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ABSTRACT. We define Eisenstein series on rank 2 hyperbolic Kac-Moody groups over R, induced
from quasi—characters. We prove convergence of the constant term and hence the almost everywhere
convergence of the Eisenstein series. Then we calculate other Fourier coefficients of the series. We
also consider Eisenstein series induced from cusp forms and show that these are entire functions.

1. INTRODUCTION

After being developed by Langlands [Lall [La2] in great generality, the theory of Eisenstein series
has played a fundamental role in the formulation of the Langlands functoriality conjecture and
in the study of L—functions by means of the Langlands—Shahidi method. Eisenstein series also
appear in many other places throughout number theory and representation theory. The scope
of applications is being extended to geometry and mathematical physics. On the other hand,
since we have seen many successful generalizations of finite dimensional constructions to infinite
dimensional Kac-Moody groups [Kl [Ku], it is a natural question to ask whether one can generalize
the theory of Eisenstein series to Kac—-Moody groups. Such an attempt is not merely for the sake
of generalization. Even though it is hypothetical for the present, a satisfactory theory of Eisenstein
series on Kac-Moody groups would have significant impact on some of the central problems in
number theory [BFH] [Sh]. It has recently come to light that these Eisenstein series may also play
a role in certain supergravity theories [BCG].

In pioneering work, Garland developed a theory of Eisenstein series for the affine Kac—-Moody
groups over R in a series of papers [G99, [G04] [GO6l [GMST], I[GMS2], [GMS3, [GMS4, |[G11], and he
established absolute convergence and meromorphic continuation. The absolute convergence result
has been generalized to the case of number fields by Liu [Li]. In a recent preprint [GMP], Garland,
Miller and Patnaik showed that Eisenstein series induced from cups forms are entire functions.
Garland’s idea was extended to the function field case by Kapranov [Ka] through geometric methods
and was systematically developed by Patnaik [P]. An algebraic approach to this case was made by
Lee and Lombardo [LL]. Braverman and Kazhdan’s recent preprint [BK] announces further results
in the function field case.

The purpose of this paper is to construct and study Eisenstein series on rank 2 hyperbolic Kac—
Moody groups over R, generalizing Garland’s work in the affine case. In [BCG], the authors defined
Eisenstein series on higher rank hyperbolic Kac—-Moody groups in analogy with the rank 2 case,
studied in [CGGL] for Kac-Moody groups over finite fields.
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The rank 2 hyperbolic Kac-Moody groups form the first family beyond the affine case. However,
in contrast to the affine case, our understanding of hyperbolic Kac-Moody groups (and algebras)
is far from being complete. In particular, information regarding imaginary root multiplicities of
hyperbolic Kac-Moody algebras is limited. A recent survey on this topic can be found in |[CEFL].

Nevertheless, we have the necessary information to construct Eisenstein series induced from
quasi—characters on rank 2 hyperbolic Kac—-Moody groups and to prove their almost everywhere
convergence, thanks to the works of Lepowsky and Moody [LM], Feingold [Fein] and Kang and
Melville [KM] on rank 2 hyperbolic root systems. We can also prove entirety of the Eisenstein
series induced from cusp forms using the structure of rank 2 hyperbolic root systems and some of
the ideas from [GMP]. Indeed, one of the benefits of working in the Kac-Moody group rather than
its Kac—Moody algebra, is that the group is generated by root groups corresponding to only ‘real’
roots. The ‘real’ part of the Kac—-Moody algebra is sufficiently well understood and carries many
properties similar to finite dimensional simple Lie algebras [CG].

We assume that G is a rank 2 hyperbolic Kac-Moody group attached to a symmetric 2 X 2 gener-
alized Cartan matrix, and we define Eisenstein series on the ‘arithmetic’ quotient K(Gr)\Gr/Gz,
where K = K(Gg) is the unitary form of G, an infinite dimensional analogue of a maximal compact
subgroup. Our method is to choose a quasi—character v on a Borel subgroup and then extend it
to the whole of Gy via Iwasawa decomposition Gg = KA1 N, which is given uniquely. We then
average over an appropriate quotient of Gz to obtain a Gz—invariant function F,(g) on K\Gr/G7.
Our first main result is:

Theorem 1.1. Assume that v satisfies Godement’s criterion, and consider the cone
Al={ac AT :a% < 1,i =1,2},

where ay, ag are the two simple roots. Then for any compact subset Al of A’, there is a measure
zero subset Ny of N such that E,(g) converges absolutely for g € KA.N', where N' = N — Np.

Although the idea of the proof is similar to that of [G04], our proof heavily depends on a concrete
description of root systems of rank 2 hyperbolic Kac—-Moody algebras. We compute the constant
term of the series E,(g) and show that the constant term is absolutely convergent, which implies
almost everywhere convergence of the series. We conjecture that the Eisenstein series actually
converges everywhere under a weaker condition than Godement’s criterion (See Conjecture .
As the argument in [GO6] does not generalize to the hyperbolic case, the conjecture seems out of
reach at the current time.

