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Abstract. Let G be a rank 2 complete affine or hyperbolic simply–connected Kac–Moody group over
a finite field k. Then G is locally compact and totally disconnected. Let B− = HU− be the negative
minimal parabolic subgroup of G, where H is the analog of a diagonal subgroup and U− is generated by all
negative real root groups. Let w1 and w2 be the generators of the Weyl group. Let P−1 = B−tB−w1B

−

be the negative standard parabolic subgroup of G corresponding to w1. It is known that the subgroups
U−, B− and P−1 are nonuniform lattice subgroups of G. Here we construct an infinite sequence of
congruence subgroups of P−1 as natural generalizations of the corresponding notions for lattices in Lie
groups. We also show that the group U− contains analogous congruence subgroups. Our technique
involves determining graphs of groups presentations for U−, B− and P−1 with the fundamental apartment
of the Bruhat-Tits tree X a quotient graph for U− and for B− on X. When k = Fq and q = 2s, the
graph of groups for P−1 has the the positive half of the fundamental apartment as quotient graph. We
explicitly construct the graphs of groups for the principal (level 1) congruence subgroup of P−1 and the
analogous subgroups of U− giving generalized amalgam presentations for them.

Dedicated to the memory of Eisa Abid whose short life touched many people.

1. Introduction

The principal congruence subgroup of the characteristic p modular group SL2(Fq[t]), namely the
kernel of the reduction map SL2(Fq[t]) −→ SL2(Fq) sending t to 0, plays an important role in the
theory of modular forms in characteristic p. More generally, congruence subgroups of algebraic groups
over local fields provide a source of arithmetic subgroups.

In this work, we construct the analog of congruence subgroups of complete affine and hyperbolic
simply–connected Kac–Moody groups over finite fields. Complete Kac–Moody groups over finite fields
are locally compact and totally disconnected groups and are ‘infinite dimensional’ analogs of algebraic
groups. Even though these groups have no clear notion of algebraic or arithmetic structure, the twinBN -
pair structure developed by Tits [Ti2] provides a framework which enables us to construct congruence
subgroups in rank 2 by analogy with congruence subgroups of SL2(Fq[t]).

In general, recognizing whether a subgroup of the modular group is a congruence subgroup is a broad
and difficult question. We give an explicit construction of congruence subgroups of affine and hyperbolic
Kac–Moody groups in rank 2 as fundamental groups of certain graphs of groups. This gives rise to both
a fundamental domain and a generalized amalgam presentation for the congruence subgroup.

To describe our results in more detail, we let g be a rank 2 Kac–Moody algebra. In [Ti1] and [Ti2]
Tits associated to g a group functor on the category of commutative rings. In [CG] the authors gave
an interpretation of Tits’ group functor over arbitrary fields using representation theory of g. Carbone
and Garland constructed a Kac–Moody group G that is a completion of Tits’ ‘minimal’ group in [Ti1]
and [Ti2].

Date: September 11, 2014.
The first author was supported in part by NSF grant #DMS-1101282.
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Let G denote such an affine or hyperbolic group over a finite field Fq. Let B = HU be the completion
of the subgroup B+ of G (as in [CG] and Section 2) where H is a ‘diagonal subgroup’ and U is the
closure of the group generated by all positive real root groups. Let B− = HU− be the subgroup of G
(as in [CG] and Section 2) where U− is generated by all negative real root groups.

The group G has twin BN -pairs (G,B,N) and (G,B−, N) ([CG], Sections 5 and 6) and admits a
cocompact action on its corresponding Bruhat-Tits building, which in rank 2 is a homogeneous tree X
of degree q + 1.

Let w1 and w2 be the generators of the Weyl group. Let P−1 = B− t B−w1B
− be the negative

standard parabolic subgroup of G corresponding to w1. It is known that the subgroups U−, B− and
P−1 are nonuniform lattice subgroups of G ([CG]). This result was also obtained independently by Rémy
([Re1]).

Here we construct the principal congruence subgroup of P−1 the kernel of an appropriate reduction
homomorphism. We also show that the group U− contains analogous congruence subgroups. Our
technique involves determining graphs of groups presentations for U−, B− and P−1 with the fundamental
apartment of the Bruhat-Tits tree X a quotient graph for U− and for B− on X. Similarly, the graph
of groups for P−1 has the the positive half of the fundamental apartment as quotient graph.

For some of our results, we restricted to the case where q = 2s. This restriction simplified our
methods, though is probably unnecessary.

Our work gives a ‘Nagao’ theorem for P−1 (Section 3), cf. ([S], p 87) and ([BL], Ch 10). We explicitly
construct the graphs of groups for the principal congruence subgroup of P−1 and the relevant subgroups
of U− giving generalized amalgam presentations for them.

A theory of automorphic forms, particularly Eisenstein series, on ‘arithmetic’ quotients of Kac–Moody
groups is desirable as an extension of some aspects of the Langlands program and is in its early days of
development (see [BC], [CLL], [CGGL], [Ga]). In particular, in [CGGL], the authors study Eisenstein
series on the quotient of the Tits building X of a rank 2 Kac- Moody group over a finite field by the
nonuniform lattice P−1 . Our construction of congruence subgroups will be an important ingredient in
developing a full automorphic theory for Kac–Moody groups.

The authors would like to thank Mikhail Ershov and Howard Garland for helpful discussions. We
are also grateful to the referee whose comments improved the exposition.

2. Rank 2 Kac–Moody group and Tits building

We shall consider the split form of a rank 2 affine or hyperbolic complete Kac–Moody group G =
GA(k), as in [CG], over a field k with symmetric generalized Cartan matrix

A =

(
2 −m
−m 2

)
, m ≥ 2.

The ‘symmetric’ assumption is invoked in order to simplify the structure of the root system and root
groups. Our results can also be extended to the case of rank 2 symmetrizable non-symmetric generalized
Cartan matrices. Here, the real roots lie on 4 branches corresponding to 2 possible root lengths. The
group U− is a free product of metabelian groups in this case.

In this section, we define Tits’ minimal form of G in terms of generators and relations, we describe
a completion of the Tits functor by Carbone and Garland ([CG]) and we describe the Tits building of
G which is a homogeneous tree of degree |k|+ 1.
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2.1. Tits’ presentation of minimal Kac–Moody groups. Let g be the Kac–Moody algebra with

symmetric generalized Cartan matrix A =

(
2 −m
−m 2

)
, m ≥ 2. When m = 2, g is affine and when

m ≥ 3, g is hyperbolic. Let h be a fixed Cartan subalgebra of g. Let ∆ be the root system of g. Let
Π = {α1, α2} be a basis of simple roots for Π. For each simple root in Π = {α1, α2}, we define the
simple root reflection wi(αj) := αj −αj(α∨i )αi, where α∨i is simple coroot. The wi generate a subgroup
W = W (A) ⊆ Aut(h∗), called the Weyl group of A. The set ∆re = WΠ is a subset of ∆, called the set
of real roots. The remaining roots ∆\∆re are called imaginary roots. We introduce an auxiliary group
W ∗ ⊆ Aut(g), generated by elements {w∗i }i=1,2, where

w∗i = exp(ad(ei))exp(−ad(fi))exp(ad(ei)) = exp(−ad(fi))exp(ad(ei))exp(−ad(fi)).

There is a surjective homomorphism ε : W ∗ → W which sends w∗i to wi for each i. We define certain
elements of g, denoted {eα}α∈∆re , where ∆re denotes the set of real roots of g. Given α ∈ ∆re, write α
in the form wαj for j = 1, 2 and w ∈W , choose w∗ ∈W ∗ which maps onto w and set eα = w∗eαj .

We define the group G = GA(k), called the incomplete simply-connected Kac–Moody group corre-
sponding to A, to be the group generated by the set of symbols {χα(u) | α ∈ ∆re, u ∈ k} satisfying
relations (R1)-(R7) below, where for i, j = 1, 2, u, v are elements of k and α, β are real roots ([Ti2] and
[CER]).

