to a covering morphism of graphs of groups as in [B]. In
Sections 5 and 6 we give a local necessary condition for extending φ to a covering Φ : A −→ A′

of graphs of groups, where A′ and A are abelian groupings of (A′, i′) and (A, i) respectively. For
coverings φ : (A, i) −→ (A′, i′) satisfying suitable conditions (Sections 5 and 6 and [BL], [BCR],
[C1]) these will give pairs of lattice subgroups Γ ≤ Γ′ with abelian stabilizers. In Section 7 we
provide some examples to illustrate some of the constructions proposed here.

In Section 8 we consider the problem of constructing lattices in a closed, hence locally compact
subgroup H of G = Aut(X) for X a locally finite tree. Our methods apply to the case where X
is the Tits building of a BN -pair for H and is a homogeneous tree. Examples of such a group
are H a simple algebraic group of K-rank 1 over a nonarchimedean local field K or a rank 2
locally compact Kac-Moody group over a finite field. We discuss several known techniques for
constructing cocompact lattices Γ inH with quotient Γ\X a simplex. We then use a combination
of methods to construct examples of lattice pairs Γ′ ≤ Γ ≤ H where Γ and Γ′ both have abelian
vertex stabilizers.

Our methods can be extended to construct an infinite descending chain of lattices . . .Γ2 ≤
Γ1 ≤ Γ ≤ H where the Γi, i ≥ 1 all have abelian vertex stabilizers. We exhibit such an infinite
descending chain when H is a rank 2 locally compact Kac-Moody group over the field F2 with
2 elements.

We thank Hyman Bass for encouraging us to undertake this work. We also thank the anony-
mous referee for helpful comments which improved our exposition.

2. Notation and preliminaries

2.1. Tree lattices, edge-indexed graphs, volumes and coverings. An edge-indexed graph
(A, i) consists of an underlying graph A, assumed to be locally finite, and an assignment of a
positive integer i(e) > 0 to each oriented edge e ∈ EA. We use ∂0e and ∂1e to denote the
initial and terminal vertices of an edge e ∈ EA. Let A = (A,A) be a graph of groups, with
underlying graph A, vertex groups (Aa)a∈V A, edge groups (Ae = Ae)e∈EA and monomorphisms
αe : Ae ↪→ A∂0e. Then I(A) = (A, i) where i : EA → Z>0 is defined as i(e) = [A∂0e : αeAe],
which we assume to be finite, for all e ∈ EA.
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Given an edge-indexed graph (A, i), a graph of groups A such that I(A) = (A, i), is called a
grouping of (A, i). We call A a finite grouping if the vertex groups Aa are finite and a faithful

grouping if A is a faithful graph of groups, that is if π1(A, a) acts faithfully on X = (̃A, a).

For an edge e ∈ EA, define ∆(e) =
i(e)

i(e)
. If γ = (e1, . . . , en) is a path in A, set:

∆(γ) = ∆(e1) . . .∆(en).

Definition 1. An indexed graph (A, i) is unimodular if ∆(γ) = 1 for all closed paths γ in A.

Now assume that (A, i) is unimodular. Pick a base point a0 ∈ V A, and define, for a ∈ V A,

Na0(a) =
∆a

∆a0
(= ∆(γ) for any path γ from a0 to a) ∈ Q>0.

For e ∈ EA, put

Na0(e) :=
Na0(∂0(e))

i(e)
.

Following ([BL], (2.6)), we say that (A, i) has bounded denominators if {Na0(e) | e ∈ EA} has
bounded denominators. This condition is automatic if A is finite. As in [BK] the functions
N : A −→ Q×

>0 as above are called vertex orderings of (A, i). We call N integral if for all
e ∈ EA, we have N(∂0(e))/i(e) ∈ Z and hence N(a) ∈ Z for a ∈ V A.

Theorem 2.1. ([BK], (2.4)) The following conditions on an edge-indexed graph (A, i) are equiv-
alent.

(a) (A, i) admits a finite faithful grouping.
(b) (A, i) is unimodular and has bounded denominators.
(c) (A, i) admits an integral vertex ordering.

We define the volume of an edge-indexed graph (A, i) at a basepoint a0 ∈ V A:

V ola0(A, i) :=
∑

a∈V A

(
∆a0
∆a

).

We write V ol(A, i) < ∞ if V ola(A, i) < ∞ for some, and hence every a ∈ V A. If A is a finite
grouping of (A, i), then we have ([BL], (2.6.15)):

V ol(A) =
1

|Aa|
V ola(A, i).

In order to construct an X-lattice, we begin with an edge-indexed graph (A, i). Then (A, i)

determines X = ˜(A, i, a0) up to isomorphism ([BL], Ch. 2). We say that (A, i) admits a lattice
if (A, i) admits a grouping A such that π1(A, a0) is an X-lattice. This is the case if and only if
A is a (faithful) graph of finite groups of finite volume.