We also calculate other Fourier coefficients of the Eisenstein series in Section [6] Let 1 be a
non-trivial character of N/Gz N N. Then we can write ¢ = 1112, where 1; corresponds to the
simple root «a; for ¢ = 1,2. We call ¥ generic if each 1); is non-trivial for ¢ = 1,2. We first show
that the Fourier coefficients attached to generic characters vanish (Lemma . Then we consider
characters of the form ¢ = ; (i.e. either ¥; or 1y is trivial) and compute the corresponding
Fourier coefficients. The resulting formula is an infinite sum of products of the n-th Whittaker
coefficient of the analytic Eisenstein series on SLo and quotients of the completed Riemann zeta
function (Theorem [6.2]).

The next main result is the entirety of the Eisenstein series E; r(¢) induced from a cusp form
f. Our approach is similar to that of Garland, Miller and Patnaik in [GMP]; however, our method
requires us to use information about the structure of the root system of G. We obtain:

Theorem 1.2. Let f be an unramified cusp form on SLo. For any compact subset Al of A', there
is a measure zero subset No of N such that E f(g) is an entire function of s € C for g € KA,N’,
where N' = N — Nj.
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As mentioned earlier, rank 2 hyperbolic Kac—-Moody algebras and groups form the first family
beyond the affine case. It would be interesting to generalize the results of this paper to other
hyperbolic Kac-Moody groups, for example, to the Kac-Moody group corresponding to the Feingold
and Frenkel’s rank 3 hyperbolic Kac-Moody algebra [FE]. Steve Miller has informed us that he can
prove that for general Kac-Moody groups, the Eisenstein series E, (g) converges almost everywhere
inside a cone in the region Re v(h,,) < —2 for each simple coroot h,,, and that almost everywhere

7

convergence can likely be extended to the full region Re v(h,,) < —2. It will be very exciting to

7

see further developments toward a satisfactory theory of Eisenstein series on Kac—Moody groups.

Acknowledgments We would like to thank S. D. Miller and M. Patnaik for helpful discussions.

2. RANK 2 HYPERBOLIC KAC—MOODY ALGEBRAS AND Z—FORMS

Let g = gc be the rank 2 hyperbolic Kac-Moody algebra associated with the symmetric gener-

alized Cartan matrix
( 2 —m) , m > 3.
—-m 2

Let b = he be a Cartan subalgebra. Let ® be the corresponding root system and let &4 denote
the positive and negative roots respectively. Let

g =g @hogh
be the triangular decomposition of g, where

=P s, 7= P 0o

acd_ acd

Let W = W (A) be the Weyl group of g. We have
W(A) = (ri,r | =173 =1)
which is the infinite dihedral group
W =Z/2Z « )27 = 7 x {+1},
where ((r179)) = Z.

A root o € ® is called a real root if there exists w € W such that wa is a simple root. A root
« which is not real is called imaginary. We denote by ®"¢ the set of real roots and ®*™ the set of
imaginary roots.

Set I = {1,2}. We let A C h* be the Z-linear span of the simple roots a;, for i € I, and AY C b
be the Z-linear span of the simple coroots h,, for ¢ € I. Let e; = e,, and f; = f,, be root vectors
in g corresponding to simple roots «y, @ € I. Let Ug, Z/l(ér and Us be the universal enveloping
algebras of g, g and g~ respectively. We define the following Z-subalgebras: Let

n
(1) U C L{(ér be the Z-subalgebra generated by % for i € [ and n > 0,
n

(2) U, CUg be the Z-subalgebra generated by f—" for i € I and n > 0,
n!

(3) U2 CU(hc) be the Z-subalgebra generated by <Z>, for h € AV and n > 0, where

(h) h(h—1)...(h—n+1)

n n!

)
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(4) Uz C Uc be the Z-subalgebra generated by e—i', fil for i € I and <Z>, for h € AV and
n!’ n!

n!
n > 0.
It follows ([Til]) that Uz is a Z—form of Ug, i.e. the canonical map
Uy ®7 C — Uc
is bijective.
Recall g™ = ®a6<1>+ go- Let V be a representation of g. Then V is called a highest weight
representation with highest weight A € h* if there exists 0 # vy € V such that

g () =0,  h(vy) = A(h)vx

for h € h and
V =Uc - vy.

Since g™ annihilates vy and b acts as scalar multiplication on vy, we have
V= Z/[(E cU)-

We write V = V?* for the unique irreducible highest weight module with highest weight .