(R1) χα(u+ v) = χα(u)χα(v);

(R2) Let (α, β) be a prenilpotent pair, that is, there exist w, w′ ∈W such that

wα, wβ ∈ ∆re
+ and w′α, w′β ∈ ∆re

− .

Then

[χα(u), χβ(v)] =
∏

m,n≥1

χmα+nβ(Cmnαβu
mvn)

where the product on the right-hand side is taken over all real roots of the form mα+ nβ, m,n ≥ 1, in
some fixed order and Cmnαβ are integers independent of k. This product appearing on the right-hand
side is finite.

For each i = 1, 2 set

χ±i(u) = χ±αi(u), u ∈ k
w̃i(u) = χi(u)χ−i(−u−1)χi(u), u ∈ k∗

w̃i = w̃i(1) and hi(u) = w̃i(u)w̃−1
i , u ∈ k∗.

The remaining relations are

(R3) w̃iχα(u)w̃−1
i = χwiα(ηα,iu), where ηα,i ∈ {±1},

(R4) hi(u)χα(v)hi(u)−1 = χα(vu〈α,α
∨
i 〉) for u ∈ k∗,

(R5) w̃ihj(u)w̃−1
i = hj(u)hi(u

−aji), u ∈ k∗,
(R6) hi(uv) = hi(u)hi(v) for u, v ∈ k∗ and

(R7) [hi(u), hj(v)] = 1 for u, v ∈ k∗.

Let H be the subgroup of G generated by the hi(u), i = 1, 2, u ∈ k∗ Then H ∼= k∗ × k∗.

An immediate consequence of relations (R3) is that GA(k) is generated by {χ±i(u)}. The elements w̃i
generate a group W̃ which is isomorphic to the group W ∗ above.
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2.2. Commutation relations in rank 2 Kac–Moody groups. In this subsection, we describe the
commutation relations (R2) of subsection 2.1 over a field k in Tits’ minimal Kac–Moody group G =
GA(k) associated to the generalized Cartan matrix

A =

(
2 −m
−m 2

)
, m ≥ 2.

Analogous relations appear in the Steinberg presentation for finite dimensional Chevalley groups. The
real roots are partitioned into 2 disjoint sets ([CG])

∆re
1 := {−α2, −w2α1, −w2w1α2, . . . } ∪ {α1, w1α2, w1w2α1, . . . }

∆re
2 := {−α1, −w1α2, −w1w2α1, . . . } ∪ {α2, w2α1, w2w1α2, . . . }

In this example, prenilpotence is an equivalence relation on real roots and ∆re
1 and ∆re

2 are the
equivalence classes under this equivalence relation. Since

w1 · α1 = −α1, w2 · α2 = −α2,

w1 and w2 interchange ∆re
1 and ∆re

2 .

If α and β both belong to ∆re
1 , or if α and β both belong to ∆re

2 then α+ β cannot be zero or a root
([CG]), thus

[χα(s), χβ(t)] = 1, s, t ∈ k.
This completes the commutation relations necessary to define the group G.

2.3. Completion of Tits’ minimal Kac–Moody group. The following interpretation of Kac–
Moody groups was suggested by Tits ([Ti1]) and given by Carbone and Garland ([CG]). This con-
struction generalizes that of simply–connected Chevalley groups. Let U be the universal enveloping
algebra of g. Let Λ ⊆ h∗ be the linear span of αi, for i = 1, 2 and Λ∨ ⊆ h be the linear span of α∨i , for

i = 1, 2. Let UZ ⊆ U be the Z-subalgebra generated by emi /m!, fmi /m! and
(
h
m

)
, for i = 1, 2, h ∈ Λ∨

and m ≥ 0. Then UZ is a Z-form of U , that is UZ is a subring and the canonical map UZ ⊗Q −→ U is
bijective. For a field k, let Uk = UZ ⊗ k and gk = gZ ⊗ k.

4



Now let λ ∈ h∗ be a regular dominant integral weight, that is, 〈λ, α∨i 〉 ∈ Z>0 for each i = 1, 2. Let V λ

be the corresponding irreducible highest weight module. Choose a highest-weight vector vλ ∈ V λ and
let V λ

Z ⊂ V λ be the orbit of vλ under the action of UZ. Then V λ
Z is a Z-form of Vλ as well as a UZ-module.

Similarly, V λ
k := k ⊗Z V

λ
Z is a Uk-module. Then there is a (unique) homomorphism πλ : G→ Aut(V λ

k )
such that

πλ(χαi(u)) =
∞∑
m=0

um
emi
m!

for i = 1, 2 and u ∈ k,

πλ(χ−αi(u)) =
∞∑
m=0

um
fmi
m!

for i = 1, 2 and u ∈ k.

The expressions on the right-hand side are well defined automorphisms of V λ
k since ei and fi are locally

nilpotent on V λ
k . Let Gλ = πλ(G).

We define the weight topology on Gλ by taking stabilizers of elements of V λ
k as a subbase of neigh-

borhoods of the identity. The completion of Gλ in this topology was given in [CG]. For a field k, the
Gλ are all isomorphic for different dominant integral weights λ ([Ti2]).

2.4. The BN-pair of a complete Kac–Moody group. Now take k = Fq and let G = GA(Fq)
denote the completion of the Tits’ functor associated to A and to k ([CG] and Section 2.3). Then G has
subgroups B± ⊆ G, N ⊆ G and Weyl group W = N/H, where H = N ∩ B± is a normal subgroup of
N . We have B± = HU± where U+ is the closure of the group generated by χα(u), α ∈ ∆re

+ , u ∈ k , U−

is generated by χα(u), α ∈ ∆re
− , u ∈ k. The subgroup B+ is compact, in fact a profinite neighborhood

of the identity in G ([CER]) and B− is discrete ([CG]). The group W coincides with the Weyl group of

the previous subsection, H = 〈hi(u) | i = 1, 2, u ∈ k∗〉 and N = 〈W̃ ,H〉, where W̃ is as defined in the
previous subsection.

Tits ([Ti1]) and Carbone and Garland ([CG]) showed that (G,B+, N) and (G,B−, N) are BN -pairs
and

G = B+NB− = B−NB+.

It follows that G has Bruhat decomposition

G = tw∈W B±wB±.

Let S = {w1, w2} be the standard generating set for the Weyl group W consisting of simple root
reflections. The standard parabolic subgroups are

P±i = B± tB±wiB±.
From now on, we often drop the ‘+’ and refer to P+

i as Pi and B+ as B.

2.5. The Tits building of G, a tree. The Tits building of G is a simplicial complex X of dimension
dim(X) = |S| − 1 = 1. Since W is infinite, by the Solomon-Tits theorem X is contractible and so
X is a tree. In fact we may associate to G a twin building X± where X+ and X− come from the
twin BN -pairs (G,B+, N) and (G,B−, N) respectively. The buildings X+ and X− are isomorphic as
chamber complexes and have constant thickness q + 1. However, we shall not use the twin structure of
the building and hence we drop the ± and simply write ‘X’ for X+.

The Tits building of G is constructed as follows

V X ∼= G/P1 tG/P2

EX ∼= G/B tG/B,
5



where G/B is a copy of the set G/B, giving an orientation to EX. If Q1 and Q2 are vertices, then there
is an edge connecting Q1 and Q2 if and only if Q1 ∩Q2 contains a conjugate of B.

There is a standard simplex corresponding to the identity coset of B. The group G acts by left
multiplication on cosets. There are natural projections on cosets induced by the inclusion of B in P1

and P2:
π : G/B −→ G/Pi, i = 1, 2.

If vi ∈ G/Pi is a vertex and StX(vi) = π−1(vi) is the set of edges with origin vi, then we may index
StX(vi) by Pi/B ⊆ G/B, i = 1, 2. The Tits building X is a homogeneous, bipartite tree of degree

[P1 : B] = [P2 : B] = q + 1.

The following describes how the cosets Bw1B and Bw2B are indexed modulo B ([CG]):

Bw1B/B = {χα1(s)w1B/B | s ∈ k},
Bw2B/B = {χα2(s)w2B/B | s ∈ k},

where α1 and α2 are the simple roots corresponding to w1 and w2 respectively.

