
Mathematical Research Letters 6, 439-447 (1999)

LATTICES IN KAC-MOODY GROUPS

Lisa Carbone and Howard Garland

§0. Introduction

Initially, we set out to construct non-uniform ‘arithmetic’ lattices in Kac-Moody
groups of rank 2 over finite fields, as constructed by Tits ([Ti1], [Ti2]) using the Bruhat-
Tits tree of a Tits system for such groups. This attempt succeeded, and in fact, the
construction we used can be applied to higher rank Kac-Moody groups over sufficiently
large finite fields, and their buildings (Theorem 1.7 below). After completing this work,
we learned that B. Remy has obtained an equivalent result for the more general class of
almost split Kac-Moody groups ([R1], [R2]).

We have also constructed an uncountably infinite family of non-uniform lattices in
the rank 2 Kac-Moody case, that is, we have succeeded in carrying over A. Lubotzky’s
construction of non-uniform lattices in SL2 over a Laurent series field (Theorem 2.9
below). The basic tool for this extension is a (new) spherical Tits system (Theorems
2.2 and 2.7 below). It remains to determine whether, as in the case of SL2, we have
constructed uncountably many distinct conjugacy classes of non-uniform lattices within
the Kac-Moody group.

In further analogy with Lubotzky’s construction of lattices in SL2, we have constructed
an uncountably infinite family of cocompact lattice subgroups of rank 2 Kac-Moody
groups. Once again, it remains to determine if there are uncountably many distinct
conjugacy classes of these lattices.

In rank 2, the Kac-Moody groups and their lattice subgroups fail to have property T
(Proposition 4.1 below). In contrast to this, in the higher rank case, a result of Dymara
and Januszkiewicz ([DJ]) implies that certain ‘hyperbolic’ Kac-Moody groups do have
property T . Hence, the lattices that we construct in these cases are finitely generated
and have finite commutator quotients.

Detailed proofs of the results mentioned above will appear elsewhere.
The authors would like to thank B. Remy and T. Januszkiewicz for their correspon-

dence, and for informing us of their results. Thanks to A. Lubotzky for encouraging us
to undertake this work and for explaining his constructions to us, and to H. Bass for
many illuminating conversations.
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§1. The setting

Let A = (Aij)i,j=1,...,l be an irreducible l×l symmetrizable generalized Cartan matrix.
Let g(A) be the Kac-Moody algebra over C corresponding to A. We have, as usual, the
generators ei, fi, hi, i = 1, . . . , l of g(A) ([K]). Let αi be the simple root corresponding
to ei, i = 1, . . . , l. For a field k, let G0 = G0

A(k) be the minimal group associated to
A and k, as in Tits ([Ti1]), and let G = GA(k) be the corresponding completion, also
constructed in [Ti1].

We have BN -pairs

(1.1) (B0, N) in G0,

(1.2) (B, N) in G,

where W ∼= N/B0 ∩N ∼= N/B ∩N is the Weyl group of the matrix A. In particular,
we have Bruhat decompositions

(1.3) G0 = B0WB0,

(1.4) G = BWB.

From now on, we assume that k is a finite field. In this case, G has the structure of
a locally compact, totally disconnected, unimodular, topological group, with B an open
compact subgroup. The subgroups of B of finite index constitute a basis of neighborhoods
of the identity in G.

In G0, there is an opposite (or twin) BN -pair (B−, N) (see [Ti2]). One has a second
corresponding Bruhat decomposition

(1.5) G0 = B−WB−,

with W ∼= N/B− ∩ N . We also have, in addition

(1.6) G0 = B−WB0

From (1.6), we can easily deduce

(1.6a) G = B−WB,

where we now regard B− as a subgroup of the larger group G. We set q = |k|, the
cardinality of the finite field k. We have the following:

Theorem 1.7. Let P− ⊆ G0 be a proper standard parabolic subgroup for the BN -pair
(B−, N), (thus B− ⊆ P−

� G0). Assume that the submatrix of A corresponding to P−

is positive-definite. If q > l, then P− is a non-uniform lattice in G.