We shall construct a lattice Vz in V' by taking the orbit of a highest weight vector vy under Uz.
We have Z/li|r - v\ = Zw) since all elements of Z/li|r except for 1 annihilate vy. Also le% acts as scalar

multiplication on vy by a Z—valued scalar, since <Z> for h € AY and n > 0 acts on v as

(A(h)) _AWOE =1 AR —nt )

n n!

Thus
Uy - vy = Zuvy, Uz -vxn =Uy, - (Zvy) = Uy - vy

Let « be any positive real root and let e, and f, be root vectors corresponding to a and —«
respectively. Then
fa
|

=y € V_na-
n

For a weight © < A we have

en

o
—v, €V, .
n! * penex

We set
Vi = Uz -vy = Uy -vy.
Then V7 is a lattice in V¢ and a Uz-module.
For each weight p of V', let V,, be the corresponding weight space, and we set
Viz = VunVg.
We have
Vo = ®uVyuz,
where the sum is taken over the weights of V. Thus V7 is a direct sum of its weight spaces. We set
Vir = R®zV,z

so that
W =Rz Vz = ®,Vur.
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For each weight p of V, we have p = A — (k1aq + kaaz), where A is the highest weight and

ki € Z>go. Define the depth of p to be
depth(p) = k1 + ka.

A basis U = {v;,v9,...} of V is called coherently ordered relative to depth if

(1) W consists of weight vectors;

(2) If v; € Vi, vj € V) and depth(n') > depth(u), then j > i;

(3) ¥ NV, consists of an interval vy, Vk+1, ..., Ugtm-

Theorem 2.1 ([CGl [G78]). The lattice Vz has a coherently ordered Z-basis {vi,va,...} where
v; € Vg, vi = &uy, for some & € Uy. Let w; = k; @ v;, ki € R\ {0}. Then the set {wi,ws,...}
18 a coherently ordered basis for Vg. Any vector in Vg has an integer valued norm relative to a
Hermitian inner product (,) on V.

3. THE KAC-MOODY GROUP G AND IWASAWA DECOMPOSITION

Our next step is to construct our Kac—-Moody group G over R. The construction below can be
used to construct G over any field F' [CG|. As before, let V' be a highest weight module for gc.
Then the simple root vectors e; and f; are locally nilpotent on V.

We let V7 be a Z—form of V as in Section [2| Since V7 is a Uz-module, we have

e f ,
—(Vz) ©Vz  and F(VZ)QVZ for neN, iel.
n. .
Let Vi = R®y V. For s,t e Rand ¢ € I, set
Xeuls) = Doy =eplse), Xealt) = 3¢y = ew(th)

Then Xq,(s), X—q,;(t) define elements in Aut(Vr), thanks to the local nilpotence of e;, f;. More
generally, for a real root a, we choose a root vector x, € g, and define

Xa(s) = exp(szq) € Aut(VRr), seR.

For t € R*, we set
e (t) = Xay (t)X*Oti(*t_l)Xai (t> fori € I,
and define
hai (t) = W, (t)wai(l)_l'
We let GRr be the subgroup of Aut(V) generated by the linear automorphisms x, (s) and x_q, (t)

of Vg, for s,t € R, i € I. That is, we define

Gr = (exp(se;), exp(tfi): s, t € R, i € I).

One can see that y(s) € Ggr for real roots a. By replacing R with F' in the above construction,
we obtain the group G for any field F'.

We define the following subgroups of Gr:
(1) K ={k € Gg : k preserves the inner product (,) on Vg},

(2) A= (ha,(s):s€eR* i), AT = (ha,(s) s €Ry i € 1),
(3) N =(Xa(s):a € @' s € R), where ®'¢ is the set of positive real roots.
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Theorem 3.1 ([CG, DGH]). We have the Iwasawa decomposition:
(3.1) Gr = KA'N

with uniqueness of expression.

As in [CG], we now define the ‘Z—form’ Gz of Gg in the following way. We set
Gz =GrN Aut(VZ).

Then
Gz={v€eGr:v-Vz CVz}.

Remark 3.2. For a discussion on dependence on the choice of V' and Vz, we refer the reader to
[CG]. In this paper, we work with fixed V' and V7.

4. EISENSTEIN SERIES ON RANK 2 HYPERBOLIC KAC—MOODY GROUPS

Let g = kyagng € Gr be the Iwasawa decomposition according to . Let v: AT — C* be a
quasi—character and define
P, :Gr — Cc*
to be the function
P, (g) = v(ag)
Then @, is well defined since the Iwasawa decomposition is unique and ®,, is left K—invariant and
right N-invariant. For convenience, we write I' = G7.

Let B denote the minimal parabolic subgroup of Gr. Relative to a coherently ordered basis ¥
for V), the group I" has a representation in terms of infinite matrices with integral entries. Define
the Eisenstein series on G to be the infinite formal sum

Eg) = Y, (9.