It follows that the edges emanating from P1 and P2 may be indexed as follows:

StX(P1) = {B} t {χα1(s)w1B/B | s ∈ k},
StX(P2) = {B} t {χα2(s))w2B/B | s ∈ k},

where B denotes the identity coset and the stars of other vertices are obtained by translating these.
Apartments in X are infinite lines. The fundamental apartment, denoted by A0, in X consists of all
Weyl group translates of the standard simplex.

w2P1P1 P2w1P2w1w2P1

Bw1B w2B

w2w1P2

w2w1Bw1w2B x−
1,1 x−

2,1 x−
3,1x−

3,2 x−
2,2 x−

1,2

......

2.6. Structure theorems for lattice subgroups. For a general nonuniform lattice Γ ∈ G, we will
assume that Γ\X has the structure of a finite core graph union finitely many cusps which are semi-
infinite rays. We conjecture this to be true for any nonuniform lattice Γ ≤ G and all our known examples
are of this type (see [C] for further discussion).

2.7. Graph of groups presentations for subgroups of G. We will use the fundamental theory of
Bass and Serre for reconstructing group actions on trees to obtain a graph of groups presentations for
various subgroups of G. Our references for the Bass–Serre theory are ([B], [S]). We refer the reader to
([S], Section 5), for the construction of a quotient graph of groups Γ\\X and universal covering tree

Γ̃\\X corresponding to a group Γ acting on X on a tree X.

Theorem 2.1. ([B], [S]) Let X be a tree and Γ a group acting on X without inversions and with

quotient graph of groups Γ\\X. Then Γ ∼= π1(Γ\\X) is an isomorphism of groups and X ∼= Γ̃\\X is
an isomorphism of trees.

Here we take Γ ≤ G, where G is the rank 2 simply–connected Kac–Moody group. Then π1(Γ\\X)
gives a presentation for Γ as a generalized amalgam of groups which are conjugate to vertex stabilizers.

If Γ\\X is an infinite graph of finite groups with finite volume, then Γ is discrete and has finite
covolume in G with respect to some (hence any) Haar measure on G, hence is a nonuniform lattice in
G ([BL]).
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3. Graphs of groups presentations for U−, B− and P−1

Let α ∈ ∆re be a real root. Then α has an expression α = wαi, for αi simple and w ∈W . Define

`(α) := `(w) + 1,

where `(·) is the standard length function on W , so that for αi simple

`(αi) = 1,

and for αi simple and wj a simple root reflection

`(wjαi) = 2, i 6= j.

For n ≥ 1 and i = 1, 2, we define (finite) cuspidal root subgroups of U− ⊆ B− and U+ ⊆ B+:

U−n,i = 〈Uα | α ∈ ∆re
i,−, 1 ≤ `(α) ≤ n〉 = {

∏
α∈∆re

i,−
1≤`(α)≤n

χα(uα) | uα ∈ Fq},

U+
n,i = 〈Uα | α ∈ ∆re

i,+, 1 ≤ `(α) ≤ n〉 = {
∏

α∈∆re
i,+

1≤`(α)≤n

χα(uα) | uα ∈ Fq},

respectively. Where, for i = 1, 2,

∆re
i,+ = {αi, wiα3−i, wiw3−iαi, . . . }

∆re
i,− = {−α3−i, −w3−iαi, −w3−iwiα3−i, . . . }.

Then for i = 1, 2, U±n,i are finite subgroups of U± of order |U±n,i| = qn. Such subgroups were also

introduced in [Ro], Section 6 and [KP], Section 3.

3.1. Graph of groups for U−. Our aim in this subsection is to construct a graph of groups whose
fundamental group is the group U−.

It is known from [CG] and [Re1] that the group B− is a nonuniform lattice subgroup of the affine or
hyperbolic rank 2 Kac–Moody group G over any finite field k = Fq. Since U− is a finite index subgroup
of B−, it follows that U− is also a nonuniform lattice in G.

Theorem 3.1. The group U− is isomorphic to the fundamental group of the following graph of groups:

a−
1,1 a−

2,1 a−
3,1a−

1,2a−
2,2a−

3,2

α2,2 α1,2 α1,1 α2,1α0 ω1,1 ω2,1ω2,2 ω1,2

where
ω0 : {1} ↪→ U−1,2

α0 : {1} ↪→ U−1,1
are inclusion maps and for i = 1, 2, n ≥ 1

αn,i : U−n,i ↪→ U−n,i

are identity maps and for i = 1, 2, n ≥ 1

ωn,i : U−n,i ↪→ U−n+1,i

are inclusion maps.
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Let

U−∞,1 =
⋃
n≥1

U−n,1

U−∞,2 =
⋃
n≥1

U−n,2

be the ascending unions of finite root groups.

Since for i = 1, 2, n ≥ 1, ωn,i : U−n,i ↪→ U−n+1,i and U−∞,2 ∩ U−∞,1 = {1}, it follows that

U− = U−∞,2 ∗ U−∞,1.
This was also proven in [KP], Proposition 3.5 (c) in a different setting.

To prove Theorem 3.1, we will make use of the following lemma which follows from a simple inductive
argument.

Lemma 3.2. For i = 1, 2, n ≥ 1,

U−n,i = unU
+
n,ju

−1
n

where j = i if n is even, j = 3 − i if n is odd and un ∈ W is the unique element of the set Ωi with
`(un) = n, where

Ω1 = {1, w2, w2w1, w2w1w2, . . . },
Ω2 = {1, w1, w1w2, w1w2w1, . . . }.

Note that for n ≥ 1, i = 1, 2 un ∈ Ωi with `(un) = n, we have

un−1Pju
−1
n−1 = StabG(x−n,i)

where j = i for n even and j = 3− i for n odd, with u0 = 1.

Lemma 3.3. ([CG], Section 15) Let P1, P2 and U− be as before, then we have,

P1 ∩ U− = U−α1 ≤ U−1,2

P2 ∩ U− = U−α2 ≤ U−1,1.

Theorem 3.1 follows immediately from the following.

Proposition 3.4. Let G be a rank 2 affine or hyperbolic simply–connected Kac–Moody group over a
finite field. Let U− be the subgroup of G generated by all negative real root subgroups. For i = 1, 2 and
n ≥ 1, U−n,i be cuspidal root subgroups. Then we have:

(1) For i = 1, 2, n ≥ 1 the group U−n,i is the stabilizer of the vertex x−n,i modulo U−.

(2) For i = 1, 2, n ≥ 1 the group U−n,i leaves the edge (x−n,i, x
−
n+1,i) fixed and acts transitively on the set

of edges with origin x−n,i distinct from (x−n,i, x
−
n+1,i), sending all such edges to un−1B, where un−1 ∈ Ωi

with `(un−1) = n− 1, setting u0 = 1.

(3) For i = 1, 2, n ≥ 1 the vertices x−n,i are not equivalent under the action of U−.

(4) StabU−(x−1,2, x
−
1,1) = {1}.
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Proof. For (1), i = 1, 2, n ≥ 1 we have,

U+
n,i = {

∏
α∈∆re

i,+

1≤`(α)≤n

χα(uα) | uα ∈ k}

since χα(uα) commute among themselves for α ∈ ∆+
n,i ([CG], Section 14), where

∆+
n,i = {α ∈ ∆re

i.+ | l(α) ≤ n}.
From Lemma 3.2, for i = 1, 2, n ≥ 1 we have

U−n,i = unU
+
n,jun

−1 ⊆ unUun
−1 ⊆ unBun

−1

where j = i for even n, j = 3 − i for odd n and un ∈ W is the unique element of the set Ωi with
`(un) = n, setting u0 = 1.

Thus for each n ≥ 1, i = 1, 2

U−n,i ⊆ unBun
−1 = un−1Pju

−1
n−1 ∩ unP3−ju

−1
n ⊆ un−1Pju

−1
n−1

where j = i for even n, j = 3− i for odd n and un ∈ Ωi with `(un) = n, having set u0 = 1.