The proof of Theorem 1.7 follows easily from 1.6a. One can compute the isotropy
groups for B− on the cosets w ·B, w ∈ W in G/B, and obtain that suitably normalized,
the covolume of B− is given by the infinite series

∑

w∈W

1
ql(w)

,

which is convergent (in fact, dominated by a convergent geometric series) provided q > l.
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1.8 Remarks.
(1) If P− corresponds to a positive-definite submatrix of A, then B−\P− is finite.

Hence, if B− is a lattice, then so is P−.
(2) When l = 2, one has that the Bruhat-Tits building X associated to (B, N) is a

homogeneous tree of degree q + 1. In this case, B− is also a non-uniform lattice
in the automorphism group of the q + 1-homogeneous tree.

When l = 2, the structure theory of discrete groups that act on trees with infinite
quotient but finite covolume ([BL]) gives the following.

Corollary 1.9. When l = 2, the group B− is not finitely generated.

It follows that the group B− cannot have Kazhdan’s property T (see §4.). Corollary
1.9 is in contrast to the higher rank case where our lattices do have property T and so
are finitely generated (see §5.).

We say that the matrix A is hyperbolic if every proper subdiagram has corresponding
matrix A′ which is positive, semi-definite, but A itself is neither classical nor euclidean.

This notion of hyperbolicity is closely related to, but somewhat different from the
more usual notions such as those of [CS], [Mo].

§2. The tree case

We now take l = 2, and A symmetric. We have

A =
(

2 −m
−m 2

)

for m ≥ 2. When m = 2, we say that A is affine. For m > 2, A is hyperbolic. When l = 2,
the Weyl group W is generated by two simple root reflections w1, w2, corresponding to
the simple roots α1, α2. Let X = Xq+1 be the Bruhat-Tits tree of the BN -pair (B, N),
and let A0,+ be the ray in X whose edges are indexed by

(2.1) {w · B}w∈W, l(w1w)>l(w),

where l(.) is the length function on W .
Let B ⊆ G be the stabilizer of the end determined by A0,+. Then

Theorem 2.2. G = B � Bw1B.

Moreover, we can explicitly describe the structure of B. To this end, we let ∆W denote
the set of Weyl roots of g(A), and we set t = w1w2. Then we have:

(2.3) ∆W = ∆W,1 � ∆W,2,

where

(2.4) ∆W,1 = {−α2, −w2α1, −w2w1α2, . . . } ∪ {α1, w1α2, w1w2α1, . . . },

∆W,2 = {−α1, −w1α2, −w1w2α1, . . . } ∪ {α2, w2α1, w2w1α2, . . . }.
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We let

(2.5) U = {closed subgroup of G generated by all χα(s)},

where s ∈ k, α ∈ ∆W,1, and

(2.6) χα(s) = exp(seα), eα = we1, α = wα1.

Let
T = {tn}n∈Z,

and
BI =

⋂

w∈W

wBw−1.

We have the following.

Theorem 2.7. B = UTBI = UBIT = BITU . . .

In particular,

(2.8) G/B = B/B � (Uw1B/B) = (w1B/B) � (U−B/B),

where U− = w−1
1 Uw1.

The spherical building corresponding to Theorem 2.2 is 0-dimensional, and may be
identified with G/B. By 2.8, we have

G/B ∼= (U �∞)

which we may identify with ∂X, the boundary of the Bruhat-Tits tree X = Xq+1.
We let ∆ be the subgroup of G generated by all χα(s), where α is negative, and

α ∈ ∆W,1. Then ∆ is a cocompact lattice in U , and following Lubotzky ([L1]), we
enlarge ∆ to a non-uniform lattice in G in the following way.

We let g0 = id, g1 . . . , gq in P1 be a set of coset representatives for P1/B, where
q = |k|. For i = 0, . . . , q, let ∆i = gi∆g−1

i . In analogy with Lubotzky’s construction of
non-uniform lattices in SL2 over a non-archimedean local field of characteristic p > 0
([L1]), and using Theorems 2.2 and 2.7, we have the following:

Theorem 2.9. Let Γ be the group generated by ∆0, . . . ,∆q. Then Γ is a non-uniform
lattice in G, and moreover, Γ is the free product of the ∆i, i = 0, . . . , q.