~€T/TNB

Recall that b is the Lie algebra of A and that h,,, ¢ € I, are the simple coroots. We say that v

satisfies Godement’s criterion if
Re v(hy,) < =2, i€l

We do not expect that the Eisenstein series will be convergent over the whole space K\Ggr/I" but
rather a subspace, where if Gg = K AT N is decomposed in terms of the Iwasawa decomposition, the
At —component is replaced by the ‘group’ corresponding to the Tits cone to obtain G = KA'N.
Godement’s criterion places the sum in a cone in the region Re v(hy,) < —2 for each 4. In the next
section, we deduce almost everywhere convergence of the Eisenstein series from convergence of the
constant term.

We will not comment on the difficult question of meromorphic continuation to the whole complex
plane here. However, we will prove in §7 that cuspidal Eisenstein series are entire.

5. CONVERGENCE OF THE CONSTANT TERM

In this section we prove convergence of the constant term and thus almost everywhere convergence
of the Eisenstein series itself. Assume first that v : AT — C* is real valued and positive. Then we
may interpret the infinite sum E,(g) as a function taking values in R, U {occ}. The function E,
may be regarded as a function on

K\Gr/TNN = AT x N/TNN.
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Under the identification Ri ~ ATt

(wlv x2) — hoq (xl)haz (xQ)v
we have the measure da on A", corresponding to the measure
dxl diL‘Q

ry T2

on Ri. As in [G04] we know that N/I' N N is the projective limit of a projective family of finite—
dimensional compact nil-manifolds and thus admits a projective limit measure dn, which is a left
N-invariant probability measure. We define for all g € Gr the constant term

Ei(g) = /N oy Ealgmn

which is left K—invariant and right N—invariant. In particular Eﬁ(g) is determined by the AT—
component of g in the Iwasawa decomposition. Let p € h* satisfying p(hs,) = 1, € I. Then

a1 + o
T 2-m
Applying the Gindikin—Karpelevich formula, a formal calculation as in [G04] yields that for a € AT
Elﬁ,(a) = Z aw(”+p)_pc(l/,w),
weW
where

c(v,w) =

§(=(v + p)(ha))
11 §1=(+p)(ha))’

a€d  Nuw—1d_

and £(s) is the completed Riemann zeta function

£(s) =n*/’I(s/2) [

p

1

1—p—s

Before proving the convergence of the constant term, let us first give some preliminaries for the
structure of the root system of g, following [KM]. Let

m-+vVm?2 —4
6.1 yomivmiot

which is a root of the polynomial 22 — ma + 1. Let ry, 7o be the simple reflections corresponding

to the simple roots ay, ag. Then the Weyl group W is generated by r1, ro subject to the relations

r? =72 = 1, and has an explicit description

W = {1,71(ror1)™, ro(r179)™, (r1772)" 1, (ror)" ™ - n > 0}
We introduce a sequence {4,} defined by
Ap=0, A1=1, Ajo=aAn1—An+1, n>0.
Then we have the explicit formula
(14 9)+1 2
2 = T ~ e =T O 20
We also need another sequence

4 4 ,YZn_]_ ,yn+1
. B, =A,— A1 = = 1), > 0.
3 e e A
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Then we have the following formulas for the actions of r1(rgr1)™ and (r172)"*! on simple roots:

(5.4) r1(ror)* a1 = —Bapt101 — Bojao,

’ r1(rer)"ae = Boyyoar + Bopyias.
(5.5) (rir2)" Moy = Bopysag + Bapioas,

' (r1r2)" g = — Bapioay — Bapqi10e.

Switching o and ag, we may also obtain the similar actions of ro(r172)™ and (ror1)"*1. Regarding
wp — p we have

—r1(rer)"p — p = —Agny101 — Agjaa,
(5.6) ra(rire)"p — p = —Agpay — Aopy10a,

(rire)"p — p = —Aspioa1 — Agpiian,

(ror1)"™p — p = —Asni101 — Agpioaa.

Theorem 5.1. Assume that v satisfies Godement’s criterion. Then the constant term Eﬂ(g) con-
verges absolutely for g € KA'N, where A’ is the cone

A ={ac AT 0% < 1,icI}.
Proof. We may without loss of generality assume that v(h,,) has real values, ¢ € I. Then we may
write
V = 8101 + So0i9
where s, s9 € R. Godement’s criterion then reads
(5.7) V(ha,) =251 —msa < =2, v(ha,) = 289 —msy < —2.
In particular we have s1,s2 > 0. Let us consider a typical term

a® PP e(y, w)

in Eg(a), where a € A’. By symmetry we only need to consider w = r(ror;)" and w = (ryre)" 1,
n > 0.