Hence

U−n,i ⊆ un−1Pju
−1
n−1 = StabG(x−n,i)

so

U−n,i ⊆ un−1Pju
−1
n−1 ∩ U− = StabG(x−n,i) ∩ U−

= StabU−(x−n,i).

Conversely, for n ≥ 1 and i = 1, 2

un−1Pju
−1
n−1 ∩ U− = un−1(Pj ∩ U−)u−1

n−1

= un−1U−αju
−1
n−1 by Lemma 3.3

= U−un−1αj

⊆ U−n,i

where j = i for even n and j = 3 − i for odd n, un−1 ∈ Ωi with `(un−1) = n − 1 setting u0 = 1.
So

U−n,i = StabU−(x−n,i).

For (2), the inclusion U−n,i ⊆ U−n+1,i, for i = 1, 2, n ≥ 1, shows that the group U−n,i fixes the edge

(x−n,i, x
−
n+1,i). We observe that for a vertex on the fundamental apartment, denoted by wPi with i = 1, 2,

w ∈W , we may identify EX0 (wPi) the set of edges with the origin wPi with

EX0 (wPi) = {wB} ∪ {wχαi(s)wiB | s ∈ Fq}.
The vertex x−n,i, n ≥ 1, i = 1, 2 corresponds to the coset un−1Pj where un−1 ∈ W is the unique

element of the set Ωi with `(un−1) = n − 1 and j = i if n is even, j = 3 − i if n is odd having set
u0 = 1. The edge (x−n,i, x

−
n+1,i) then corresponds to the coset un−1wjB, that is the element of the set

{un−1B} ∪ {un−1χαj (s)wjB | s ∈ Fq} corresponding to s = 0.

We are left to consider {un−1B} ∪ {un−1χαj (s)wjB | s ∈ F×q } which is the set of edges with origin

x−n,i distinct from (x−n,i, x
−
n+1,i). We claim that if u · [un−1χαj (s)wjB] = un−1B, for some s ∈ Fq and for
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some u ∈ G, then u ∈ U−n,i. In fact, the element u is equal to u−1
n−1w

−1
j χαj (−s)u−1

n−1, and

un−1w
−1
j χαj (−s)u−1

n−1 ∈ un−1U−αju
−1
n−1

= U−un−1αj

≤ U−n,i

for i = 1, 2, n ≥ 1 and j = i if n is even, j = 3 − i if n is odd and un−1 ∈ Ωi with `(un−1) = n − 1
setting u0 = 1, the proof of (2) is complete.

For (3), suppose that for some u− ∈ U−, u−x−n,i = x−n+m,i with m 6= 0. Assume that m > 0. Then

for i = 1, 2, some w,w
′ ∈W with `(w

′
) = n+m ≥ `(w) = n we have

u−(wPi) = w
′
Pi if and only if (w

′
)−1u−w ∈ Pi = B tBwiB

which is impossible since U− ∩ B = {1}, unless w
′

= w and thus vertices wPi and w
′
Pi coincide. For

(4),we have

StabU−(x−1,2, x
−
1,1) = StabG(x−1,2, x

−
1,1) ∩ U−

= B ∩ U−
= HU ∩ U−
= {1}

as follows from axiom RD1-RD5 of [Ti2]. 2

3.2. Graph of groups for B−. We can now obtain the graph of groups for B−. We have

H ∼= F×q × F×q
from Section 2. Thus |H| = (q − 1)2 and for each i = 1, 2, n ≥ 1 the group HU−n,i is a finite subgroup

of B− of order qn(q − 1)2. The following theorem is an easy generalization of Theorem 3.1 using the
additional property that H fixes the fundamental apartment point wise.

Theorem 3.5. The group B− = HU− is isomorphic to the fundamental group of the following graph
of groups:

......
HU−

1,1 HU−
2,1 HU−

3,1HU−
1,2HU−

2,2HU−
3,2 HU−

2,2 HU−
1,2 HU−

1,1 HU−
2,1H... α0 α2,1α1,2α2,2ω2,2 ω1,2 ω1,1 ω2,1ω0 α1,1

a−
1,1 a−

2,1 a−
3,1a−

3,2 a−
2,2 a−

1,2

where

ω0 : H ↪→ HU−1,2

α0 : H ↪→ HU−1,1
are inclusion maps and for i = 1, 2, n ≥ 1

αn,i : HU−n,i ↪→ HU−n,i

are identity maps and for i = 1, 2, n ≥ 1

ωn,i : HU−n,i ↪→ HU−n+1,i

are inclusion maps. Moreover B− has the expression

B− = HU− = HU−∞,2 ∗H HU−∞,1.

10



The volume of the graph of groups for B− is a scalar multiple of 2+
∑

n≥1

1

qn
(cf. [CG], Lemma 8.1).

Theorem 3.5 also proves that the group B− is a nonuniform lattice subgroup of G (see ([CG], Section
8) for an alternate proof).

This also shows that the fundamental apartment A0 is a fundamental domain for U− and for B− on
X, as was observed in [Ti2] and [CG].

3.3. Graph of groups for P−1 . The following gives a ‘Nagao theorem’ for P−1 in analogy with
GL2(Fq[t]) and SL2(Fq[t]) as in [S]. However, our method of proof restricts us to constructing a graph
of groups for P−1 only when k = Fq and q = 2s. We note though, that it was shown in [CG] that the
semi–infinite ray is a fundamental domain for P−1 on X = Xq+1 with no restriction on q.

We will need the following lemma.

Lemma 3.6. Let G be an affine or hyperbolic complete simply–connected Kac–Moody group over the
finite field k = Fq. Let P−1 be the negative standard parabolic subgroup of G. Then P−1 contains a
subgroup of order q + 1.

Proof: As in [CG], there is a homomorphism

φ1 : SL2(Fq)→ G.

Since G is of simply connected type, φ1 is injective (For the adjoint form of G, φ1 has kernel the cyclic
group of order 2, but we consider only the simply connected form here). Moreover, φ1(SL2(Fq)) is
generated by χα1(s), χ−α1(t), s, t ∈ Fq as in Subsection 2.1. Since the Weyl group element w1 flips α1

to −α1, φ1(SL2(Fq)) is contained in the union of Bruhat cells B− tB−w1B
−. But this is precisely the

parabolic subgroup P−1 . So φ1(SL2(Fq)) is contained in P−1 . Thus there is a subgroup T = φ1(T ) of
P−1 , where T is the non–split torus of SL2(Fq) a subgroup of order q+ 1. (We refer the reader to [CC],
Theorem 3, (i) and [Lu], Lemma 3.5 for further details about the non–split torus of SL2(Fq).�

Remarks.

(1) When q = 2, T is generated by χα1(1)χ−α1(1) which has order 3 ([CC]).

(2) Lemma 3.6 can also be proven using the fact that P−1 has a Levi factor which is a finite group of
Lie type.

Proposition 3.7. Let G be an affine or hyperbolic complete simply–connected Kac–Moody group over
the finite field k = Fq and assume that q = 2s. Let X = Xq+1 be the Tits building of G. Let P−1 be the
negative standard parabolic subgroup of G. Then

{P1} ∪ A+
0 = (P1, P2, w2P1, w2w1P2, w2w1w2P1, . . . )

is a fundamental domain for P−1 on X where A+
0 = (P2, w2P1, w2w1P2, w2w1w2P1, . . . ) is the positive

half of the fundamental apartment A0 and

P−1
∼= B−0,1 ∗H ∪n≥1B

−
n,1,

B−0,1 = 〈H,T 〉, |B−0,1| = (q − 1)2(q + 1)

where T is the subgroup of P−1 of order q + 1 as in Lemma 3.6, and for n ≥ 1,

B−n,1 = 〈H,U−n,1〉, |U−n,1| = qn, U−n,1
∼= {
(

1 tf(t)
0 1

)
, tf(t) ∈ tFq[t], deg(tf(t)) ≤ n},

H = 〈hα1(u) | u ∈ F×q 〉 ∗ 〈hα2(u) | u ∈ F×q 〉 ∼= F×q × F×q ,
11



and |H| = (q − 1)2 so that |B−n,1| = (q − 1)2qn.

