CONGRUENCE SUBGROUPS OF LATTICES IN RANK 2 KAC-MOODY GROUPS OVER FINITE FIELDS

ABID ALI AND LISA CARBONE

Abstract

Let G be a rank 2 complete affine or hyperbolic simply-connected Kac-Moody group over a finite field k. Then G is locally compact and totally disconnected. Let $B^{-}=H U^{-}$be the negative minimal parabolic subgroup of G, where H is the analog of a diagonal subgroup and U^{-}is generated by all negative real root groups. Let w_{1} and w_{2} be the generators of the Weyl group. Let $P_{1}^{-}=B^{-} \sqcup B^{-} w_{1} B^{-}$ be the negative standard parabolic subgroup of G corresponding to w_{1}. It is known that the subgroups U^{-}, B^{-}and P_{1}^{-}are nonuniform lattice subgroups of G. Here we construct an infinite sequence of congruence subgroups of P_{1}^{-}as natural generalizations of the corresponding notions for lattices in Lie groups. We also show that the group U^{-}contains analogous congruence subgroups. Our technique involves determining graphs of groups presentations for U^{-}, B^{-}and P_{1}^{-}with the fundamental apartment of the Bruhat-Tits tree X a quotient graph for U^{-}and for B^{-}on X. When $k=\mathbb{F}_{q}$ and $q=2^{s}$, the graph of groups for P_{1}^{-}has the the positive half of the fundamental apartment as quotient graph. We explicitly construct the graphs of groups for the principal (level 1) congruence subgroup of P_{1}^{-}and the analogous subgroups of U^{-}giving generalized amalgam presentations for them.

Dedicated to the memory of Eisa Abid whose short life touched many people.

1. Introduction

The principal congruence subgroup of the characteristic p modular group $S L_{2}\left(\mathbb{F}_{q}[t]\right)$, namely the kernel of the reduction map $S L_{2}\left(\mathbb{F}_{q}[t]\right) \longrightarrow S L_{2}\left(\mathbb{F}_{q}\right)$ sending t to 0 , plays an important role in the theory of modular forms in characteristic p. More generally, congruence subgroups of algebraic groups over local fields provide a source of arithmetic subgroups.

In this work, we construct the analog of congruence subgroups of complete affine and hyperbolic simply-connected Kac-Moody groups over finite fields. Complete Kac-Moody groups over finite fields are locally compact and totally disconnected groups and are 'infinite dimensional' analogs of algebraic groups. Even though these groups have no clear notion of algebraic or arithmetic structure, the twin $B N$ pair structure developed by Tits [Ti2] provides a framework which enables us to construct congruence subgroups in rank 2 by analogy with congruence subgroups of $S L_{2}\left(\mathbb{F}_{q}[t]\right)$.

In general, recognizing whether a subgroup of the modular group is a congruence subgroup is a broad and difficult question. We give an explicit construction of congruence subgroups of affine and hyperbolic Kac-Moody groups in rank 2 as fundamental groups of certain graphs of groups. This gives rise to both a fundamental domain and a generalized amalgam presentation for the congruence subgroup.

To describe our results in more detail, we let \mathfrak{g} be a rank 2 Kac -Moody algebra. In [Ti1] and [Ti2] Tits associated to \mathfrak{g} a group functor on the category of commutative rings. In [CG] the authors gave an interpretation of Tits' group functor over arbitrary fields using representation theory of \mathfrak{g}. Carbone and Garland constructed a Kac-Moody group G that is a completion of Tits' 'minimal' group in [Ti1] and [Ti2].

[^0]Let G denote such an affine or hyperbolic group over a finite field \mathbb{F}_{q}. Let $B=H U$ be the completion of the subgroup B^{+}of G (as in [CG] and Section 2) where H is a 'diagonal subgroup' and U is the closure of the group generated by all positive real root groups. Let $B^{-}=H U^{-}$be the subgroup of G (as in [CG] and Section 2) where U^{-}is generated by all negative real root groups.

The group G has twin $B N$-pairs (G, B, N) and $\left(G, B^{-}, N\right)([C G]$, Sections 5 and 6$)$ and admits a cocompact action on its corresponding Bruhat-Tits building, which in rank 2 is a homogeneous tree X of degree $q+1$.

Let w_{1} and w_{2} be the generators of the Weyl group. Let $P_{1}^{-}=B^{-} \sqcup B^{-} w_{1} B^{-}$be the negative standard parabolic subgroup of G corresponding to w_{1}. It is known that the subgroups U^{-}, B^{-}and P_{1}^{-}are nonuniform lattice subgroups of $G([\mathrm{CG}])$. This result was also obtained independently by Rémy ([Re1]).

Here we construct the principal congruence subgroup of P_{1}^{-}the kernel of an appropriate reduction homomorphism. We also show that the group U^{-}contains analogous congruence subgroups. Our technique involves determining graphs of groups presentations for U^{-}, B^{-}and P_{1}^{-}with the fundamental apartment of the Bruhat-Tits tree X a quotient graph for U^{-}and for B^{-}on X. Similarly, the graph of groups for P_{1}^{-}has the the positive half of the fundamental apartment as quotient graph.

For some of our results, we restricted to the case where $q=2^{s}$. This restriction simplified our methods, though is probably unnecessary.

Our work gives a 'Nagao' theorem for P_{1}^{-}(Section 3), cf. ([S], p 87) and ([BL], Ch 10). We explicitly construct the graphs of groups for the principal congruence subgroup of P_{1}^{-}and the relevant subgroups of U^{-}giving generalized amalgam presentations for them.

A theory of automorphic forms, particularly Eisenstein series, on 'arithmetic' quotients of Kac-Moody groups is desirable as an extension of some aspects of the Langlands program and is in its early days of development (see [BC], [CLL], [CGGL], [Ga]). In particular, in [CGGL], the authors study Eisenstein series on the quotient of the Tits building X of a rank 2 Kac- Moody group over a finite field by the nonuniform lattice P_{1}^{-}. Our construction of congruence subgroups will be an important ingredient in developing a full automorphic theory for Kac-Moody groups.