For w = ri(rer1)™, by (5.4) and (5.6) we have
w(v + p) = p = (=s1Bans1 + s2Bonsz — Aont1)on + (—s1Bon + s2Bang1 — Azgn) oz,
By (5.2) and (5.3 we have

—51Bop+1 + s2Bopyo — Aopt

2n+2 ~2n+3
= (ys2—s1) - +0(1)
-1 (v+DHHr-1)2
,}/2n+2
= -5 — —— O(1).
(o2 =51 = 2+ 0()
From (5.7)) it follows that
_9 2~ _
V89 — 81 = Ti > (281 —msa) + 47_ m’n; (259 —ms1)
S 2(my — 242y —m)
m2 —4
2vy—-1) _ 2y

m—2 O
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where the last equation follows from v — m~y 4+ 1 = 0. If we introduce a constant

Co=(ys2—81— ——
'7_

then
ri(rar)" (v +p) = p = (Co*" 2 + O(1)au + (Co7*" ! + O(1)) 2.

Similarly, we have
(r1r2)" M (v + p) = p = (Dyy*" 2 + O(1))an + (D™ + O(1)) e,

where )
D, = (751 — 82 — L)

>0
v—1

yP-1"

By Godement’s criterion we have
“Re (v + p)(hay) > 1
for ¢ € I. Then there exists € > 0 such that
—Re (v +p)(ha) > 1+¢
for any real root . Using properties of the Riemann zeta function we can find a constant Ce > 0
depending on ¢ such that
e(v, w)| < C£)
where ¢(w) is the length of w.

Since a € A’, we have a® < 1, i € I. Combining above estimates we see that the series defining
Eg(a) converges absolutely. O

Corollary 5.2. Assume that v satisfies Godement’s criterion. Then for any compact subset Al of
A’ there is a measure zero subset Ny of N such that E,(g) converges absolutely for g € KALN',
where N' = N — Nj.

We propose the following conjecture, which weakens Godement’s criterion and asserts everywhere
convergence instead of almost everywhere convergence.

Conjecture 5.3. E,(g) converges absolutely for g € KA'N and v satisfying Re v(hq,) < —1,
1el.

6. FOURIER COEFFICIENTS

In this section we shall define and calculate other Fourier coefficients of E,(g). To facilitate the
computation, we work with adelic groups. Let A = Rx H; Qp and I = A be the adele ring and idele
group of the rational number field Q, respectively. According to Section [3] for any prime p we have
the group Gg, C Aut(Vg,), and we let K, C G, be the subgroup K, = {g € Gg, : 9-Vz, = Vz,}.
Let Gy = GRr X H; Gq, and Gy, = H; Gq, (the adele and finite adele groups respectively) be the
restricted products with respect to the family of subgroups K,. Note that we have the diagonal
embedding ¢ : Gg — Gr x [[, Gg,- Set I'g = 1 7HGy) and Ky = K x [, Kp-

We shall extend the definition of E,(g) to g € Gx. For each prime p we have an Iwasawa
decomposition [DGH]

Gq, = KpAqg,Ng,,



10 LISA CARBONE, KYU-HWAN LEE, AND DONGWEN LIU

where Ag, is generated by hq,(s), i = 1,2, s € Q, and Ng, is generated by xa(s), o € ¢,
s € Qp. From the local Iwasawa decompositions we have

Gp = KpyApNy.

If ¢t = (too, tp) € I is an idele, define the usual norm |¢| of ¢ by
o] = Jeool TT leol-
p

An element a € Ay can be decomposed as a = hq, (51)ha,(52), s1,52 € I. We let |a| € AT be the
element hq, (|S1])hay([s2]). Let g € Ga be decomposed as

g =kgagng, kg€ Ky, ag € Ay, ng € Ny.

Note that |ag| is uniquely determined by g, although above decomposition is not unique. Then we
may define

®,(g) = lagl”.
The Eisenstein series is defined by
E(9)= Y (g7, geA
’YEFQ/FQF‘IBQ

When g € Gy this coincides with our previous definition, since I'g/T'g N Bg = T'/T' N B.
For a positive real root a, let Uy, be the root subgroup {xa.(u) : u € R}, where xq(u) = exp(uzq)
for a root vector z, € g corresponding to «.

Let ¢ be a non-trivial character of N/I'N N. Then we have ¢ = 1119, where 1); is a character of
Uy, /T NU,,. This follows from the fact that N/[N, N| =2 U,, x U,,. We extend 9 to a character
of Nj/Ng, where Ng :=I'g N Ny and define the ¢-th Fourier coefficient of E,(g) along B by

Eyu(g) = /N oy Eolom)(nn = /N \ Bolamyitmyan
n s/No

Then E, 4 (g) is a Whittaker function on G, that is, a function W satisfying the relation
W(gn) = ¥(n)W(g),
for each n € N.