Proposition 3.7 follows immediately from Proposition 3.10.

We will use the following Lemma, proven in [CC], Theorem 3, (i) and in [Lu], Lemma 3.5.

Lemma 3.8. For k = Fq and q = 2s, the group T of order q + 1 acts transitively on P1/B ∼= P1(Fq).

Theorem 3.9. When k = Fq and q = 2s, the group P−1 is isomorphic to the fundamental group of the
following graph of groups:

α0 ...B−
1,1 B−

2,1B−
1,1 B−

2,1 B−
3,1

x1 x2 x3 x4

B−
0,1

α1,1 α2,1 ω2,1ω1,1ω0
H

where

ω0 : H ↪→ B−1,1

α0 : H ↪→ B−0,1
are inclusion maps and for n ≥ 1

αn,i : B−n,1 ↪→ B−n,1
are identity maps and for n ≥ 1

ωn,i : B−n,1 ↪→ B−n+1,1

are inclusion maps.

Theorem 3.9 follows immediately from the following.

Proposition 3.10. Let G be an affine or hyperbolic complete simply–connected Kac–Moody group over
the finite field k = Fq and assume that q = 2s. Let X = Xq+1 be the Tits building of G. Let P−1 be the
negative standard parabolic subgroup of G and let P1 = P+

1 be the positive standard parabolic subgroup
of G. Let (x1, x2, x3, x4, x5, . . . ) be an indexing of vertices

{P1} ∪ A+
0 = (P1, P2, w2P1, w2w1P2, w2w1w2P1, . . . )

of X, where A+
0 = (P2, w2P1, w2w1P2, w2w1w2P1, . . . ) is the positive half of the fundamental apartment

A0. Then

(1) B−0,1 acts transitively on P1/B sending all edges to B and fixing the coset P1.

(2) P−1 ∩ P+
1 = B−0,1.

(3) For each n ≥ 1, the group B−n,1 leaves the edge (xn+1, xn+2) fixed and acts transitively on the set

of edges with origin xn+1, distinct from (xn+1, xn+2) sending all the edges to un−1B, where un−1 ∈ Ω1

with `(un−1) = n− 1, setting u0 = 1.

(4) For n ≥ 1, the vertices xn in the set

{P1} ∪ A+
0 = (P1, P2, w2P1, w2w1P2, w2w1w2P1, . . . )

are not equivalent modulo P−1 .

12



Proof. For k = Fq and q = 2s, the group T acts transitively on P1/B (Lemma 3.8). The group H is
contained in B and hence P1 and so H fixes P1. Hence B−0,1 = 〈H,T 〉 acts transitively on P1/B sending
all edges to B and fixing the coset P1.

For (2), by (1) we have

P−1 ∩ P+
1 = StabP−1

(P+
1 ) = B−0,1.

For (3), since B−n,1 ⊆ B−n+1,1 for n ≥ 1, B−n,1 fixes the edge (xn+1, xn+2). As in Proposition 3.4,

we have if b− ∈ P−1 acts transitively on the set of edges with origin xn+1 for n ≥ 1, distinct from
(xn+1, xn+2) sending all the edges to un−1B, then b− ∈ U−n,1. Also from the equation

b−[un−1χαt(s)wtB] = un−1B

where s ∈ Fq, t = 1 if n is even and t = 2 if n is odd, we obtain

u−1
n−1b

−un−1χαt(s)wt ∈ B
also

u−1
n−1b

−un−1χαt(s)wt ∈ P−1 .
Hence

u−1
n−1b

−un−1χαt(s)wt ∈ P−1 ∩B = H,

so b− ∈ H. Therefore b− ∈ B−n,1 = 〈H,U−n,1〉 and the proof of (3) is complete.

Part (4) follows easily from Proposition 3.4(3). 2

4. Congruence subgroups of Kac–Moody groups

Let Γ = SL2(Fq[t]) ≤ H = SL2(Fq((t−1))). Then Γ is a nonuniform (arithmetic) lattice subgroup of
H ([S]). Let

Γ0 = {
(
a b
c d

)
∈ SL2(Fq[t]) |

(
a b
c d

)
=

(
1 0
0 1

)
mod t}

be the principal congruence subgroup of Γ. Then

Γ0 = Ker{ρ : SL2(Fq[t]) −→ SL2(Fq) | t 7→ 0}.
By [S] we have:

Γ0 = ∗s∈S sΛs−1,

where

Λ =

(
1 tFq[t]
0 1

)
and S is a set of coset representatives for SL2(Fq)/B(SL2(Fq)), where B(SL2(Fq)) denotes the Borel
subgroup of SL2(Fq).

For r > 1, we also have the family of congruence subgroups:

Γ0(r) = {
(
a b
c d

)
∈ SL2(Fq[t]) |

(
a b
c d

)
=

(
1 0
0 1

)
mod tr}.

Our aim is to show that the subgroup P−1 of our Kac–Moody group G contains a congruence subgroup
analogous to Γ0. In Section 5 we comment on the existence of congruence subgroups in Kac–Moody
groups analogous to the family Γ0(r), r > 1.

We first define principal congruence subgroups of U− as follows. We set

K1,U− = Ker{ψ1,U− : U− → U−α2 | Uα 7→ 1 if `(α) ≥ 1, α ∈ ∆re
− \ {−α2}}
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K2,U− = Ker{ψ2,U− : U− → U−α1 | Uα 7→ 1 if `(α) ≥ 1, α ∈ ∆re
− \ {−α1}}.

The groups Ki,U− are the subgroups of U− generated up to conjugacy by all negative root groups
except for Uα3−i . Here we explicitly construct the graphs of groups for Ki,U− giving generalized amalgam
presentations for them.

For each i = 1, 2, the set S =∞t {χαi(s)wi | s ∈ Fq} may be identified with P1(Fq) whose elements
are coset representatives of Pi/B.

For sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, s0 = 0, we set

S1 = {g0 = w1, g1 = χα1(s1)w1, g2 = χα1(s2)w1, . . . , gq−1 = χα1(sq−1)w1}
S2 = {h0 = w2, h1 = χα2(s1)w2, h2 = χα2(s2)w2, . . . , hq−1 = χα2(sq−1)w2}.

For each j = 0, 1, 2, . . . , q − 1, let S1,jA+
0 and S2,jA−0 denote translates of the positive half A+

0 =
(P2, w2P1, w2w1P2, w2w1w2P1, . . . ) of the fundamental apartment A0 by the elements gj of S1 and of
the negative half A−0 = (P1, w1P2, w1w2P1, w1w2w1P2, . . . ) of the fundamental apartment A0 by the
elements hj of of S2 respectively. Then S1,jA+

0 has vertex sequence

{x1,−
0,j = P2, x

1,−
1,j = χα1(sj)w1P2, x

1,−
2,j = χα1(sj)w1w2P1, ... | sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, s0 = 0}

and S2,jA−0 has vertex sequence

{x2,−
0,j = P1, x

2,−
1,j = χα2(sj)w2P1, x

2,−
2,j = χα2(sj)w2w1P2, ... | sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, s0 = 0}.

The following theorem gives the graph of groups for Ki,U− i = 1, 2.

Theorem 4.1. Let G be an affine or hyperbolic complete simply–connected Kac–Moody group over the
finite field k = Fq. Let U− be subgroup of G generated by all negative real root subgroups. Let Ki,U− be

the principal congruence subgroup of U− for i = 1, 2. Then the group

Ki,U− = Ker{ψi,U− : U− → U−α3−i | Uα 7→ 1 if `(α) ≥ 1, α ∈ ∆re
i,− \ {α3−i}}

is isomorphic to the fundamental group of the following graph of groups:

where the total number of rays is q + 1 and is indexed over the set S,

αi,jn : χαi(sj)wiU
−
n,iw

−1
i χαi(−sj)→ χαi(sj)wiU

−
n,iw

−1
i χαi(−sj)

are identity maps, for i = 1, 2, n ≥ 0, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1 setting s0 = 0 and U−0,i = {1}, and

ωi,jn : χαi(sj)wiU
−
n,iw

−1
i χαi(−sj) ↪→ χαi(sj)wiU

−
n+1,iw

−1
i χαi(−sj)

are inclusion maps, for i = 1, 2, n ≥ 0, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1 setting s0 = 0 and U−0,i = {1}.