The authors would like to thank Mikhail Ershov and Howard Garland for helpful discussions. We are also grateful to the referee whose comments improved the exposition.

2. Rank 2 Kac-Moody group and Tits building

We shall consider the split form of a rank 2 affine or hyperbolic complete Kac-Moody group $G=$ $G_{A}(k)$, as in [CG], over a field k with symmetric generalized Cartan matrix

$$
A=\left(\begin{array}{cc}
2 & -m \\
-m & 2
\end{array}\right), m \geq 2
$$

The 'symmetric' assumption is invoked in order to simplify the structure of the root system and root groups. Our results can also be extended to the case of rank 2 symmetrizable non-symmetric generalized Cartan matrices. Here, the real roots lie on 4 branches corresponding to 2 possible root lengths. The group U^{-}is a free product of metabelian groups in this case.

In this section, we define Tits' minimal form of G in terms of generators and relations, we describe a completion of the Tits functor by Carbone and Garland ([CG]) and we describe the Tits building of G which is a homogeneous tree of degree $|k|+1$.
2.1. Tits' presentation of minimal Kac-Moody groups. Let \mathfrak{g} be the Kac-Moody algebra with symmetric generalized Cartan matrix $A=\left(\begin{array}{cc}2 & -m \\ -m & 2\end{array}\right), m \geq 2$. When $m=2, \mathfrak{g}$ is affine and when $m \geq 3, \mathfrak{g}$ is hyperbolic. Let \mathfrak{h} be a fixed Cartan subalgebra of \mathfrak{g}. Let Δ be the root system of \mathfrak{g}. Let $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$ be a basis of simple roots for Π. For each simple root in $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$, we define the simple root reflection $w_{i}\left(\alpha_{j}\right):=\alpha_{j}-\alpha_{j}\left(\alpha_{i}^{\vee}\right) \alpha_{i}$, where α_{i}^{\vee} is simple coroot. The w_{i} generate a subgroup $W=W(A) \subseteq \operatorname{Aut}\left(\mathfrak{h}^{*}\right)$, called the Weyl group of A. The set $\Delta^{r e}=W \Pi$ is a subset of Δ, called the set of real roots. The remaining roots $\Delta \backslash \Delta^{r e}$ are called imaginary roots. We introduce an auxiliary group $W^{*} \subseteq \operatorname{Aut}(\mathfrak{g})$, generated by elements $\left\{w_{i}^{*}\right\}_{i=1,2}$, where

$$
w_{i}^{*}=\exp \left(a d\left(e_{i}\right)\right) \exp \left(-a d\left(f_{i}\right)\right) \exp \left(a d\left(e_{i}\right)\right)=\exp \left(-a d\left(f_{i}\right)\right) \exp \left(a d\left(e_{i}\right)\right) \exp \left(-a d\left(f_{i}\right)\right) .
$$

There is a surjective homomorphism $\epsilon: W^{*} \rightarrow W$ which sends w_{i}^{*} to w_{i} for each i. We define certain elements of \mathfrak{g}, denoted $\left\{e_{\alpha}\right\}_{\alpha \in \Delta^{r e}}$, where $\Delta^{r e}$ denotes the set of real roots of \mathfrak{g}. Given $\alpha \in \Delta^{r e}$, write α in the form $w \alpha_{j}$ for $j=1,2$ and $w \in W$, choose $w^{*} \in W^{*}$ which maps onto w and set $e_{\alpha}=w^{*} e_{\alpha_{j}}$.

We define the group $G=G_{A}(k)$, called the incomplete simply-connected Kac-Moody group corresponding to A, to be the group generated by the set of symbols $\left\{\chi_{\alpha}(u) \mid \alpha \in \Delta^{r e}, u \in k\right\}$ satisfying relations (R1)-(R7) below, where for $i, j=1,2, u, v$ are elements of k and α, β are real roots ([Ti2] and [CER]).
(R1) $\chi_{\alpha}(u+v)=\chi_{\alpha}(u) \chi_{\alpha}(v)$;
(R2) Let (α, β) be a prenilpotent pair, that is, there exist $w, w^{\prime} \in W$ such that

$$
w \alpha, w \beta \in \Delta_{+}^{r e} \text { and } w^{\prime} \alpha, w^{\prime} \beta \in \Delta_{-}^{r e} .
$$

Then

$$
\left[\chi_{\alpha}(u), \chi_{\beta}(v)\right]=\prod_{m, n \geq 1} \chi_{m \alpha+n \beta}\left(C_{m n \alpha \beta} u^{m} v^{n}\right)
$$

where the product on the right-hand side is taken over all real roots of the form $m \alpha+n \beta, m, n \geq 1$, in some fixed order and $C_{m n \alpha \beta}$ are integers independent of k. This product appearing on the right-hand side is finite.
For each $i=1,2$ set

$$
\begin{aligned}
& \chi_{ \pm i}(u)=\chi_{ \pm \alpha_{i}}(u), u \in k \\
& \widetilde{w}_{i}(u)=\chi_{i}(u) \chi_{-i}\left(-u^{-1}\right) \chi_{i}(u), u \in k^{*} \\
& \widetilde{w}_{i}=\widetilde{w}_{i}(1) \text { and } h_{i}(u)=\widetilde{w}_{i}(u) \widetilde{w}_{i}^{-1}, u \in k^{*}
\end{aligned}
$$