We call ¢ generic if each 1; is non-trivial for ¢ = 1,2. Then we have the following vanishing
result for generic characters, which in fact holds generally for infinite—dimensional Kac—-Moody
groups (cf. [Lil).

Lemma 6.1. If ¢ is generic, then E, 4(g) = 0.

Proof. Recall that we have the Bruhat decomposition
G=BWB= | | NywB,
weW
where Ny = [Joeq, nwo_ Ua- Then we have

E 9= Y ®g=>Y_ Y. T (gw).

~el'/TNB wEW vyEN, @
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We introduce Ny, = [[oco, qws, Ua- Then N = N, N;, and it follows that

Ble) = X [ &, (gnyw)i(n)dn

wew 7 Na/No 'yEN 0

-3/ Do)

weW
= Z/ d)nw/ @, (gnwnl,w)p(n.,)dnl,dn,,.
weW N{UA/N:JJ,@

For each w € W, at least one of the two roots w ey, i = 1,2, is positive. Since ®, is right
N—-invariant, the inner integral of the last equation involves a factor

/ Yi(u)du = / pi(u)du
Uai,A/UCﬁ,Q Uo‘z' /FmUo‘i

for some ¢, which is zero by the assumption that 1) is generic. (|
Using this lemma, we may assume that ¢ = 1)1 or 12, and is non-trivial. Any character of U,,,
which is trivial on I' N U,,, is of the form
Vi Xoy (u) = 2™y € R
for some n € Z.
Before we state and prove the main result of this section, let us first recall some Fourier coefficients

for SLy. For F = R or Qp, one has the Iwasawa decomposition SLa(F') = KAN, where K =
SO(2,R) or SLy(Zp) is a maximal compact subgroup of SLa(F'),

T T N A

Let g € SLy(F) be decomposed as
(% O
9=k ( 0 ay 1) !

For s € C, define a function ®4(g) on SLa(F') by ®s(g) = |ag|~°. Clearly @, is well-defined. Given
a character 1) of F', we shall consider the Fourier coefficient

(6.1) [ V)it

which is convergent for Re s > 0. If we write (%x 01> for the A—component of <glv 8> in the
x

Iwasawa decomposition, then |a;| = V1 + 22 for F = R and |a,| = max(1,|z|,) for F' = Q,.
The character 1 (u) = e2™ of R/Z corresponds to the character 1 [, ¥p of [1,Zy\A/Q, where
VYoo(z) =¥ R
wp(x) — efQWi(fractional part of x)7 = Qp-

Fix y € R4 and associate an idele (y,)y € I by Yoo =y, yp = 1. For n € Z, n # 0, we twist the nth
power of ¢ by y, i.e. consider the characters 1o (nyz) of R and 1,(nz) of Q,. Then the Fourier
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coefficients (6.1)) are given by the following functions. For ' = R, Re s > 1, we have (cf. [Bu, pp.
66-67])

o) .
W) = [ () i ye)ds
2m°/2D(s/2) Myl 2 K oa (2mlnly),
where K;(y) is the K—Bessel function, also known as the Macdonald Bessel function, defined by
1 [ - dt
Ks(y) = / e VT2 15 Re s> 0.
2 Jo t

Write |n| = Hp p"r into the primary decomposition. Then for p < oo, Re s > 1, we have

WP(s) = l—i-Zp_is/ Yp(nx)da
i=1 p

_ZZ;

(1—p~*)(1 —pretV(=9))

1— pl—s '
In the above computations we have made use of the Iwasawa decomposition for SLs. Now we form
a product

62 Walws) = W) [JWAG) = 2m1-s(nl)lmyl % Ko (nlnly) s, Res > 1.
p

where o, is the divisor power sum function defined by os(n) =3_;,, d* for n € N.

Theorem 6.2. Assume that v satisfies Godement’s criterion. Then for a € A', i € I, n € Z,
n # 0, one has the 1; ,-th Fourier coefficient

EVﬂ/)i,n (a) = Z aw(u—&—p)—pcdﬁ,n(l/, w)(a),
weW, w—1la;<0

where

Cpin(vw)(a) = Wala™® 1+ wv +p)(ha))) ]

a€d N 1d_
aZt—wla;

§(=(v+p)(ha))
§(1— (v +p)(ha))

with Wiy, (y, s) being defined by .
Proof. As in the proof of Lemma [6.1], we see that
E,4(a) = Z D, (anyw) (ny )dng,.

weW, wla; <0 N, a

We follow the computation in [G04] and [Li, 4.4]. Let w™! = rg, -+ -7k, be the reduced expression
of w™!, where £ = {(w) and k; =1 or 2 for j =1,...,¢. Let

D,-1 =P, N wld_ = {B1,...,Be}s
where 8; =g, -+ 7, ax,;. Then
(Dw = (I)+ Nwd_ = {’717-"7’75}7

where v; = —wf; =1, - Tk, ;. Note that

Bit-+Be=p—wTlp, ety =p—wp.
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From these formulas it is clear that if w™'a; < 0, then 7 = a; = —wf;. By decomposing N,, into
a product of root subgroups, we get

/ D (anyw) ) (ny)dny
Nuy,a
_ /M By (X (116) -+ Xoy (00 )0) G (1)t -~ iy

= /Af @, (X'yg (a™up) - - "X (Cﬂlul)aw)w n(ue)dug - - - duy

= /Aé e (Xw (ug) "+ X (u1)w)¢i7n(a*aiw)dw o duy

= avree /Az @y (X—g, (ue) -+ X=p, (1)) Vim (@™ ug)dug - duy.