Lemmas 4.2 and 4.3 show that the vertex groups of the graph of groups in Theorem 4.1 are subgroups
of Ki,U− for i = 1, 2.

Lemma 4.2. For s ∈ Fq, i = 1, 2

ψi,U− [χαi(s)] = ψi,U− [χwi(−αi)(s)] = 1.

Proof. This is obvious from the definition of ψi,U− . 2

Lemma 4.3. For each i = 1, 2, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, with s0 = 0 we have

χαi(sj)wiU
−
n,iw

−1
i χαj (−sj) ⊆ Ki,U− .
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{1}

{1}

{1} {1}

q rays

↵i,0
0

↵i,0
1

!i,0
1

!i,0
0!i,1

0

!i,1
1

↵i,1
1

↵i,1
0

��i
(s1)wiU

�
1,iw

�1
i ��i

(�s1)

��i
(s1)wiU

�
1,iw

�1
i ��i

(�s1)

��i
(s1)wiU

�
2,iw

�1
i ��i

(�s1)

��i
(sq�1)wiU

�
1,iw

�1
i ��i

(�sq�1)

��i
(sq�1)wiU

�
1,iw

�1
i ��i

(�sq�1)

��i
(sq�1)wiU

�
2,iw

�1
i ��i

(�sq�1)

↵i,q�1
0

↵i,q�1
1

!i,q�1
1

!i,q�1
0

xi,�
0,j

xi,�
1,0xi,�

1,1

xi,�
2,1 xi,�

2,0

xi,�
2,q�1

xi,�
1,q�1

wiU
�
2,iw

�1
i

wiU
�
1,iw

�1
i

wiU
�
1,iw

�1
i

Proof. For each i = 1, 2, n ≥ 1, sk ∈ Fq, k = 0, 1, 2, . . . , n we have,

wiU
−
n,iw

−1
i = {wiχ−α3−i(s1)χ−w3−iαi(s2) . . . χαk

(sn)w−1
i }

= {(wiχ−α3−i(s1)w−1
i )(wiχ−w3−iαi(s2)w−1

i ) . . . (wiχαk
(sn)w−1

i )}
= {χ−wiα3−i(s1)χ−wiw3−iαi(s2) . . . χwiαk

(sn)}
where for each k, αk ∈ ∆re

i,− with l(αk) = n. Hence for each i = 1, 2, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1,
with s0 = 0

ψi,U− [χαi(sj)wiU
−
n,iw

−
i χαi(−sj)] = ψi,U− [χαi(sj)χ−wiα3−i(s1)χ−wiw3−iαi(s2) . . . χwiαk

(sn)χαi(−sj)]
= {1},

by the definition of ψi,U− . 2

Theorem 4.4. Let G be a rank 2 affine or hyperbolic complete simply–connected Kac–Moody group
over the finite field k = Fq. Let U− be subgroup of G generated by all negative real root subgroups. Let
Ki,U− be principal congruence subgroup of U− for i = 1, 2, then we have,

(1) for i = 1, 2, Ki,U− ∩ Pi = {1}.

(2) For i = 1, 2, n ≥ 1, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, with s0 = 0,

StabKi,U−
(xi,−n,j ) = χαi(sj)wiU

−
n,iw

−1
i χαi(−sj).

(3) For i = 1, 2, n ≥ 1, j = 0, 1, 2, . . . , q − 1, the vertices xi,−n,j are not equivalent mod Ki,U−.
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(4) For i = 1, 2, n ≥ 1, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, with s0 = 0 and Ωi be as before the coset

χαi(sj)wiU
−
n,iw

−1
i χαi(−sj) fixes the edge (xi,−n,j , x

i,−
n+1,j) and acts transitively on the set of edges with

origin xi,−n,j distinct from (xi,−n,j , x
i,−
n+1,j), sending all edges to χαi(sj)wiun−1B, where un−1 ∈ Ωi with

`(un−1) = n− 1, setting u0 = 1.

Proof. For (1), we recall that

Ki,U− ∩ Pi ⊆ (U− ∩ Pi) = U−αi , by Lemma 3.3.

But

Ki,U− ∩ U−αi = {1}
by definition of Ki,U− , so Ki,U− ∩ Pi = {1}.

For (2), from Proposition 3.4 for each n ≥ 1, i = 1, 2, we have

U−n,i ≤ unBu
−1
n−1 = un−1Ptu

−1
n−1 ∩ unP3−tu

−1
n ,

where un ∈W is the unique element of the Ωi, where

Ω1 = {1, w2, w2w1, w2w1w2, ...}, Ω2 = {1, w1, w1w2, w1w2w1, ...},
with `(un) = n, with setting u0 = 1, and t = i if n is even and t = 3 − i if n is odd. Then for each
n ≥ 1, i = 1, 2, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1 with s0 = 0 we have

χαi(sj)wiU
−
n,iw

−1
i χαi(−sj) ⊆ χαi(sj)wiunBu

−1
n w−1

i χαi(−sj)
= χαi(sj)wiun−1Ptu

−1
n−1w

−1
i χαi(−sj) ∩ χαi(sj)wiunP3−tu

−1
n w−1

i χαi(−sj)
⊆ χαi(sj)wiun−1Ptu

−1
n−1w

−1
i χαi(−sj).

where t = i if n is even and t = 3− i if n is odd. Hence

χαi(sj)wiU
−
n,iw

−1
i χαi(−sj) ⊆ χαi(sj)wiun−1Ptu

−1
n−1w

−1
i χαi(−sj) ∩Ki,U−

= StabG(xi,−n,j ) ∩Ki,U−

= StabKi,U−
(xi,−n,j )

for i = 1, 2, n ≥ 1, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, with s0 = 0. Conversely,

StabKi,U−
(xi,−n,j ) = χαi(sj)wiun−1Ptu

−1
n−1w

−1
i χαi(−sj) ∩Ki,U−

= χαi(sj)wi(un−1Ptu
−1
n−1 ∩Ki,U−)w−1

i χαi(−sj)
⊆ χαi(sj)wi(un−1Ptu

−1
n−1 ∩ U−)w−1

i χαi(−sj)
= χαi(sj)wiStabU−(xi,−n,j )w

−1
i χαi(−sj)

= χαi(sj)wiU
−
n,iw

−1
i χαi(−sj).

So, for i = 1, 2, n ≥ 1,

χαi(sj)wiU
−
n,iw

−1
i χαi(−sj) = StabKi,U−

(xi,−n,j ),

for each sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, with s0 = 0.

Since Ki,U− ≤ U−, (3) of the theorem follows easily from Proposition 3.4(3).
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For (4), the chain of inclusions

U−1,i ⊆ U−2,i ⊆ U−3,i ⊆ . . . ,
for i = 1, 2, yields

χαi(sj)wiU
−
1,iw

−1
i χαi(−sj) ⊆ χαi(sj)wiU

−
2,iw

−1
i χαi(−sj) ⊆ χαi(sj)wiU

−
3,iw

−1
i χαi(−sj) . . .

which shows that for n ≥ 1, i = 1, 2 and sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, with s0 = 0, the coset

χαi(sj)wiU
−
n,iw

−1
i χαi(−sj) fixes the edge (xi,−n,j , x

i,−
n+1,j).