The remaining relations are
(R3) $\widetilde{w}_{i} \chi_{\alpha}(u) \widetilde{w}_{i}^{-1}=\chi_{w_{i} \alpha}\left(\eta_{\alpha, i} u\right)$, where $\eta_{\alpha, i} \in\{ \pm 1\}$,
(R4) $h_{i}(u) \chi_{\alpha}(v) h_{i}(u)^{-1}=\chi_{\alpha}\left(v u^{\left\langle\alpha, \alpha_{i}^{\vee}\right\rangle}\right)$ for $u \in k^{*}$,
(R5) $\widetilde{w}_{i} h_{j}(u) \widetilde{w}_{i}^{-1}=h_{j}(u) h_{i}\left(u^{-a_{j i}}\right), u \in k^{*}$,
(R6) $h_{i}(u v)=h_{i}(u) h_{i}(v)$ for $u, v \in k^{*}$ and
(R7) $\left[h_{i}(u), h_{j}(v)\right]=1$ for $u, v \in k^{*}$.
Let H be the subgroup of G generated by the $h_{i}(u), i=1,2, u \in k^{*}$ Then $H \cong k^{*} \times k^{*}$.
An immediate consequence of relations (R3) is that $G_{A}(k)$ is generated by $\left\{\chi_{ \pm i}(u)\right\}$. The elements \widetilde{w}_{i} generate a group \widetilde{W} which is isomorphic to the group W^{*} above.
2.2. Commutation relations in rank 2 Kac-Moody groups. In this subsection, we describe the commutation relations (R2) of subsection 2.1 over a field k in Tits' minimal Kac-Moody group $G=$ $G_{A}(k)$ associated to the generalized Cartan matrix

$$
A=\left(\begin{array}{cc}
2 & -m \\
-m & 2
\end{array}\right), m \geq 2
$$

Analogous relations appear in the Steinberg presentation for finite dimensional Chevalley groups. The real roots are partitioned into 2 disjoint sets ([CG])

$$
\Delta_{1}^{r e}:=\left\{-\alpha_{2},-w_{2} \alpha_{1},-w_{2} w_{1} \alpha_{2}, \ldots\right\} \cup\left\{\alpha_{1}, w_{1} \alpha_{2}, w_{1} w_{2} \alpha_{1}, \ldots\right\}
$$

$$
\Delta_{2}^{r e}:=\left\{-\alpha_{1},-w_{1} \alpha_{2},-w_{1} w_{2} \alpha_{1}, \ldots\right\} \cup\left\{\alpha_{2}, w_{2} \alpha_{1}, w_{2} w_{1} \alpha_{2}, \ldots\right\}
$$

In this example, prenilpotence is an equivalence relation on real roots and $\Delta_{1}^{r e}$ and $\Delta_{2}^{r e}$ are the equivalence classes under this equivalence relation. Since

$$
w_{1} \cdot \alpha_{1}=-\alpha_{1}, \quad w_{2} \cdot \alpha_{2}=-\alpha_{2},
$$

w_{1} and w_{2} interchange $\Delta_{1}^{r e}$ and $\Delta_{2}^{r e}$.
If α and β both belong to $\Delta_{1}^{r e}$, or if α and β both belong to $\Delta_{2}^{r e}$ then $\alpha+\beta$ cannot be zero or a root ([CG]), thus

$$
\left[\chi_{\alpha}(s), \chi_{\beta}(t)\right]=1, s, t \in k .
$$

This completes the commutation relations necessary to define the group G.
2.3. Completion of Tits' minimal Kac-Moody group. The following interpretation of KacMoody groups was suggested by Tits ([Ti1]) and given by Carbone and Garland ([CG]). This construction generalizes that of simply-connected Chevalley groups. Let \mathcal{U} be the universal enveloping algebra of \mathfrak{g}. Let $\Lambda \subseteq \mathfrak{h}^{*}$ be the linear span of α_{i}, for $i=1,2$ and $\Lambda^{\vee} \subseteq \mathfrak{h}$ be the linear span of α_{i}^{\vee}, for $i=1,2$. Let $\mathcal{U}_{\mathbb{Z}} \subseteq \mathcal{U}$ be the \mathbb{Z}-subalgebra generated by $e_{i}^{m} / m!, f_{i}^{m} / m$! and $\binom{h}{m}$, for $i=1,2, h \in \Lambda^{\vee}$ and $m \geq 0$. Then $\mathcal{U}_{\mathbb{Z}}$ is a \mathbb{Z}-form of \mathcal{U}, that is $\mathcal{U}_{\mathbb{Z}}$ is a subring and the canonical map $\mathcal{U}_{\mathbb{Z}} \otimes \mathbb{Q} \longrightarrow \mathcal{U}$ is bijective. For a field k, let $\mathcal{U}_{k}=\mathcal{U}_{\mathbb{Z}} \otimes k$ and $\mathfrak{g}_{k}=\mathfrak{g}_{\mathbb{Z}} \otimes k$.

Now let $\lambda \in \mathfrak{h}^{*}$ be a regular dominant integral weight, that is, $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \in \mathbb{Z}_{>0}$ for each $i=1,2$. Let V^{λ} be the corresponding irreducible highest weight module. Choose a highest-weight vector $v_{\lambda} \in V^{\lambda}$ and let $V_{\mathbb{Z}}^{\lambda} \subset V^{\lambda}$ be the orbit of v_{λ} under the action of $\mathcal{U}_{\mathbb{Z}}$. Then $V_{\mathbb{Z}}^{\lambda}$ is a \mathbb{Z}-form of V_{λ} as well as a $\mathcal{U}_{\mathbb{Z}}$-module. Similarly, $V_{k}^{\lambda}:=k \otimes_{\mathbb{Z}} V_{\mathbb{Z}}^{\lambda}$ is a \mathcal{U}_{k}-module. Then there is a (unique) homomorphism $\pi_{\lambda}: G \rightarrow A u t\left(V_{k}^{\lambda}\right)$ such that

$$
\begin{aligned}
& \pi_{\lambda}\left(\chi_{\alpha_{i}}(u)\right)=\sum_{m=0}^{\infty} u^{m} \frac{e_{i}^{m}}{m!} \text { for } i=1,2 \text { and } u \in k \\
& \pi_{\lambda}\left(\chi_{-\alpha_{i}}(u)\right)=\sum_{m=0}^{\infty} u^{m} \frac{f_{i}^{m}}{m!} \text { for } i=1,2 \text { and } u \in k
\end{aligned}
$$

The expressions on the right-hand side are well defined automorphisms of V_{k}^{λ} since e_{i} and f_{i} are locally nilpotent on V_{k}^{λ}. Let $G^{\lambda}=\pi_{\lambda}(G)$.