Let x_g,(u) = k(u)a(u)n(u) be the Iwasawa decomposition, with k(u) € K, n(u) € Ug,, a(u) € A.
Put w'=! = rg, - 1, then {B1,..., 81} = &4 Nw'~1®_. Consider the decomposition N =
Ny N,, (see the proof of Lemma . Then we have

U, - U_pg =w Ny
Let us define the projection
7w TN = w’_le/w'.
Since U_g,,...,U_g,_,, Uz, C w'"INw/', the following map
moAd(n(uw)) : w' Nyw — w' Ny,

is well-defined and unimodular. From this fact, and noting that ®, is right invariant under
w™IN! w' C N, it follows

/AZ @V (Xfﬁl (UZ) T X*ﬁl (ul))'&@n(aiailw)duz e du1
= /Aa(ué)l/-i-ﬁl-i-n-ﬂe—l&i,n(a_aiuz)dUg /Az_l D, (X*ﬁg,l(ué—l) S X—B (Ul))duzfl coduy

= /Aa(w)”p—“"1pqﬁi’n(a‘aiu€)du£ /A“ Dy (X—pyy (1) -~ X—py (u1))dug—y - - - duy.

Note that w'~1p(hg,) = p(w'hg,) = p(ha;) = 1. Then the first integral in the last equation equals
Wy(a=,1 — (v + p)(hg,)) = Wp(a=*,1 + w(v + p)(hy,;)), and the second one, by Gindikin—-
Karpelevich formula, equals

7 (= +p)(hg))
1;1 1— (v +p)(hg,))

Hence our assertion follows. O

7. ENTIRETY OF CUSPIDAL EISENSTEIN SERIES

In analogy with [BKl Theorem 5.2] and [GMP], we shall prove that the Eisenstein series on G
induced from cusp forms on SLy are entire functions. Let P be the maximal parabolic subgroup
of G generated by B and the simple reflection r1, and P = MU be the Levi decomposition, where
M is the Levi subgroup and U is the pro—unipotent radical of P. Let L = SLy be the subgroup
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generated by X4a,(t), t € R, and let A1 = (hq,(t) :t € R*), H ={a € A:a® = £1}. Then we
have an almost direct product A = A; x H, and M = LH. We introduce

HY = {ha,(t™)he,(t?) :t € Ry} = K N H\H,

AT ={ho,(t) 1t € Ry} =2 KN A\AL.
From the Iwasawa decomposition G = KP = KMU, the following maps

Iwy,:G— KNI\L, Twg+:G— H'
are well-defined. Similarly, using the Iwasawa decomposition for L we may define the map
Iw,+ : KN L\L — Af.

For convenience we also denote by Iw,+ the map G — A", g = kgagng — a4 which we used
previously. Then it is clear that

(71) IWA+ :(IWAI“OIWL) XIWH+ G—>A+2Aii_ XH+.

Let ws be the fundamental weight corresponding to as, that is

_ maq + 2ag
T T
Note that w9 is trivial on A1 = L N A, hence implies that
(7.2) Iwp+(1)%% = TIwg+(-)*2.
Similarly, since o is trivial on H we also have
(7.3) Iw g+ () = IWAT oIwrp ().

We may regard wy as an algebraic character of M. For s € C, define the Fisenstein series
Ei(g)= > Twye(g7)™
~yel'/TNP

Moreover, for an unramified cusp form f on SL2(R)/SL2(Z), that is, a SO(2)-invariant cusp form,
we define

Eop(9)= > Twye(97)"™f(Iwi(g7)).
~el/TAP

Theorem 7.1. Assume that Re s < —2. Then for any compact subset Al of A’, there is a measure
zero subset Ny of N such that Eg(g) converges absolutely for g € KALN', where N' = N — Ny.

Proof. Our proof is similar to previous sections where we induce Eisenstein series from characters
on Borel subgroups. We have the Bruhat decomposition

G= || BuP= || NywP,
weWq weWy

where Wi = {w € W : wa; > 0} is a set of representatives of minimal length for the quotient
W/(r1). Formal calculations show that the constant term of E for a € A’ is

E(a) = Z a2 ) =P (s775, w).
weWy
Then we only need to prove the absolute convergence of ES'j (a) under the conditions of the theorem.