For n ≥ 1, i = 1, 2, sj ∈ Fq, j = 0, 1, 2, . . . , q−1 with s0 = 0 the edge (xi,−n,j , x
i,−
n+1,j) corresponds to the

coset χαi(sj)wiun−1wtB where un−1 is the unique element of Ωi with `(un−1) = n−1 having set u0 = 1,
and t = i if n is even and t = 3 − i if n is odd. For each n ≥ 1, i = 1, 2, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1
with s0 = 0, the coset χαi(sj)wiun−1wtB belongs to the set

EX0 (xi,−n,j ) = {χαi(sj)wiun−1B} ∪ {χαi(sj)wiun−1χαt(s)wtB | sj ∈ Fq, s ∈ Fq}.
We are left to consider

{χαi(sj)wiun−1B} ∪ {χαi(sj)wiun−1χαt(s)wtB | sj ∈ Fq, s ∈ F×q }

which are the edges with origin xi,−n,j distinct from (xi,−n,j , x
i,−
n+1,j), for n ≥ 1, i = 1, 2, sj ∈ Fq, j =

0, 1, 2, . . . , q − 1 with s0 = 0. We claim that if for some ui ∈ G
ui · [χαi(sj)wiun−1χαt(s)wtB] = χαi(sj)wiun−1B = (xi,−n−1,j , x

i,−
n,j )

then

ui ∈ χαi(sj)wiU
−
n,iw

−1
i χαi(−sj).

In fact for n ≥ 1, i = 1, 2, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1 with s0 = 0

ui = χαi(sj)wiun−1w
−1
t χαt(−s)u−1

n−1w
−1
i χαi(−sj)

∈ χαi(sj)wiun−1U−αtu
−1
n−1w

−1
i χαi(−sj)

= χαi(sj)wiU−un−1αtw
−1
i χαi(−sj)

⊆ χαi(sj)wiU
−
n,iw

−1
i χαi(−sj).

This completes the proof of (4). 2

The following corollary is immediate.

Corollary 4.5. For i = 1, 2, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1 with s0 = 0, we have

Ki,U− = ∗sj∈Fq [
⋃
n≥1

χαi(sj)wiU
−
n,iw

−1
i χαi(−sj)].

We note that for i = 1, 2, the group Ki,U− is a nonuniform lattice subgroup of G.

4.1. Principal congruence subgroup of P−1 . For k = Fq and q = 2s, we define the principal
congruence subgroup KP−1

of P−1 as follows:

KP−1
= Ker{ψP−1 : P−1 → P0 | Uα 7→ {1} if `(α) ≥ 1, α ∈ ∆re

− \ {−α1}}.

Where P0 = φ1(SL2(Fq)) is generated by χα1(s), χ−α1(t), s, t ∈ Fq and φ1 is the map defined in
Lemma 3.6.

Lemma 4.6 and Lemma 4.7 justify the definition of KP−1
.
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Lemma 4.6. For k = Fq and q = 2s

ψP−1
(U−) = U−α1 .

The proof of Lemma 4.6 follows from the definition of ψP−1
.

Lemma 4.7. For s ∈ F×q and q = 2s, we have

ψP−1
[hα1(s)] = χ−α1(−s−1)χ−α1(1−1).

Proof. For s ∈ F×q and q = 2s

hα1(s) = w̃1(s)w̃1(1)−1

= χα1(s)χ−α1(−s−1)χα1(s)χα1(1)χ−α1(1−1)χα1(1).

Hence,

ψP−1
[hα1(s)] = χ−α1(−s−1)χ−α1(1−1). 2

Lemma 4.8. For k = Fq and q = 2s

KP−1
∩Hα1 = {1}

Lemma 4.8 is a consequence of Lemma 4.7.

Lemma 4.9. For s ∈ k = Fq, q = 2s, we have

ψP−1
[χα1(s)w1Hα2w

−1
1 χα1(−s)] = {1}.

Proof. For s ∈ Fq and t ∈ F×q , we have

w1hα2(t)w−1
1

= w1(w̃2(t)w̃2(1)−1)w−1
1

= w1[χα2(t)χ−α2(−t−1)χα2(t)χα2(1)χ−α2(1−1)χα2(1)]w−1
1

= (w1χα2(t)w−1
1 )(w1χ−α2(−t−1)w−1

1 )(w1χα2(t)w−1
1 )

· (w1χα2(1)w−1
1 )(w1χ−α2(1−1)w−1

1 )(w1χα2(1)w−1
1 )

= χw1α2(t)χ−w1α2(−t−1)χw1α2(t)χw1α2(1)χ−w1α2(1−1)χw1α2(1).

So

χα1(s)w1hα2(t)w−1
1 χα1(−s)

= χα1(s)χw1α2(t)χ−w1α2(−t−1)χw1α2(t)χw1α2(1)χ−w1α2(1−1)χw1α2(1)χα1(−s).
Hence

ψP−1
[χα1(s)w1Hα2w

−1
1 χα1(−s)] = {1},

by the definition of ψP−1
. 2

Lemma 4.10. For n ≥ 1, s ∈ Fq, q = 2s,

ψP−1
[χα1(s)w1U

−
n,1w

−1
1 χα1(−s)] = {1}.
18



Proof. For n ≥ 1, uα, s ∈ Fq, q = 2s,

χα1(s)w1U
−
n,1w

−1
1 χα1(−s) = χα1(s)w1[{

∏
α∈∆re

1,−
1≤`(α)≤n

χα(uα)}]w−1
1 χα1(−s)

= χα1(s){
∏

α∈∆re
1,−

1≤`(α)≤n

[w1χα(uα)w−1
1 ]}χα1(−s)

= χα1(s){
∏

α∈∆re
1,−

1≤`(α)≤n

χw1α(uα)}χα1(−s).

So, for n ≥ 1, s ∈ Fq,
ψP−1

[χα1(s)w1U
−
n,1w

−1
1 χα1(−s)] = {1},

by the definition of ψP−1
.

In order to give the graph of groups presentation for KP−1
, we take the following coset representatives

for P1/B,
S = {gj = χα1(sj)w1 | sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, with s0 = 0}.

For each j = 0, 1, 2, . . . , q − 1, we take translates gjA+
0 of the positive half A+

0 of the fundamental
apartment.

Then for n ≥ 1, j = 0, 1, 2, . . . , q − 1 the half-ray gjA+
0 has the following sequence of vertices

{a1,−
0,j = P2, a

1,−
n,j = χα1(sj)w1un−1Pi | sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, s0 = 0},

where un−1 is unique element of Ω1, `(un−1) = n− 1 with u0 = 1 and i = 1 if n is even and i = 2 if n
is odd.

For n ≥ 1, we define subgroups of P−1

K−n,1 = 〈U−n,1, Hα2〉
which satisfy the following ascending chain of inclusions:

K−1,1 ⊆ K−2,1 ⊆ K−3,1 ⊆ . . .
Next lemma shows that translates of these subgroups by the cosets representatives of P1/B are contained
in the principal congruence subgroup KP−1

.

Lemma 4.11. For s ∈ k = Fq, q = 2s,

χα1(s)w1K
−
n,1w

−1
1 χα1(−s) = χα1(s)w1〈U−n,1, Hα2〉w−1

1 χα1(−s) ⊆ KP−1
.

This follows from Lemma 4.9 and Lemma 4.10.

We now give the graph of groups for KP−1
.

Theorem 4.12. Let G be an affine or hyperbolic complete simply–connected Kac–Moody group over the
finite field k = Fq and assume that q = 2s. Let P−1 be the negative standard parabolic subgroup of G.
Then the principal congruence subgroup

KP−1
= Ker{ψP−1 : P−1 → P0 | Uα 7→ {1} if `(α) ≥ 1, α ∈ ∆re

− \ {−α1}}.

of P−1 has the following graph of groups:
19



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 

  
 

where where the total number of rays is q + 1, indexed over the set S,

α1,j
0 : K−1,1 → K−1,1

and
α1,j
n : χα1(sj)w1K

−
n,1w

−1
1 χα1(−sj)→ χα1(sj)wiK

−
n,1w

−1
1 χα1(−sj)

are identity maps, for n ≥ 1, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1 setting s0 = 0,

ω1,j
0 : K−1,1 → χαi(sj)wiK

−
1,1w

−1
i χαi(−sj)

ω1,j
n : χα1(sj)w1K

−
n,1w

−1
1 χα1(−sj) ↪→ χαi(sj)wiK

−
n+1,1w

−1
i χαi(−sj)

are inclusion maps, for n ≥ 1, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1 setting s0 = 0. 2

Theorem 4.12 is a consequence of the following.