Let (A, i) and B, j) be edge-indexed graphs. Following ([BL], (2.5)) , a covering p : (B, j) −→
(A, i) is a graph morphism p : B −→ A such that for all e ∈ EA, ∂0(e) = a, and b ∈ p−1(a), we
have i(e) =

∑
f∈p−1

(b)(e)
j(f), where p(b) : E

B
0 (b) −→ EA

0 (a) is the local map on stars EB
0 (b) and

EA
0 (a) of vertices b ∈ V B and a ∈ V A. If b ∈ V B, p(b) = a ∈ V A, then we can identify

˜(A, i, a) = X = ˜(B, j, b).
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2.2. Lattices pairs from full graphs of subgroups. In this subsection, we describe how to
produce a pair of lattice subgroups (Γ ≤ Γ′) by constructing a ‘full graph of subgroups’ encoding
Γ starting with a graph of groups for a lattice Γ′. This method was used in ([B], 1.14) and ([CR],
section 1) and has no analog in classical topological covering theory.

Let (A, i) be an edge-indexed graph. Let A′ and A be groupings of (A, i). Then A = (A,A)
is called a full graph of subgroups of A′ = (A,A′) (as in ([B], (1.14)) if Aa ≤ A′

a for a ∈ A, and
for e ∈ EA, Ae ≤ A′

e, and αe = α′
e|Ae . We further assume that for e ∈ EA, with ∂0e = a,

Aa ∩ αeA′
e = αeAe, that is Aa/αeAe −→ A′

a/αeA′
e is injective, and hence bijective. This

assumption implies that π1(A, a) ≤ π1(A′, a′) ([B], (1.14)).
If A′ is a graph of finite groups of finite volume, then this yields a lattice subgroup pair Γ ≤ Γ′

with Γ = π1(A, a) and Γ′ = π1(A′, a′), a, a′ ∈ V A.

2.3. Lattice pairs from subgraphs of subgroups. In this subsection, we describe how to
produce a pair of lattice subgroups (Γ ≤ Γ′) by constructing a ‘subgraph of subgroups’ A of A′ on
(A′, i′) as in ([B], 1.14). We begin with an edge-indexed graph (A′, i′) that admits an X-lattice,
and a lattice grouping A′ = (A′,A′) of (A′, i′). Let Γ′ = π1(A′, a′). Let (A, i) be a subgraph of
(A′, i′), where i = i′|A. We aim to construct a lattice subgroup Γ ≤ Γ′ by constructing a graph
of groups on (A, i) using subgroups of A′.

It is easy to verify that if V ol(A′, i′) < ∞, then V ol(A, i) < ∞. Let (A′, i′) be a unimodular,
edge-indexed graph with bounded denominators. Let (A, i) with i = i′|A be a subgraph of
(A′, i′). Then (A, i) also has bounded denominators. It follows that if (A′, i′) admits a lattice
and (A, i) is a subgraph with i = i′|A, then (A, i) also admits a lattice.

To construct a lattice grouping A of (A, i), we choose subgroups Aa ≤ A′
a, a ∈ V A, Ae ≤ A′

e,
e ∈ EA and αe = α′

e|Ae . We further assume that for e ∈ EA, ∂0e = a, we have A∩α′
eA′

e = α′
eAe

that is, Aa/αeAα → A′
a/αeA′

e is injective. Then A is a ‘subgraph of subgroups’ of A′ in the sense
of ([B],(1.14)). If Aa = A′

a for some, hence every, vertex a ∈ V A then we call A a ‘subgraph
of full groups’ of A′. Let Γ = π1(A, a), a ∈ V A then we obtain an inclusion Γ ≤ Γ′ which is of
finite index k, where

k =
V ol(Γ\\X)

V ol(Γ′\\X)
=

V ol(A)
V ol(A′)

.

Moreover, if A is a finite subgraph of A′, then A is an uniform lattice.

3. Finite sheeted topological coverings

In this section we will construct a lattice subgroup pair Γ ≤ Γ′ using topological coverings of
the underlying edge-indexed graphs. We begin with an edge-indexed graph (A′, i′) that admits

an X-lattice, where X = (̃A′, i′). Let A′ be a finite faithful grouping of finite volume of (A′, i′).
Let Γ′ = π1(A′, a′), a′ ∈ V A′, then Γ′ is an X-lattice, uniform if A′ is finite, non-uniform if A′

is infinite. We assume that π1(A) (= {1}. Let p : (A, i) → (A′, i′) be a finite sheeted (n-fold)
topological covering; that is, locally (on the star of each vertex) p is an isomorphism, and p is

index-preserving. Then X = (̃A, i) (section 2 and [BL]). We seek a lattice grouping of (A, i).
As in ([R], p108) we observe that the grouping A′ on (A′, i′) induces a finite faithful grouping
A on (A, i) with V ol(A) = n · A′. It follows ([BK], 2.4) that (A, i) admits a lattice, namely
Γ = π1(A, a) for a ∈ V A. Since Γ′ = π1(A′, a′) and Γ = π1(A, a) are X-lattices, the inclusion
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Γ ≤ Γ′ is automatically of finite index k where

k =
V ol(Γ\\X)

V ol(Γ′\\X)
=

V ol(A)
V ol(A′)

.