We define the weight topology on G^{λ} by taking stabilizers of elements of V_{k}^{λ} as a subbase of neighborhoods of the identity. The completion of G^{λ} in this topology was given in [CG]. For a field k, the G^{λ} are all isomorphic for different dominant integral weights λ ([Ti2]).
2.4. The $B N$-pair of a complete Kac-Moody group. Now take $k=\mathbb{F}_{q}$ and let $G=G_{A}\left(\mathbb{F}_{q}\right)$ denote the completion of the Tits' functor associated to A and to k ([CG] and Section 2.3). Then G has subgroups $B^{ \pm} \subseteq G, N \subseteq G$ and Weyl group $W=N / H$, where $H=N \cap B^{ \pm}$is a normal subgroup of N. We have $B^{ \pm}=H U^{ \pm}$where U^{+}is the closure of the group generated by $\chi_{\alpha}(u), \alpha \in \Delta_{+}^{r e}, u \in k, U^{-}$ is generated by $\chi_{\alpha}(u), \alpha \in \Delta_{-}^{r e}, u \in k$. The subgroup B^{+}is compact, in fact a profinite neighborhood of the identity in $G([\mathrm{CER}])$ and B^{-}is discrete ([CG]). The group W coincides with the Weyl group of the previous subsection, $H=\left\langle h_{i}(u) \mid i=1,2, u \in k^{*}\right\rangle$ and $N=\langle\widetilde{W}, H\rangle$, where \widetilde{W} is as defined in the previous subsection.

Tits $([\mathrm{Ti} 1])$ and Carbone and Garland ([CG]) showed that $\left(G, B^{+}, N\right)$ and $\left(G, B^{-}, N\right)$ are $B N$-pairs and

$$
G=B^{+} N B^{-}=B^{-} N B^{+}
$$

It follows that G has Bruhat decomposition

$$
G=\sqcup_{w \in W} B^{ \pm} w B^{ \pm}
$$

Let $S=\left\{w_{1}, w_{2}\right\}$ be the standard generating set for the Weyl group W consisting of simple root reflections. The standard parabolic subgroups are

$$
P_{i}^{ \pm}=B^{ \pm} \sqcup B^{ \pm} w_{i} B^{ \pm}
$$

From now on, we often drop the ' + ' and refer to P_{i}^{+}as P_{i} and B^{+}as B.
2.5. The Tits building of G, a tree. The Tits building of G is a simplicial complex X of dimension $\operatorname{dim}(X)=|S|-1=1$. Since W is infinite, by the Solomon-Tits theorem X is contractible and so X is a tree. In fact we may associate to G a twin building $X^{ \pm}$where X^{+}and X^{-}come from the twin $B N$-pairs $\left(G, B^{+}, N\right)$ and $\left(G, B^{-}, N\right)$ respectively. The buildings X^{+}and X^{-}are isomorphic as chamber complexes and have constant thickness $q+1$. However, we shall not use the twin structure of the building and hence we drop the \pm and simply write ' X ' for X^{+}.

The Tits building of G is constructed as follows

$$
\begin{aligned}
V X & \cong G / P_{1} \sqcup G / P_{2} \\
E X & \cong G / B \sqcup \overline{G / B}, \\
& ={ }_{5}
\end{aligned}
$$

where $\overline{G / B}$ is a copy of the set G / B, giving an orientation to $E X$. If Q_{1} and Q_{2} are vertices, then there is an edge connecting Q_{1} and Q_{2} if and only if $Q_{1} \cap Q_{2}$ contains a conjugate of B.

There is a standard simplex corresponding to the identity coset of B. The group G acts by left multiplication on cosets. There are natural projections on cosets induced by the inclusion of B in P_{1} and P_{2} :

$$
\pi: G / B \longrightarrow G / P_{i}, i=1,2
$$

If $v_{i} \in G / P_{i}$ is a vertex and $S t^{X}\left(v_{i}\right)=\pi^{-1}\left(v_{i}\right)$ is the set of edges with origin v_{i}, then we may index $S t^{X}\left(v_{i}\right)$ by $P_{i} / B \subseteq G / B, i=1,2$. The Tits building X is a homogeneous, bipartite tree of degree

$$
\left[P_{1}: B\right]=\left[P_{2}: B\right]=q+1
$$

The following describes how the cosets $B w_{1} B$ and $B w_{2} B$ are indexed modulo B ([CG]):

$$
\begin{aligned}
& B w_{1} B / B=\left\{\chi_{\alpha_{1}}(s) w_{1} B / B \mid s \in k\right\}, \\
& B w_{2} B / B=\left\{\chi_{\alpha_{2}}(s) w_{2} B / B \mid s \in k\right\},
\end{aligned}
$$

where α_{1} and α_{2} are the simple roots corresponding to w_{1} and w_{2} respectively.
It follows that the edges emanating from P_{1} and P_{2} may be indexed as follows:

$$
\begin{aligned}
S t^{X}\left(P_{1}\right) & =\{B\} \sqcup\left\{\chi_{\alpha_{1}}(s) w_{1} B / B \mid s \in k\right\} \\
S t^{X}\left(P_{2}\right) & \left.=\{B\} \sqcup\left\{\chi_{\alpha_{2}}(s)\right) w_{2} B / B \mid s \in k\right\}
\end{aligned}
$$

where B denotes the identity coset and the stars of other vertices are obtained by translating these. Apartments in X are infinite lines. The fundamental apartment, denoted by \mathcal{A}_{0}, in X consists of all Weyl group translates of the standard simplex.