We may assume that s is real. There are two cases for w € Wi: w = (r172)" or ro(r172)"™. We shall
only deal with the first case, and the second case can be treated similarly.
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Assume w = (r1r2)"™. Then using (5.5) and (5.6)), for a € A’ there exists a positive constant M
only depending on a such that

aw(sw2+p)fp < Ma'nda1+C'na27

where )
n
Y

(m? = 4)(y+1)(y — 1)?
It follows that C,, — oo if and only if

Cn = [—s(my —=2)(y = 1) — (m® — 4)7].

- (m* —4)y T |
(7.4) 5 < =Dy —1) 1—~7"

We also need to consider the factor ¢(sws,w). One can show that

P, N w e = {Bial + Bjj1ag:1=0,...,2n — 1}

For a« = B;ag + Bjy1a2 we have
—(SWQ + p)(ha) = (—S - 1)Bi+1 —B;>Bi1—B; >1
when s < —2. This implies that ¢(swy, w) < C4®) for some constant C' depending on s.

Combining above analysis it is easy to see the convergence of Esﬁ(a) fora € A'. O

We remark that, from B;;1 > vB; it follows that
(—S—l)BH_l—Bi—)OO as 1 — 00
when s < —1 — 4~ 1. Together with (7.4)), this suggests the following

Conjecture 7.2. E,(g) converges absolutely for g € KA'N and Re s < —1 —y~ L.

Now let us state the main result of this section.

Theorem 7.3. Let f be an unramified cusp form on SLy. For any compact subset Al of A’, there
is a measure zero subset No of N such that Es ¢(g) is an entire function of s € C for g € KA,N’,
where N' = N — Nj.

We shall follow the strategy in [GMP] to prove Theorem 7.3. The following lemma is in analogy
with [GMP, Lemma 3.2], where we set x¥ := yay~! for z,y € G.

Lemma 7.4. If y € I' N BwB, then

U]71
Iwa+(gy) = (IWA+g) w4+ (nyw)

for some n,, € Ny a depending on vy and g.

Recall from [GMS2, Lemma 6.1] that for n, € Ny 4,
(7.5) In (Iw 4+ (nyw)) = Z caho With ¢4 >0,

aed,,

where ®,, = &, NwP_. Now we can establish the Iwasawa inequalities:

Lemma 7.5. There exists a constant D > 0 such that

Iw a4+ (g7)™ > Iwa+ (g7) 7™

for any g € KA'N, w e Wy and v € T'N BwB.
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Proof. Put a =Iw,+g € A’. From Lemma 7.4 and (7.5)), it suffices to find a constant D such that
the following two inequalities

(7.6) av e > aDwilwz,
(7.7) a1(ha) > Dwa(ha)

hold for any w € W and o € ®,,. Again we only consider the case w = (ryr2)"™, and similar
arguments apply to the other case w = ra(ryre)"”. Put w = (r1r2)", then &, = {Bit101 + Bijaa, i =
0,...,2n — 1}. For any « of the form B;;1aq + B;ag one has

a1(he) =2Bit1 —mB; > (2y —m)B; = (2y — m)wa(hq).
This proves ([7.7) with D = 2y —m > 0. Applying (5.5) and (5.6]), and noting that a € A’, it is

not hard to prove ([7.6)) for suitable D by comparing the coefficients of simple roots in w—'a; and
w 'y, In particular we can choose the constant D to be independent of a € A’. ]

We also need the decay estimate [GMP), Theorem 4.6] for cusp forms on finite dimensional real
Chevalley groups. In our case, if f is an SO(2)-finite cusp form on SL2(R)/SL2(Z), then there
exists a constant C' > 0 depending on f such that for any natural number n > 1, we have

(7.8) (9] < (Cn) w45 (9) 7"

Proof of Theorem 7.3. Since cusp forms are bounded, the assertion follows from Theorem 7.1
when Re s < —2. Assume that Re s > —2. Choose sy € R with sg < —2. Choose a real number
d > Re s — sp > 0 such that % € N, where D is given in Lemma 7.5. Then Re s —d < s < —2

and there exists a subset N’ of N with measure zero complement such that Ege s_4(g) converges
for any g € KALN'.

Put/n = % € N as above. From 1) 1 , Lemma 7.5 and |D we obtain that for any
veT/TNP,

[Tw g+ (97)°2 f (Tw . (97)) |

(Cn) " Tw g+ (97) " 721w 41 0 Twp (g7) 7"
(Cn) " Tw g+ (g7) B %2 Tw gy (gy) P2

() e (gD,

Taking the summation over v, it follows that E; f(g) is absolutely convergent. O]

IN
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