The following lemma is easily verified directly, and also follows from the observations above.

Lemma 3.1. Let (A′, i′) be an edge-indexed graph. If (A′, i′) admits a lattice and p : (A, i) →
(A′, i′) is a finite sheeted topological covering, then (A, i) admits a lattice. That is,
(a) if (A′, i′) is unimodular, then (A, i) is unimodular

(b) if (A′, i′) has finite volume, then (A, i) has finite volume

(c) if (A′, i′) has bounded denominators, then (A, i) has bounded denominators.

4. Approximating non-uniform tree lattices by uniform ones.

To prove Theorem 4.2, will make use of the following lemma.

Lemma 4.1. Let (A, i) be an infinite edge-indexed graph. Let A be a finite faithful grouping of
(A, i). Then there is a finite subgraph (A0, i0) of (A, i) on which the restriction A |A0 is faithful.

Proof Write A = ∪∞
k=1Ak where A1 ⊂ A2 ⊂ A3 ⊂ . . . are all finite graphs. Choose a basepoint

a ∈ A1. For each k ≥ 1 let Nk be the kernel of the action of π1(A |Ak , a) < π1(A, a) on ˜(A |Ak , a).

Then Nk fixes the subtree ˜(A |Ak , a) of (̃A, a). So N1 ⊃ N2 ⊃ N3 ⊃ . . . . Since A is a finite
grouping, all Nk are finite. As A is faithful we must have ∩∞

k=1Nk = {1}. Thus Nk = {1} for
some k. We now take A0 to be Ak for such k. !
Theorem 4.2. Let Γ be a non-uniform X-lattice.Then Γ contains an infinite chain of subgroups
Λ1 < Λ2 < Λ3 < . . . where each Λk is a uniform Xk-lattice, Xk a subtree of X.

Proof Let A be the graph of groups for Γ and let (A, i) = I(A). Then A is a finite faithful
grouping of (A, i). Let (A0, i0) be as in Lemma 4.1. Let

A0 ⊂ A1 ⊂ A2 ⊂ . . .

be any infinite sequence of finite subgraphs of A. We define an indexing on each Ak for k ≥ 0 by
ik = i |Ak . Then each (Ak, ik) is unimodular, since a closed path in (Ak, ik) is closed in (A, i).

The universal covering Xk of (Ak, ik) is a subtree of X. This defines a tower of subtrees of
X:

X0 ⊂ X1 ⊂ X2 ⊂ . . .

For groupings of (Ak, ik), choose subgraphs of full groups of A, that is take Ak to be A |Ak . We
get inclusions of fundamental groups

π1(A0, a) < π1(A1, a) < π1(A2, a) < ... < Γ.

Set Λk = π1(Ak). Then we get a tower of inclusions:

Λ0 < Λ1 < Λ2 < ... < Γ.

As in Lemma 4.1 the kernels of the actions of π1(Ak, a) are descending and A0 is faithful hence
we must have that each Ak is faithful. Thus each Λk is a uniform Xk - lattice, where Xk is the
universal cover of (Ak, ik), and Xk is a subtree of X. Of course Λk may not be uniform or even
a lattice as a subgroup of Γ.!
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5. Coverings of abelian groupings

Let φ : (A, i) → (A′, i′) be a covering of edge-indexed graphs, and assume that (A, i) and
(A′, i′) admit finite groupings. In this section we consider the following:

Question 5.1. Is it possible to find faithful finite groupings A and A′ of (A, i) and (A′, i′)
respectively in such a way that φ extends to a covering morphism Φ : A −→ A′.

A positive answer to Question 1 would then give rise to a pair Γ ≤ Γ′ of discrete subgroups of

Aut(X), where X = (̃A, i) = (̃A′, i′) and Γ = π1(A, a), Γ′ = π1(A′, a′), a ∈ V A, and a′ = φ(a).
To answer this question let us first recall what is meant by a covering morphism of graphs

of groups originally defined by Bass in [B]. In [B] Bass noted that if there is a general covering
morphism between two graphs of groups there exists a special one (which he referred to as δΦ)
which requires less information. Since we only care about the existence of a covering morphism
we will make use of this fact and say that a covering morphism Φ = (φ, (δ)) : A → A′ consists
of:

(1) a graph morphism φ : A → A′;
(2) monomorphisms

φa : Aa → A′
φ(a) (a ∈ A), φe = φē : Ae → A′

φ(e) (e ∈ EA);

(3) For each e ∈ EA with a = ∂0e an element δe ∈ A′
φ(a) such that the following two conditions

hold:
(a) the following diagram commutes:

Ae
αe−−−−→ Aa

φe

$
$φa

A′
φ(e)

ad(δe)·α′
φ(e)−−−−−−−→ A′

φ(a)

where ad(x)(s) = xsx−1.
(b) For f ∈ EA′, a′ = ∂0f and a ∈ φ−1(a′), the map

Φa/f :




∐

e∈φ−1
(a)(f)

Aa/αeAe



 −→ A′
φ(a)/α

′
fA′

f

defined by

Φa/f ([s]e) = [φa(s)δe]f

is bijective (where s ∈ Aa and [s]e is the class of s in Aa/αeAe).
To simplify matters greatly let us consider only the special case where the action ad(δe) is

trivial. This must be the case in particular when A′
φ(a)′ is abelian. Since the maps φa and φe

are monomorphisms we may identify the groups Aa and Ae with their images in Aφ(a) and Aφ(e)

respectively. Condition (3)(a) then becomes

(3)(a′) αe = α′
φ(e)|Ae .