2.6. Structure theorems for lattice subgroups. For a general nonuniform lattice $\Gamma \in G$, we will assume that $\Gamma \backslash X$ has the structure of a finite core graph union finitely many cusps which are semiinfinite rays. We conjecture this to be true for any nonuniform lattice $\Gamma \leq G$ and all our known examples are of this type (see [C] for further discussion).
2.7. Graph of groups presentations for subgroups of G. We will use the fundamental theory of Bass and Serre for reconstructing group actions on trees to obtain a graph of groups presentations for various subgroups of G. Our references for the Bass-Serre theory are ([B], [S]). We refer the reader to ([S], Section 5), for the construction of a quotient graph of groups $\Gamma \backslash \backslash X$ and universal covering tree $\widetilde{\Gamma \backslash \backslash X}$ corresponding to a group Γ acting on X on a tree X.
Theorem 2.1. ([B], [S]) Let X be a tree and Γ a group acting on X without inversions and with quotient graph of groups $\Gamma \backslash \backslash X$. Then $\Gamma \cong \pi_{1}(\Gamma \backslash \backslash X)$ is an isomorphism of groups and $X \cong \widehat{\Gamma \backslash \backslash X}$ is an isomorphism of trees.

Here we take $\Gamma \leq G$, where G is the rank 2 simply-connected Kac-Moody group. Then $\pi_{1}(\Gamma \backslash \backslash X)$ gives a presentation for Γ as a generalized amalgam of groups which are conjugate to vertex stabilizers.

If $\Gamma \backslash \backslash X$ is an infinite graph of finite groups with finite volume, then Γ is discrete and has finite covolume in G with respect to some (hence any) Haar measure on G, hence is a nonuniform lattice in $G([\mathrm{BL}])$.

3. Graphs of groups presentations for U^{-}, B^{-}and P_{1}^{-}

Let $\alpha \in \Delta^{r e}$ be a real root. Then α has an expression $\alpha=w \alpha_{i}$, for α_{i} simple and $w \in W$. Define

$$
\ell(\alpha):=\quad \ell(w)+1
$$

where $\ell(\cdot)$ is the standard length function on W, so that for α_{i} simple

$$
\ell\left(\alpha_{i}\right)=1
$$

and for α_{i} simple and w_{j} a simple root reflection

$$
\ell\left(w_{j} \alpha_{i}\right)=2, \quad i \neq j
$$

For $n \geq 1$ and $i=1,2$, we define (finite) cuspidal root subgroups of $U^{-} \subseteq B^{-}$and $U^{+} \subseteq B^{+}$:

$$
\begin{aligned}
U_{n, i}^{-} & =\left\langle U_{\alpha} \mid \alpha \in \Delta_{i,-}^{r e}, 1 \leq \ell(\alpha) \leq n\right\rangle=\left\{\prod_{\substack{\alpha \in \Delta_{i,}^{r e} \\
1 \leq \ell(\alpha) \leq n}} \chi_{\alpha}\left(u_{\alpha}\right) \mid u_{\alpha} \in \mathbb{F}_{q}\right\}, \\
U_{n, i}^{+} & =\left\langle U_{\alpha} \mid \alpha \in \Delta_{i,+}^{r e}, 1 \leq \ell(\alpha) \leq n\right\rangle=\left\{\prod_{\substack{\alpha \in \Delta_{i,+}^{r e} \\
1 \leq \ell(\alpha) \leq n}} \chi_{\alpha}\left(u_{\alpha}\right) \mid u_{\alpha} \in \mathbb{F}_{q}\right\},
\end{aligned}
$$

respectively. Where, for $i=1,2$,

$$
\begin{aligned}
\Delta_{i,+}^{r e} & =\left\{\alpha_{i}, w_{i} \alpha_{3-i}, w_{i} w_{3-i} \alpha_{i}, \ldots\right\} \\
\Delta_{i,-}^{r e} & =\left\{-\alpha_{3-i},-w_{3-i} \alpha_{i},-w_{3-i} w_{i} \alpha_{3-i}, \ldots\right\}
\end{aligned}
$$

Then for $i=1,2, U_{n, i}^{ \pm}$are finite subgroups of $U^{ \pm}$of order $\left|U_{n, i}^{ \pm}\right|=q^{n}$. Such subgroups were also introduced in [Ro], Section 6 and [KP], Section 3.
3.1. Graph of groups for U^{-}. Our aim in this subsection is to construct a graph of groups whose fundamental group is the group U^{-}.

It is known from [CG] and [Re1] that the group B^{-}is a nonuniform lattice subgroup of the affine or hyperbolic rank $2 \mathrm{Kac}-$ Moody group G over any finite field $k=\mathbb{F}_{q}$. Since U^{-}is a finite index subgroup of B^{-}, it follows that U^{-}is also a nonuniform lattice in G.
Theorem 3.1. The group U^{-}is isomorphic to the fundamental group of the following graph of groups:

where

$$
\begin{aligned}
& \omega_{0}:\{1\} \hookrightarrow U_{1,2}^{-} \\
& \alpha_{0}:\{1\} \hookrightarrow U_{1,1}^{-}
\end{aligned}
$$

are inclusion maps and for $i=1,2, n \geq 1$

$$
\alpha_{n, i}: U_{n, i}^{-} \hookrightarrow U_{n, i}^{-}
$$

are identity maps and for $i=1,2, n \geq 1$

$$
\omega_{n, i}: U_{n, i}^{-} \hookrightarrow U_{n+1, i}^{-}
$$

are inclusion maps.

Let

$$
\begin{aligned}
& U_{\infty, 1}^{-}=\bigcup_{n \geq 1} U_{n, 1}^{-} \\
& U_{\infty, 2}^{-}=\bigcup_{n \geq 1} U_{n, 2}^{-}
\end{aligned}
$$

be the ascending unions of finite root groups.
Since for $i=1,2, n \geq 1, \omega_{n, i}: U_{n, i}^{-} \hookrightarrow U_{n+1, i}^{-}$and $U_{\infty, 2}^{-} \cap U_{\infty, 1}^{-}=\{1\}$, it follows that

$$
U^{-}=U_{\infty, 2}^{-} * U_{\infty, 1}^{-}
$$

This was also proven in [KP], Proposition 3.5 (c) in a different setting.
To prove Theorem 3.1, we will make use of the following lemma which follows from a simple inductive argument.