The covolume of Γ, suitably normalized, is given by:

1 + (q + 1)
∞∑

i=1

1
qi

=
2q

q − 1
,

which is finite.
By varying the gi over the open set B/(B ∩ NG(∆)), where NG(∆) denotes the nor-

malizer in G of ∆, for i = 1, . . . q, we have an uncountably infinite family of non-uniform
lattices here, parametrized by an open set of the form:

(2.10) P(Γ, G) = B/(B ∩ NG(∆)) × · · · × B/(B ∩ NG(∆))

(q factors).
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Lemma 2.11. We have NG(∆) ⊆ B.

The question arises as to whether we have uncountably many distinct conjugacy classes
of lattices in G.

We have natural maps:

B/(B ∩ NG(∆)) × · · · × B/(B ∩ NG(∆))

↓

B/(B ∩ B) × · · · × B/(B ∩ B)

↓

G/B × · · · × G/B,

∼=
(U �∞) × · · · × (U �∞)

∼=
∂X × · · · × ∂X.

(q factors).
We have the following:

Conjecture 2.12. The diagonal action of G on

G/B × · · · × G/B

(q factors), has the property that every orbit is nowhere dense.

An affirmative answer to Conjecture 2.12 would imply the existence of uncountably
many conjugacy classes of non-uniform lattices in G.

Suppose that A is affine, that is,

A =
(

2 −2
−2 2

)
.

Then G is a central extension ŜL2

1 −→ k× −→ ŜL2 −→ SL2 −→ 1

of SL2 over a Laurent series field Lk, in one variable, over the finite field k, by the (one
dimensional) multiplicative group k×.

In this case, our uncountably infinite family of non-uniform lattices essentially co-
incides with Lubotzky’s construction of uncountably many conjugacy classes of non-
uniform lattices in SL2(Lk) ([L1], p415), where Conjecture 2.12 can be easily verified by
dimension counting for q ≥ 4, where q = |k|. Thus Conjecture 2.12 is true for m = 2,
and q ≥ 4.
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An affirmative answer to Conjecture 2.12 would also permit the following discussion
about certain representation spaces of Γ in G.

The non-uniform lattice Γ that we constructed in Theorem 2.9 is not finitely gen-
erated (see also Corollary 1.9). Following A. Weil ([We]) we may obtain the following
topological description of Hom(Γ, G). We may view Hom(Γ, G) as the subspace of all
homomorphisms (with the induced topology) of the space

GΓ = {f : Γ −→ G} =
∏

γ∈Γ

G,

of all maps from Γ to G, with the product topology. Let

Hom0(Γ, G) = {ρ ∈ Hom(Γ, G) | ρ is injective, ρ(Γ) is discrete,

has infinite fundamental domain and finite covolume.}
We recall that our uncountably infinite family of non-uniform lattices is parametrized by
an open set of the form (see 2.10):

P(Γ, G) = B/(B ∩ NG(∆)) × · · · × B/(B ∩ NG(∆))

(q factors). Any choice of the elements (g1, . . . , gq) (as in Theorem 2.9) from P(Γ, G)
gives rise to a non-uniform lattice with fundamental domain isomorphic to that of Γ, and
the same covolume as Γ.

We have a continuous map

φ : P(Γ, G) −→ Hom0(Γ, G).

We ask the following:

Question 2.13. Is the image of P(Γ, G) open in Hom0(Γ, G)?

We do not even know if the answer to Question 2.13 is affirmative for Lubotzky’s
non-uniform lattices Γ in SL2 (see ([L1], p415) and [C]).

§3. Cocompact lattices - the Schottky construction

In the ‘tree case’; that is, l = 2, we can also exhibit an uncountably infinite family of
cocompact lattices in G, once again, in analogy with Lubotzky’s construction of cocom-
pact lattices in a simple rank 1 group over a non-archimedean local field of characteristic
p ≥ 0. We use Lubotzky’s generalization of the construction of classical Schottky groups
of automorphisms of the upper-half plane.

Theorem 3.1. When l = 2, the group G contains an uncountably infinite family of
cocompact lattices which are finitely generated free groups that are generated by hyperbolic
tree automorphisms (elements of infinite order which act as translations along a linear
axis), and that act on the Bruhat-Tits tree X = Xq+1 with finite fundamental domain.