We have the following,
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Theorem 5.2. Let a ∈ V A and let f ∈ EA′ be such that ∂0(f) = φ(a). If A′
φ(a) is abelian, then

the subgroup αeAe is independent of the choice of edge e ∈ φ−1
(a)(f).

Proof Let s ∈ αeAe for some e ∈ φ−1
(a)(f). Let e′ be another edge in φ−1

(a)(f). Since αe = αf

restricted to Ae we have that s ∈ αfAf . As A′
φ(a) is abelian it follows that for x ∈ A′

φ(a) we

have [sx]f = [x]f , thus

Φa/f ([s]e′) = [sδe′ ]f = [δe′ ]f = Φa/f ([1]e′).

Since Φa/f is injective we must then have that [s]e′ = [1]e′ and thus s ∈ αe′Ae′ . So we see that

for any two edges e and e′ in φ−1
(a)(f) we have

αeAe ⊂ αe′Ae′ ⊂ αeAe. !
In terms of conditions on the edge-indexed graphs we get the following corollary.

Corollary 5.3. If φ : (A, i) → (A′, i′) is a covering of edge-indexed graphs and we wish to find
finite abelian groupings of (A, i) and (A′, i′) in such a way as to extend φ to a covering morphism
of graphs of groups then we must have the following necessary condition on φ which we will call
locally constant fibers:

(LCF) If for e1, e2 ∈ EA, φ(e1) = φ(e2) and ∂0e1 = ∂0e2, then i(e1) = i(e2).

The condition (LCF) is necessary in order to extend φ to a covering morphism of finite abelian
graphs of groups. We also have the following sufficient condition on the finite abelian graphs of
groups themselves.

Theorem 5.4. Let φ : (A, i) → (A′, i′) be a covering of edge-indexed graphs. Let A and A′ be
finite abelian groupings of (A, i) and (A′, i′) respectively. Suppose further that

(i) Aa ≤ A′
φ(a), a ∈ V A and Ae ≤ A′

φ(e), e ∈ EA and Aa and Ae are identified with their

images in A′
φ(a) and A′

φ(e) respectively.

(ii) αe = α′
φ(e)|Ae, e ∈ EA.

(iii) Aa ∩ α′
fA′

f = αeAe, where a ∈ V A and f ∈ EA′ is such that ∂0(f) = φ(a),
Then φ extends to a covering morphism Φ = (φ, (δ)) : A −→ A′.

Proof The monomorphisms φa and φe are naturally just the inclusion maps. We have seen that
since we are using abelian groups condition (3)(a) of a covering morphism reduces to condition
(3)(a’) which is what we require by (ii). It remains only to define the elements δe for each
e ∈ EA and show that condition (3)(b) of a covering morphism is satisfied. So let a ∈ V A
and let f ∈ EA′ be such that ∂0(f) = φ(a). We take {δe}e∈φ−1

(a)(f)
to be the distinct coset

representatives of
(
A′

φ(a)/α
′
fA′

f

)
/ (Aa/αeAe) =

(
A′

φ(a)/α
′
fA′

f

)
/
(
Aa/Aa ∩ α′

fA′
f

)
.

We first note that this defintion makes sense. Aa/αeAe is naturally a subgroup of A′
φ(a)/α

′
fA′

f

by the map which takes [s]e to [s]f . That map is well-defined since αeAe is a subgroup of α′
fA′

f .
It is clearly a homomorphism and it is in fact a monomorphism by (iii).

We also must show that the number of cosets above is precisely the number of edges e ∈
p−1
(a)(f). Recall that if K and L are subgroups of H then the index [H/K : L/K ∩ L] = [H :

K]/[L : K ∩ L]. Hence the number of cosets we have is i′(f)/i(e). However i(e) is constant on
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φ−1
(a)(f) and φ is a covering, so we have that the number of edges in φ−1

(a)(f) must be exactly

i′(f)/i(e) as well.
The map Φa/f is then just the map that for each e ∈ φ−1

(a)(f) sends the subgroup Aa/αeAe

to the coset (Aa/αeAe)δe which is clearly bijective as we have exactly one representative from
each coset. !

We have noted that a necessary condition for a covering φ to extend to a covering morphism
of graphs of finite abelian groups is that φ satisfy (LCF). One special case of coverings which
satisfy this condition are the ‘denominator clearing’ coverings constructed in [BCR].