Proposition 4.13. Let KP−1
be the principal congruence subgroup of the standard parabolic subgroup

P−1 . Let k = Fq and assume that q = 2s.

(1) We have KP−1
∩ P2 = K−1,1.

(2) For n ≥ 1, sj ∈ k = Fq, q = 2s, j = 0, 1, 2, . . . , q − 1, with s0 = 0 we have

StabK
P−1

(a1,−
n,j ) = χα1(sj)w1K

−
n,1w

−1
1 χα1(−sj).

(3) The vertices a1,−
n,j , n ≥ 1, j = 0, 1, 2, . . . , q − 1 are not equivalent mod KP−1

.

(4) For n ≥ 1, sj ∈ k = Fq, q = 2s, j = 0, 1, 2, . . . , q−1 with s0 = 0, the coset χα1(sj)w1K
−
n,1w

−1
1 χα1(−sj)

fixes the edge (a1,−
n,j , a

1,−
n+1,j) and acts transitively on the set of edges with origin a1,−

n,j distinct from
20



(a1,−
n,j , a

1,−
n+1,j) taking all edges to χα1(sj)w1un−1B, where un−1 ∈ Ω1 with `(un−1) = n − 1, setting

u0 = 1.

Proof. We have
KP−1

∩ P2 ⊆ P−1 ∩ P2 = B−1,1 = 〈H,U−α2〉.
But KP−1

∩H = Hα2 and U−α2 ⊂ KP−1
, so KP−1

∩ P2 = K−1,1. This proves (1).

For (2), for n ≥ 1 and sj ∈ Fq, j = 0, 1, 2, . . . , q − 1, setting s0 = 0 we have

χα1(sj)w1K
−
n,1w

−1
1 χα1(−sj) = χα1(sj)w1〈Hα2 , U

−
n,1〉w−1

1 χα1(−sj)
⊂ χα1(sj)w1B

−
n,1w

−1
1 χα1(−sj).

Also from Lemma 4.11

χα1(s)w1K
−
n,1w

−1
1 χα1(−s) = χα1(s)w1〈U−n,1, Hα2〉w−1

1 χα1(−s) ⊆ KP−1

So,

χα1(sj)w1K
−
n,1w

−1
1 χα1(−sj) ⊆ χα1(sj)w1B

−
n,1w

−1
1 χα1(−sj) ∩KP−1

= StabP−1
(a1,−
n,j ) ∩KP−1

= StabK
P−1

(a1,−
n,j ).

Conversely, for n ≥ 1, sj ∈ k = Fq, q = 2s, j = 0, 1, 2, . . . , q − 1, with s0 = 0 and t = 1 if n is odd and
t = 2 if n is even,

StabK
P−1

(a1,−
n,j ) = χα1(sj)w1un−1Ptw

−1
1 χα1(−sj) ∩KP−1

⊆ χα1(sj)w1un−1Ptw
−1
1 χα1(−sj) ∩ P−1

= χα1(sj)w1(un−1Pt ∩ P−1 )w−1
1 χα1(−sj)

= χα1(sj)w1〈H,U−n,1〉w−1
1 χα1(−sj)

= χα1(sj)w1B
−
n,1w

−1
1 χα1(−sj).

So StabK
P−1

(a1,−
n,j ) ⊆ χα1(sj)w1B

−
n,1w

−1
1 χα1(−sj)∩KP−1

. Hence StabK
P−1

(a1,−
n,j ) = χα1(sj)w1K

−
n,1w

−1
1 χα1(−sj).

Part (3) is obvious.

For (4), the chain of inclusions K−1,1 ⊆ K−2,1 ⊆ K−3,1 ⊆ . . . yields

χα1(sj)w1K
−
1,1w

−1
1 χα1(−sj) ⊆ χα1(sj)w1K

−
2,1w

−1
1 χα1(−sj) ⊆ χα1(sj)w1K

−
3,1w

−1
1 χα1(−sj) . . .

which shows that for n ≥ 1, sj ∈ Fq, j = 0, 1, 2, 3, . . . , q−1, with s0 = 0, the coset χα1(sj)w1K
−
n,1w

−1
1 χα1(−sj)

fixes the edge (a1,−
n,j , a

1,−
n+1,j).

For n ≥ 1, sj ∈ Fq, j = 0, 1, 2, . . . , q − 1 with s0 = 0, the edge (a1,−
n,j , a

1,−
n+1,j) corresponds to the coset

χα1(sj)w1un−1wtB where un−1 is the unique element of Ω1 with `(un−1) = n− 1 having set u0 = 1 and
t = 1 if n is even and t = 2 if n is odd. The coset χα1(sj)w1un−1wtB for j = 0, 1, 2, 3, . . . , q − 1 is an
elements of the set

EX0 (a1,−
n,j ) = {χα1(sj)w1un−1B} ∪ {χα1(sj)w1un−1χαt(s)wtB | sj ∈ Fq, s ∈ Fq}
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for each n ≥ 1, sj ∈ Fq, j = 0, 1, 2, . . . q − 1 with s0 = 0. We are left to consider

{χα1(sj)w1un−1B} ∪ {χα1(sj)w1un−1χαt(s)wtB | sj ∈ Fq, s ∈ F×q }
which are the edges with origin a1,−

n,j distinct from (a1,−
n,j , a

1,−
n+1,j), j = 0, 1, 2, . . . , q− 1. We claim that for

some ui ∈ KP−1

ui · [χα1(sj)w1un−1χαt(s)wtB] = χα1(sj)w1un−1B = (a1,−
n−1,j , a

1,−
n,j )

then by Theorem 4.4
ui ∈ χα1(sj)w1U

−
n,1w

−1
1 χα1(−sj).

Also,
u−1
n−1w

−1
1 χα1(−sj)uiχα1(sj)w1un−1χαt(s)wt ∈ B,

which implies
u−1
n−1w

−1
1 χα1(−sj)uiχα1(sj)w1un−1χαt(s)wt ∈ B ∩KP−1

= Hα2 .

So,
ui ∈ χα1(sj)w1Hα2w

−1
1 χα1(−sj).

Hence
ui ∈ χα1(sj)w1〈Hα2 , U

−
n,1〉w−1

1 χα1(−sj) = χα1(sj)w1K
−
n,1w

−1
1 χα1(−sj).

This completes the proof. 2

The following corollary is immediate.

Corollary 4.14. For sj ∈ k = Fq, q = 2s we have

KP−1
= ∗K−1,1 [

⋃
n≥1,sj∈F

χα1(sj)w1K
−
n,1w

−1
1 χα1(−sj)].

Where j = 0, 1, 2, . . . , q − 1 with s0 = 0. 2

We note that KP−1
is a nonuniform lattice subgroup of G whose graph of groups has volume a scalar

multiple of 1 +
∑

n≥1

1

qn
.

5. Other directions

5.1. Higher level congruence subgroups. The congruence subgroups Ki,U− and KP−1
defined in the

previous sections may be viewed as principal or ‘level 1’ congruence subgroups in an infinite sequence
of congruence subgroups. In this subsection we define higher level congruence subgroups of P−1 . We
recall that

KP−1
= Ker{ψP−1 : P−1 → P0 | Uα 7→ {1} if `(α) ≥ 1, α ∈ ∆re

− \ {−α1}},
where P0 = φ1(SL2(Fq)) and φ1 is the map defined in Lemma 3.6.

For n ≥ 2, we define

KP−1
(n) = Ker{ρ : P−1 → Qn | Uα 7→ 1 if `(α) ≥ n},

where Qn = φn(SL2(Fq[t]/(tn))), where φn is the map that extends naturally from SL2(Fq) to
SL2(Fq[t]/(tn)).

Higher level congruence subgroups of U− can be defined similarly. By analogy with the classical case,
we expect the graphs of groups of KP−1

(n) to be significantly more complicated than that of KP−1
(cf.

[CCM]). Instead of a core graph consisting of a single vertex, as is the case for KP−1
, we expect to find
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a core graph consisting of a complete bipartite graph with the number of cusps growing exponentially
with the size of the core.
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