The uncountably infinite family of cocompact lattices is parametrized by an open set
of the form:

(3.2) P(Γ, G) = g1Bg′1 × · · · × grBg′r,

(r = q2 factors), where gi, g
′
i ∈ G. Any choice (g1b1g

′
1, . . . , grbrg

′
r) ∈ P(Γ, G) generates a

free cocompact lattice of rank r = q2 in G, with the same fundamental domain as Γ.
We have the following:
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Conjecture 3.3. The group G contains uncountably many distinct conjugacy classes of
cocompact lattices.

As in §2, Conjecture 3.3 is true when A is affine, and we can verify the conjecture by
dimension counting.

Since Γ is free, we may identify Hom(Γ, G) with

G × · · · × G,

(q2 factors, one for each generator of Γ). Let

Hom0(Γ, G) = {ρ ∈ Hom(Γ, G) | ρ is injective, ρ(Γ) is discrete, free and cocompact}.

Let P(Γ, G) be as in 3.2. We have a continuous map

φ : P(Γ, G) −→ Hom0(Γ, G).

We have the following:

Conjecture 3.4. The image of P(Γ, G) is open in Hom0(Γ, G).

We know that Conjecture 3.4 is true for Lubotzky’s cocompact lattices in SL2 (see
([L1], pp407), and [C]).

§4. Failure of property T in rank 2

If a property T group H acts on a tree, then the group H must fix a vertex ([VH]).
Therefore, if a non-compact group G acts on a tree with compact vertex stabilizers, G
cannot have property T . This is the case for the group G = GA(k) in the case l = 2, and
thus we have the following.

Proposition 4.1. When l = 2, the group G does not have Kazhdan’s property T .

For a locally compact group H containing lattices, H has property T if and only if
lattices of H have property T . Thus we obtain the following.

Corollary 4.2. When l = 2, lattices of G do not have Kazhdan’s property T .

As we remarked in §1, Corollary 4.2 also follows from the fact that B− cannot be
finitely generated. Proposition 4.1 and Corollary 4.2 are in contrast to the higher rank
case (see §5.).

§5. Cohomology

In this section, we assume that all proper submatrices Aθ of A of the form

Aθ = (Aij)i,j∈θ,

where θ is a proper subset of {1, . . . , l}, are positive definite. One can in fact weaken this
assumption, but we make it here, nevertheless, for the sake of simplicity.

For l ≥ 3, the methods of Garland in [G] yield results for various cohomologies on the
Bruhat-Tits building X associated with (B, N), and on discrete subgroups Γ ⊆ G (see
also Ballmann-Swiatkowski ([BSw]), Pansu ([P]) and Zuk ([Z])). For example, we have
the following.
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Theorem 5.1. Let Γ ⊆ G be a cocompact lattice of G, and let

ρ : Γ −→ Aut(V )

be a unitary representation Γ in the complex Hilbert Space V (not necessarily finite di-
mensional). If l ≥ 3, and if q = |k| is sufficiently large, then

Hi(Γ, ρ) = 0, 0 < i < l − 1.

By Theorem 5.1 and [VH] we have the following.

Corollary 5.2. Given G and q as in the theorem, if G contains a cocompact lattice,
then G has property T .

Applying the result of Valette and de la Harpe ([VH]) in this way has already been
utilized in the works of Ballmann-Swiatkowski, Pansu and Zuk cited above.

If G is affine, then by Borel-Harder ([BH]), we may deduce that G contains cocompact
lattices when l ≥ 3. However, if G is not affine, we do not know if G contains cocompact
lattices when l ≥ 3.

During the preparation of this work, Dymara and Januszkiewicz brought their work to
our attention ([DJ]). They have also used the results in [G], to obtain vanishing theorems,
but in addition, they applied the argument of the Casselman-Wigner Theorem ([CW],
Th. 2, p209), to compute the continuous cohomology of G, and hence, in that way, to
prove that G has property T .

It then follows (see, in contrast, Corollary 4.2) that a lattice, (cocompact or non-
uniform), Γ ⊆ G has property T . In particular, Γ is finitely generated and has finite
commutator quotients. This is the case for the subgroups P− as in Theorem 1.7.
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