6. Lattice subgroups with abelian stabilizers

We now obtain sufficient conditions on a covering φ : (B, j) −→ (A, i) of unimodular bounded
denominator edge-indexed graphs so that it will extend to a covering morphism of finite faithful
abelian graphs of groups. We have already seen one necessary condition in Section 6 which we
called locally constant fibers (LCF). We now observe a further necessary condition.

Assume that φ : (B, j) −→ (A, i) is a covering of unimodular bounded denominator edge-
indexed graphs satisfying (LCF). It follows that j(e) divide i(φ(e)) and we may thus form a new

edge-indexed graph (B, k) with underlying graph B and indexing k(e) = i(φ(e))
j(e) .

Definition 2. We say that φ satisfies the relatively bounded denominator condition (RBD) if
the edge-indexed graph (B, k) satisfies the bounded denominator condition.

See example 2 of section 9 for an example of the graph (B, k) and a covering which does not
sayify (RBD).

Theorem 6.1. Let φ : (B, j) −→ (A, i) be a covering of edge-indexed graphs satisfying (LCF).
Then a necessary condition for φ to extend to a covering morphism of finite graphs of groups is
that φ satisfy (RBD).

Proof Suppose there exist finite groupings A = (A,A) of (A, i) and B = (B,B) of (B, j)
and a covering morphism Φ = (φ, (δ)) : B −→ A. Then it follows that for b ∈ V B we have
φb(Bb) ≤ Aφ(b) and so |Bb| divides |Aφ(b)|. We then have that

N(b) =
|Aφ(b)|
|Bb|

is an integral vertex ordering of (B, k) and thus necessarily (B, k) satisfies the bounded denom-
inator condition and by definition φ satisfies (RBD). !

We have seen that a necessary condition to extend φ to a covering morphism of finite faithful
abelian graphs of groups is that φ satisfy (LCF) and (RBD). We would like to say that the
conditions are also sufficient but we are unable to do so. Even if we drop the requirement that
the groupings be abelian, (RBD) alone is not sufficient, as can be seen in example 3. If we
strengthen the (LCF) condition, though, we are able to obtain sufficient conditions.

We say that a covering φ : (B, j) −→ (A, i) satisfies the globally constant fibers condition if

(GCF) For e1, e2 ∈ EB with φ(e1) = φ(e2) we have j(e1) = j(e2).

Lemma 6.2. Let φ : B −→ A be a graph morphism and let (B, j) be a unimodular edge-indexed
graph with bounded denominators. Suppose further the indexing j is constant on the fibers of φ.
That is j(e1) = j(e2) if φ(e1) = φ(e2). Then any vertex ordering N : (B, j) −→ Qx

>0 is constant
on the fibers of φ. That is if φ(b1) = φ(b2) then N(b1) = N(b2).

8



Proof Let γ = (e1, e2, . . . , en) be a path in (B, j) from b1 to b2. Then by assumption we have
that j(ei) and hence ∆(ei) and hence ∆(γ) depends only on its image by φ in A. If ∆(γ) = 1
then it follows that N(b1) = N(b2). So assume instead that ∆(γ) (= 1. If necessary switch b1
and b2 and replace γ by γ−1 to insure that ∆(γ) = q for some rational q which is not an integer.

Notice that φ(γ) is a path in A from a = φ(b1) = φ(b2) to itself. So let γ2 be a lifting of
φ(γ) starting at b2 and ending at some vertex b3 with φ(b3) = a. Inductively we define γn to
be a lifting of φ(γ) starting at bn and ending at some vertex bn+1. Then ∆(γn) = q for all n
and thus ∆(γ ◦ γ2 ◦ · · · ◦ γn) = qn thus contradicting our assumption that (B, j) has bounded
denominators. !
Theorem 6.3. Let φ : (B, j) −→ (A, i) be a covering of unimodular bounded denominator
edge-indexed graphs satisfying (GCF) and (RBD). Then there exist finite faithful groupings A =
(A,A) of (A, i) and B = (B,B) of (B, j) and a covering morphism Φ = (φ, (δ)) : B −→ A.

Proof Let (B, k) be the edge-indexed graph constructed as in the definition of (RBD). Let
B = (B,B) be a faithful finite abelian grouping of (B, j) such that the groups are all isomorphic
on each (global) fiber of φ. That is Bb1 = Bb2 if φ(b1) = φ(b2). We can find such a grouping
since (B, j) is unimodular with bounded denominators and by the previous lemma any vertex
ordering of (B, j) is constant on the fibers of φ. Likewise let B′ = (B,B′) be a faithful finite
abelian grouping of (B, k) with isomorphic groups along each fiber. Again the previous lemma
and the (RBD) condition guarantee the existence of such a grouping. We will define a grouping
A = (A,A) on (A, i) by taking the group at a vertex or edge a ∈ V A ∪ EA to be the direct
product of the groups Bb and B′

b for some b ∈ φ−1(a). Recall the choice of b in the fiber does
not mattter as all groups in the fiber are isomorphic in both B and B′.