Lemma 3.2. For $i=1,2, n \geq 1$,

$$
U_{n, i}^{-}=u_{n} U_{n, j}^{+} u_{n}^{-1}
$$

where $j=i$ if n is even, $j=3-i$ if n is odd and $u_{n} \in W$ is the unique element of the set Ω_{i} with $\ell\left(u_{n}\right)=n$, where

$$
\begin{aligned}
& \Omega_{1}=\left\{1, w_{2}, w_{2} w_{1}, w_{2} w_{1} w_{2}, \ldots\right\}, \\
& \Omega_{2}=\left\{1, w_{1}, w_{1} w_{2}, w_{1} w_{2} w_{1}, \ldots\right\} .
\end{aligned}
$$

Note that for $n \geq 1, i=1,2 u_{n} \in \Omega_{i}$ with $\ell\left(u_{n}\right)=n$, we have

$$
u_{n-1} P_{j} u_{n-1}^{-1}=\operatorname{Stab}_{G}\left(x_{n, i}^{-}\right)
$$

where $j=i$ for n even and $j=3-i$ for n odd, with $u_{0}=1$.
Lemma 3.3. ([CG], Section 15) Let P_{1}, P_{2} and U^{-}be as before, then we have,

$$
\begin{aligned}
& P_{1} \cap U^{-}=U_{-\alpha_{1}} \leq U_{1,2}^{-} \\
& P_{2} \cap U^{-}=U_{-\alpha_{2}} \leq U_{1,1}^{-} .
\end{aligned}
$$

Theorem 3.1 follows immediately from the following.
Proposition 3.4. Let G be a rank 2 affine or hyperbolic simply-connected Kac-Moody group over a finite field. Let U^{-}be the subgroup of G generated by all negative real root subgroups. For $i=1,2$ and $n \geq 1, U_{n, i}^{-}$be cuspidal root subgroups. Then we have:
(1) For $i=1,2, n \geq 1$ the group $U_{n, i}^{-}$is the stabilizer of the vertex $x_{n, i}^{-}$modulo U^{-}.
(2) For $i=1,2, n \geq 1$ the group $U_{n, i}^{-}$leaves the edge $\left(x_{n, i}^{-}, x_{n+1, i}^{-}\right)$fixed and acts transitively on the set of edges with origin $x_{n, i}^{-}$distinct from $\left(x_{n, i}^{-}, x_{n+1, i}^{-}\right)$, sending all such edges to $u_{n-1} B$, where $u_{n-1} \in \Omega_{i}$ with $\ell\left(u_{n-1}\right)=n-1$, setting $u_{0}=1$.
(3) For $i=1,2, n \geq 1$ the vertices $x_{n, i}^{-}$are not equivalent under the action of U^{-}.
(4) $\operatorname{Stab}_{U^{-}}\left(x_{1,2}^{-}, x_{1,1}^{-}\right)=\{1\}$.

Proof. For (1), $i=1,2, n \geq 1$ we have,

$$
U_{n, i}^{+}=\left\{\prod_{\substack{\alpha \in \Delta^{r e}, 1 \leq \ell(\alpha) \leq n}} \chi_{\alpha}\left(u_{\alpha}\right) \mid u_{\alpha} \in k\right\}
$$

since $\chi_{\alpha}\left(u_{\alpha}\right)$ commute among themselves for $\alpha \in \Delta_{n, i}^{+}$([CG], Section 14), where

$$
\Delta_{n, i}^{+}=\left\{\alpha \in \Delta_{i .+}^{r e} \mid l(\alpha) \leq n\right\} .
$$

From Lemma 3.2, for $i=1,2, n \geq 1$ we have

$$
U_{n, i}^{-}=u_{n} U_{n, j}^{+} u_{n}^{-1} \subseteq u_{n} U u_{n}^{-1} \subseteq u_{n} B u_{n}{ }^{-1}
$$

where $j=i$ for even $n, j=3-i$ for odd n and $u_{n} \in W$ is the unique element of the set Ω_{i} with $\ell\left(u_{n}\right)=n$, setting $u_{0}=1$.

Thus for each $n \geq 1, i=1,2$

$$
U_{n, i}^{-} \subseteq u_{n} B u_{n}^{-1}=u_{n-1} P_{j} u_{n-1}^{-1} \cap u_{n} P_{3-j} u_{n}^{-1} \subseteq u_{n-1} P_{j} u_{n-1}^{-1}
$$

where $j=i$ for even $n, j=3-i$ for odd n and $u_{n} \in \Omega_{i}$ with $\ell\left(u_{n}\right)=n$, having set $u_{0}=1$.
Hence

$$
U_{n, i}^{-} \subseteq u_{n-1} P_{j} u_{n-1}^{-1}=\operatorname{Stab}_{G}\left(x_{n, i}^{-}\right)
$$

so

$$
\begin{aligned}
U_{n, i}^{-} \subseteq u_{n-1} P_{j} u_{n-1}^{-1} \cap U^{-} & =\operatorname{Stab}_{G}\left(x_{n, i}^{-}\right) \cap U^{-} \\
& =\operatorname{Stab}_{U^{-}}\left(x_{n, i}^{-}\right) .
\end{aligned}
$$