The edge monomorphisms in A are those obtained naturally from the edge monomorphisms
in B and B′. First let us verify that A is consistant with the indexing on (A, i). If e is an edge
in EA then

[A∂0e : αeAe] = j(e) · k(e) = i(e).

Since each grouping B and B′ is faithful it follows that A is faithful (see for example section 5.5 of
[R]). The groups of B are naturally subgroups of the groups of A and the edge monomorphisms
of A were defined to be extensions of the edge monomorphisms of B. All that remains is to
check condition (iii) of Theorem 4 to establish the existence of our desired covering morphism.
We see that if φ(e) = f with ∂0e = b and ∂0f = a then

Bb ∩ αfAf = Be

as required. !

7. Examples

In this section we provide a number of examples of the construction of lattice subgroup pairs
using the methods introduced in the previous sections.

Example 1. Consider the covering p : (B, j) −→ (A, i) shown in Figure 1. Then p : (B, j) −→
(A, i) is a denominator clearing covering (as in [BCR]). Hence there are abelian groupings B of
(B, j) and A of (A, i), and a covering morphism Φ : B −→ A as shown in Figure 2. Note also
that p : (B, j) −→ (A, i) satisfies (GCF) and clearly also (RBD). Let

Λ = Cq+1 ∗ · · · ∗ Cq+1
9
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(B, j) = 1!

!
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!

&

p

(A, i) = q + 1 q + 1a0 a1
e

! !

Figure 1. Covering p : (B, j) −→ (A, i) of Example 1

((q+1)-factors), and let Γ = Cq+1∗Cq+1, where Cq+1 denotes the cyclic group of order q+1. We
obtain the inclusion Λ ≤ Γ of discrete subgroups of G = Aut(Xq+1). In Section 8 we show how
to embed this lattice pair into a locally compact subgroup H of G, such as a K-rank 1 simple
algebraic groups over nonarchimedean local fields K with residue class field Fq with q = 2s, or
when q = 2s, a rank 2 locally compact Kac-Moody groups over Fq.

Example 2. Consider the covering p : (B, j) −→ (A, i) shown in Figure 3. This is an example
of a covering of edge-indexed graphs where both (A, i) and (B, j) are unimodular and have
bounded denominator. However no covering morphism of faithful graphs of finite groups exists.
To see this we can look at the orders of the groups at each vertex relative to the orders of the
groups at the base vertices a0 and b0. In the graph (A, i) a group at a vertex an must be of

order 2
n+1
2 times the order of the group at a0. The order of a group at a vertex bn lying above

an must be of the order 2n times the order of the group at b0. Since the order of the group ai
must be at least as large as the order of the group at bi we must have the order of the group at
a0 is infinite. Note that the covering here satisfies (GCF) but does not satisfy (RBD).

Example 3. For each n ≥ 1 consider the covering pn : (Bn, jn) −→ (A, i) shown in Figure
4. For each n ≥ 1 we have a covering of edge-indexed graphs where both (A, i) and (B, j) are
unimodular and have bounded denominator. Yet when n ≥ 4 no covering of faithful graphs of
finite groups exist. Unlike the last example, both graphs here are finite. The problem, though,
can still be seen by examing forced requirements for the orders of groups. Since the order of the
group at b0 is at least 2, the order of the group at bk is at least 22k+1 for k < n and the order of
the group at bn is at least 3 · 2n. Thus the order of the group at a0 is also at least 3 · 2n which
is not possible for a faithful grouping of (A, i) when n ≥ 4 by a result of Goldschmidt [G].

We note that although (RBD) and (GCF) together are sufficient for the existence of our desired
graph of group coverings,(GCF) is not a necessary condition. This leads to an interesting
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Figure 2. Covering morphism Φ : B −→ A of Example 1

question. While our proof of theorem 6 certainly made use of (GCF) (via lemma 5), perhaps it
could be proven without this condition.

Question 7.1. If we are given a covering of unimodular edge-indexed graphs having bounded de-
nominator, is (LCF) + (RBD) sufficient for the existence of an extension to a covering morphsim
of faithful graphs of finite groups?

8. Lattices in H ≤ G = Aut(X)

We now turn our attention to the problem of constructing lattices in a closed, hence locally
compact subgroup H of G = Aut(X) for X a locally finite tree. Our methods will apply to the
case where X is homogeneous. It is well known that if H = SL2(Fq((t−1))), then H has Bruhat-
Tits tree X = Xq+1. If instead H is a rank 2 locally compact complete affine or hyperbolic
Kac-Moody group over a finite field Fq corresponding to any 2 × 2 generalized Cartan matrix,
then H has Tits building the homogeneous tree X = Xq+1 ([CG]). The group

H/
(
∩g∈HgBg−1

)

acts faithfully on X, the defining homomorphism

ρ : H/
(
∩g∈HgBg−1

)
↪→ Aut(X)
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Figure 3. Covering p : (B, j) −→ (A, i) of Example 2

is continuous and the image is closed. The quotient topology on H/
(
∩g∈H gBg−1

)
coincides

with that induced by the natural topology on Aut(X), where the stabilizers of finite sets of
vertices form a fundamental system of compact open neighborhoods of the identity ([CG]).

We now make some remarks about the existence of cocompact lattices in the rank 2 locally
compact complete affine or hyperbolic Kac-Moody group H over a finite field Fq corresponding
to any 2 × 2 generalized Cartan matrix. In [CC], the authors realized Γ = Cq+1 ∗ Cq+1 as a
cocompact lattice in H when q = 2s. In [CT], the authors classified the finite subgroups of
H. Capdeboscq (Korchagina) and Thomas also gave a classification up to isomorphism of all
cocompact lattices with torsion and with quotient a simplex in rank 2 locally compact Kac-
Moody groups H over finite fields when the generalized Cartan matrix is symmetric. They
showed that if q = 2s, then H contains a lattice Γ = Γ1 ∗Γ0 Γ2 where Γi = Γ0 × Hi with
Hi

∼= Cq+1 and Γ0 a cyclic subgroup of a maximal split torus T in H whose order divides (q−1).
Thus when q = 2, Γ is the free product C3 ∗ C3.

So far we have only discussed the construction of lattices with quotient a simplex. In this set-
ting, a detailed analysis of the possible lattice subgroups can be obtained. In order to construct
cocompact lattices with other quotient graphs, there are many issues to consider. We refer the
reader to [BCR] and [C2] for a discussion of the existence of tree lattices.

We now give example of lattice subgroups pairs Γ′ ≤ Γ ≤ H of a given cocompact lattice Γ.
We first build on Example 1 of Section 7. In Section 9 we describe how to extend this to give
infinite descending chains of cocompact lattices over Γ.
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Figure 4. Covering pn : (Bn, jn) −→ (A, i) of Example 3

Proposition 8.1. Let H denote the group SL2(Fq((t−1))). Let q = 2s. Let Γ denote the lattice
subgroup Cq+1 ∗ Cq+1 of H. Then there is a lattice Γ′ ≤ Γ ≤ H with graph of groups B:
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Thus Γ′ ∼= π1(B) ∼= Cq+1 ∗ · · · ∗ Cq+1, ((q+1)-factors), is a cocompact lattice in H.

Proof In Example 1 of Section 7 we proved that there is a covering morphism of graphs of
groups Φ : B −→ A where A is the graph of groups for Γ ∼= Cq+1 ∗ Cq+1 ≤ H. Thus

Γ′ ∼= π1(B) ∼= Cq+1 ∗ · · · ∗ Cq+1 ≤ Γ ∼= Cq+1 ∗ Cq+1 ≤ H. !

When q = 2 and A is any 2× 2 generalized Cartan matrix, it was shown in [CC] that a rank
2 locally compact affine or hyperbolic Kac-Moody group H = HA(F2) over the field F2 contains
the lattice pair Γ ≤ Γ′, where Γ′ is the free product C3 ∗ C3 and Γ ∼= C3 ∗ C3 ∗ C3.

Proposition 8.2. Let H denote the group SL2(F2((t−1))) or a rank 2 locally compact affine or
hyperbolic Kac-Moody group over the finite field F2 corresponding to any 2×2 generalized Cartan
matrix. Let Γ denote the lattice subgroup C3 ∗C3 of H. Then there is a lattice Γ′ ≤ Γ ≤ H with
graph of groups B as in Figure 5. Thus Γ′ ∼= π1(B) ∼= C3 ∗ C3 ∗ Z is a cocompact lattice in H.

Proof Let (A, i) be the edge indexed graph corresponding to the lattice C3 ∗ C3 of H:

3 3! !(A, i) =

Let (B, j) be the edge indexed graph corresponding to B. The covering p : (B, j) −→ (A, i) of
edge indexed graphs is evident. We have the abelian grouping C3 ∗ C3 of (A, i). This may be
lifted to an abelian grouping of (B, j). Thus there is a covering morphism of graphs of groups
Φ : B −→ A, and

Γ′ ∼= π1(B) ∼= C3 ∗ C3 ∗ Z ≤ Γ ∼= C3 ∗ C3 ≤ H. !
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C3C3 {1} {1}
B =

Figure 5. The graph of groups B as in Proposition 8.2

9. A new example of infinite descending chains of lattices in H ≤ G = Aut(X)

We take H to be a rank 2 locally compact complete affine or hyperbolic Kac-Moody group
H over a finite field Fq corresponding to any 2 × 2 generalized Cartan matrix so that the Tits
building of H is the homogeneous tree X = Xq+1. We now describe how to construct infinite
descending chains of cocompact lattices over a cocompact lattice Λ ≤ H. The method we give
here was first described in [CC] and [Co]. We refer the reader to these references for detailed
examples.

In general, by a result of Bass and Kulkarni ([BK]), all cocompact tree lattices are finitely
generated and virtually free. Thus any cocompact lattice in G has a residually finite subgroup of
finite index. It is known that residually finite groups can admit descending chains of subgroups.
However, we do not use residual finiteness to construct infinite descending chains over the lattices
in this section.