Conversely, for $n \geq 1$ and $i=1,2$

$$
\begin{aligned}
u_{n-1} P_{j} u_{n-1}^{-1} \cap U^{-} & =u_{n-1}\left(P_{j} \cap U^{-}\right) u_{n-1}^{-1} \\
& =u_{n-1} U_{-\alpha_{j}} u_{n-1}^{-1} \text { by Lemma } 3.3 \\
& =U_{-u_{n-1} \alpha_{j}} \\
& \subseteq U_{n, i}^{-}
\end{aligned}
$$

where $j=i$ for even n and $j=3-i$ for odd $n, u_{n-1} \in \Omega_{i}$ with $\ell\left(u_{n-1}\right)=n-1$ setting $u_{0}=1$. So

$$
U_{n, i}^{-}=\operatorname{Stab}_{U^{-}}\left(x_{n, i}^{-}\right) .
$$

For (2), the inclusion $U_{n, i}^{-} \subseteq U_{n+1, i}^{-}$, for $i=1,2, n \geq 1$, shows that the group $U_{n, i}^{-}$fixes the edge $\left(x_{n, i}^{-}, x_{n+1, i}^{-}\right)$. We observe that for a vertex on the fundamental apartment, denoted by $w P_{i}$ with $i=1,2$, $w \in W$, we may identify $E_{0}^{X}\left(w P_{i}\right)$ the set of edges with the origin $w P_{i}$ with

$$
E_{0}^{X}\left(w P_{i}\right)=\{w B\} \cup\left\{w \chi_{\alpha_{i}}(s) w_{i} B \mid s \in \mathbb{F}_{q}\right\} .
$$

The vertex $x_{n, i}^{-}, n \geq 1, i=1,2$ corresponds to the coset $u_{n-1} P_{j}$ where $u_{n-1} \in W$ is the unique element of the set Ω_{i} with $\ell\left(u_{n-1}\right)=n-1$ and $j=i$ if n is even, $j=3-i$ if n is odd having set $u_{0}=1$. The edge $\left(x_{n, i}^{-}, x_{n+1, i}^{-}\right)$then corresponds to the coset $u_{n-1} w_{j} B$, that is the element of the set $\left\{u_{n-1} B\right\} \cup\left\{u_{n-1} \chi_{\alpha_{j}}(s) w_{j} B \mid s \in \mathbb{F}_{q}\right\}$ corresponding to $s=0$.

We are left to consider $\left\{u_{n-1} B\right\} \cup\left\{u_{n-1} \chi_{\alpha_{j}}(s) w_{j} B \mid s \in \mathbb{F}_{q}^{\times}\right\}$which is the set of edges with origin $x_{n, i}^{-}$distinct from $\left(x_{n, i}^{-}, x_{n+1, i}^{-}\right)$. We claim that if $u \cdot\left[u_{n-1} \chi_{\alpha_{j}}(s) w_{j} B\right]=u_{n-1} B$, for some $s \in \mathbb{F}_{q}$ and for
some $u \in G$, then $u \in U_{n, i}^{-}$. In fact, the element u is equal to $u_{n-1}^{-1} w_{j}^{-1} \chi_{\alpha_{j}}(-s) u_{n-1}^{-1}$, and

$$
\begin{aligned}
u_{n-1} w_{j}^{-1} \chi_{\alpha_{j}}(-s) u_{n-1}^{-1} & \in u_{n-1} U_{-\alpha_{j}} u_{n-1}^{-1} \\
& =U_{-u_{n-1} \alpha_{j}} \\
& \leq U_{n, i}^{-}
\end{aligned}
$$

for $i=1,2, n \geq 1$ and $j=i$ if n is even, $j=3-i$ if n is odd and $u_{n-1} \in \Omega_{i}$ with $\ell\left(u_{n-1}\right)=n-1$ setting $u_{0}=1$, the proof of (2) is complete.

For (3), suppose that for some $u^{-} \in U^{-}, u^{-} x_{n, i}^{-}=x_{n+m, i}^{-}$with $m \neq 0$. Assume that $m>0$. Then for $i=1,2$, some $w, w^{\prime} \in W$ with $\ell\left(w^{\prime}\right)=n+m \geq \ell(w)=n$ we have

$$
u^{-}\left(w P_{i}\right)=w^{\prime} P_{i} \text { if and only if }\left(w^{\prime}\right)^{-1} u^{-} w \in P_{i}=B \sqcup B w_{i} B
$$

which is impossible since $U^{-} \cap B=\{1\}$, unless $w^{\prime}=w$ and thus vertices $w P_{i}$ and $w^{\prime} P_{i}$ coincide. For (4), we have

$$
\begin{aligned}
\operatorname{Stab}_{U^{-}}\left(x_{1,2}^{-}, x_{1,1}^{-}\right) & =\operatorname{Stab}_{G}\left(x_{1,2}^{-}, x_{1,1}^{-}\right) \cap U^{-} \\
& =B \cap U^{-} \\
& =H U \cap U^{-} \\
& =\{1\}
\end{aligned}
$$

as follows from axiom RD1-RD5 of [Ti2].
3.2. Graph of groups for B^{-}. We can now obtain the graph of groups for B^{-}. We have

$$
H \cong \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times}
$$

from Section 2. Thus $|H|=(q-1)^{2}$ and for each $i=1,2, n \geq 1$ the group $H U_{n, i}^{-}$is a finite subgroup of B^{-}of order $q^{n}(q-1)^{2}$. The following theorem is an easy generalization of Theorem 3.1 using the additional property that H fixes the fundamental apartment point wise.

Theorem 3.5. The group $B^{-}=H U^{-}$is isomorphic to the fundamental group of the following graph of groups:

where

$$
\begin{aligned}
& \omega_{0}: H \hookrightarrow H U_{1,2}^{-} \\
& \alpha_{0}: H \hookrightarrow H U_{1,1}^{-}
\end{aligned}
$$

are inclusion maps and for $i=1,2, n \geq 1$

$$
\alpha_{n, i}: H U_{n, i}^{-} \hookrightarrow H U_{n, i}^{-}
$$

are identity maps and for $i=1,2, n \geq 1$

$$
\omega_{n, i}: H U_{n, i}^{-} \hookrightarrow H U_{n+1, i}^{-}
$$

are inclusion maps. Moreover B^{-}has the expression

$$
B^{-}=H U^{-}=H U_{\infty, 2}^{-} *_{H} H U_{\infty, 1}^{-} .
$$

The volume of the graph of groups for B^{-}is a scalar multiple of $2+\sum_{n \geq 1} \frac{1}{q^{n}}$ (cf. [CG], Lemma 8.1). Theorem 3.5 also proves that the group B^{-}is a nonuniform lattice subgroup of G (see ([CG], Section 8) for an alternate proof).