Our strategy here is to extend coverings of edge-indexed graphs to covering morphisms of
graphs of groups with abelian groupings. This provides a new tool for constructing descending
chains of subgroups in locally compact groups that act on trees. This method is constructive
and allows us to determine the quotient graphs of groups, the group presentations and the
covolumes of all sublattices in the descending chain. This method is not specific to cocompact
lattices in Kac-Moody groups and may be used to produce finite or infinite descending chains of
subgroups acting on trees with abelian stabilizers in a general setting. For example, our method
also applies to lattices that are not residually finite, such as nonuniform lattices, though we do
not consider this case here.

The main observation is the following. If H contains a cocompact lattice Γ with quotient
Γ\X a simplex, with abelian vertex groups and edge-indexed graph (A, i) = I(Γ\\X)

15



(A, i) = q + 1 q + 1a0 a1
e

! !

with q ≥ 3, then there is an infinite descending chain of cocompact lattices

. . .Γ3 ≤ Γ2 ≤ Γ1 ≤ Γ ≤ H ≤ G,

where the Γi, i ≥ 1, have abelian vertex groups. The infinite descending chain is constructed by
iterating a method known as ‘open fanning’ which provides an infinite sequence of edge-indexed
coverings and then extending these coverings of edge-indexed graphs to covering morphisms
with abelian groupings. This method was used extensively in [CC] and [Co]. We give a specific
example here, inside a locally compact complete rank 2 Kac-Moody group H over the field of
two elements.

Theorem 9.1. Let H be a locally compact complete rank 2 Kac-Moody group over the field
F2. Then H contains an infinite descending chain . . .Γ3 ≤ Γ2 ≤ Γ1 of cocompact lattices with
distinct fundamental domains, with

Γk
∼= ∗3Z/3Z ∗mk Z where

mk =






0 if k = 1

2 if k = 2

8
∑ k−3

2
j=0 3

2j if k odd, k ≥ 3

24
∑ k−4

2
j=0 3

2j + 2 if k even, k ≥ 4,

and V ol(Γk) = 2 · 3k−1.

Proof. We recursively construct a sequence of edge-indexed coverings as follows:

(1) Let (B1, i1) be the edge-indexed tripod (3-star) as in Figure 6 which is an edge indexed
covering of the simplex (A, i). Choose two edges e1, e2 of B1 with index i1(e1) = i1(e2) =
3.

(2) Let (B2, i2) be an open fanning of (B1, i1) on the bridge {e1, e2}.
(3) For each k ≥ 2, choose two edges e1, e2 of Bk with index 3 and let (Bk+1, ik+1) be an

open fanning of Bk on {e1, e2}.

The general scheme for the open fanning on two edges is given in Figure 7. Note that no graph
in the sequence (after the initial tripod) is a tree. In particular these cycles introduce copies
of Z in the free product decomposition of the fundamental groups. It is easy to see from the
schematic that for k ≥ 1, if Bk has mk edges outside its spanning tree then Bk+1 has 3mk + 2
edges outside its spanning tree. An easy induction combined with the recursive relationship
gives the general formula

mk =






0 if k = 1

2 if k = 2

8
∑ k−3

2
j=0 3

2j if k odd, k ≥ 3

24
∑ k−4

2
j=0 3

2j + 2 if k even, k ≥ 4,
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e1 e2

p

Figure 6. covering of edge-indexed graphs p : (B2, i2) −→ (B1, i1)

Note also from the scheme above that if Bk has three edges of index 3 (one in the center subgraph
plus the two edges of the bridge), then Bk+1 also has three edges of index 3 (one in each of copies
of the central subgraph of Bk). Since the tripod has three edges of index 3, it follows that every
graph in the sequence has exactly three edges of index 3. Then the corresponding groupings Bk

consist of three copies of Z/3Z at each initial vertex of these index 3 edges and trivial groups
elsewhere. Each Bk is an abelian grouping with trivial edge groups, and thus for k ≥ 2 the edge-
indexed covering pk : (Bk, ik) → (Bk−1, ik−1) extends to a covering morphism φk : Bk → Bk−1.
This gives the desired sequence of corresponding covering morphisms of graphs of groups and
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B

B

(Bk, ik) =

(Bk+1, ik+1) =

Figure 1. general schematic of open fanning on two edges

1

Figure 7. schematic of open fanning on two edges

the embeddings of their fundamental groups

Γk = π1(Bk) ∼= ∗3Z/3Z ∗mk Z
These Γk form an infinite descending chain of cocompact lattices.

Finally, note that the open fanning of (Bk, jk) produces three copies of the middle subgraph
with the same grouping on these vertices. The two initial vertices of the bridge fan from degree
1 vertices to degree three vertices, changing the groups at these vertices from Z/3Z to trivial
groups. This observation yields a recursive definition of the covolume. Since V ol(Γ1) = 2,
another easy induction shows for k ≥ 2,

V ol(Γk) = 3(V ol(Γk−1)− 2(
1

3
)) + 2 = 3V ol(Γk−1) = 2 · 3k−1.

!
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