This also shows that the fundamental apartment \mathcal{A}_{0} is a fundamental domain for U^{-}and for B^{-}on X, as was observed in [Ti2] and [CG].
3.3. Graph of groups for P_{1}^{-}. The following gives a 'Nagao theorem' for P_{1}^{-}in analogy with $G L_{2}\left(\mathbb{F}_{q}[t]\right)$ and $S L_{2}\left(\mathbb{F}_{q}[t]\right)$ as in $[\mathrm{S}]$. However, our method of proof restricts us to constructing a graph of groups for P_{1}^{-}only when $k=\mathbb{F}_{q}$ and $q=2^{s}$. We note though, that it was shown in [CG] that the semi-infinite ray is a fundamental domain for P_{1}^{-}on $X=X_{q+1}$ with no restriction on q.

We will need the following lemma.
Lemma 3.6. Let G be an affine or hyperbolic complete simply-connected Kac-Moody group over the finite field $k=\mathbb{F}_{q}$. Let P_{1}^{-}be the negative standard parabolic subgroup of G. Then P_{1}^{-}contains a subgroup of order $q+1$.

Proof: As in [CG], there is a homomorphism

$$
\phi_{1}: S L_{2}\left(\mathbb{F}_{q}\right) \rightarrow G
$$

Since G is of simply connected type, ϕ_{1} is injective (For the adjoint form of G, ϕ_{1} has kernel the cyclic group of order 2 , but we consider only the simply connected form here). Moreover, $\phi_{1}\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$ is generated by $\chi_{\alpha_{1}}(s), \chi_{-\alpha_{1}}(t), s, t \in \mathbb{F}_{q}$ as in Subsection 2.1. Since the Weyl group element w_{1} flips α_{1} to $-\alpha_{1}, \phi_{1}\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$ is contained in the union of Bruhat cells $B^{-} \sqcup B^{-} w_{1} B^{-}$. But this is precisely the parabolic subgroup P_{1}^{-}. So $\phi_{1}\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$ is contained in P_{1}^{-}. Thus there is a subgroup $T=\phi_{1}(\mathcal{T})$ of P_{1}^{-}, where \mathcal{T} is the non-split torus of $S L_{2}\left(\mathbb{F}_{q}\right)$ a subgroup of order $q+1$. (We refer the reader to [CC], Theorem 3, (i) and [Lu], Lemma 3.5 for further details about the non-split torus of $S L_{2}\left(\mathbb{F}_{q}\right) . \square$

Remarks.

(1) When $q=2, T$ is generated by $\chi_{\alpha_{1}}(1) \chi_{-\alpha_{1}}(1)$ which has order 3 ([CC]).
(2) Lemma 3.6 can also be proven using the fact that P_{1}^{-}has a Levi factor which is a finite group of Lie type.
Proposition 3.7. Let G be an affine or hyperbolic complete simply-connected Kac-Moody group over the finite field $k=\mathbb{F}_{q}$ and assume that $q=2^{s}$. Let $X=X_{q+1}$ be the Tits building of G. Let P_{1}^{-}be the negative standard parabolic subgroup of G. Then

$$
\left\{P_{1}\right\} \cup \mathcal{A}_{0}^{+}=\left(P_{1}, P_{2}, w_{2} P_{1}, w_{2} w_{1} P_{2}, w_{2} w_{1} w_{2} P_{1}, \ldots\right)
$$

is a fundamental domain for P_{1}^{-}on X where $\mathcal{A}_{0}^{+}=\left(P_{2}, w_{2} P_{1}, w_{2} w_{1} P_{2}, w_{2} w_{1} w_{2} P_{1}, \ldots\right)$ is the positive half of the fundamental apartment \mathcal{A}_{0} and

$$
\begin{gathered}
P_{1}^{-} \cong B_{0,1}^{-} *_{H} \cup_{n \geq 1} B_{n, 1}^{-}, \\
B_{0,1}^{-}=\langle H, T\rangle,\left|B_{0,1}^{-}\right|=(q-1)^{2}(q+1)
\end{gathered}
$$

where T is the subgroup of P_{1}^{-}of order $q+1$ as in Lemma 3.6, and for $n \geq 1$,

$$
\begin{gathered}
B_{n, 1}^{-}=\left\langle H, U_{n, 1}^{-}\right\rangle, \quad\left|U_{n, 1}^{-}\right|=q^{n}, U_{n, 1}^{-} \cong\left\{\left(\begin{array}{cc}
1 & t f(t) \\
0 & 1
\end{array}\right), \operatorname{tf}(t) \in t \mathbb{F}_{q}[t], \operatorname{deg}(t f(t)) \leq n\right\}, \\
H=\left\langle h_{\alpha_{1}}(u) \mid u \in \mathbb{F}_{q}^{\times}\right\rangle *\left\langle h_{\alpha_{2}}(u) \mid u \in \mathbb{F}_{q}^{\times}\right\rangle \cong \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times}
\end{gathered}
$$

and $|H|=(q-1)^{2}$ so that $\left|B_{n, 1}^{-}\right|=(q-1)^{2} q^{n}$.
Proposition 3.7 follows immediately from Proposition 3.10.
We will use the following Lemma, proven in [CC], Theorem 3, (i) and in [Lu], Lemma 3.5.
Lemma 3.8. For $k=\mathbb{F}_{q}$ and $q=2^{s}$, the group T of order $q+1$ acts transitively on $P_{1} / B \cong \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$.
Theorem 3.9. When $k=\mathbb{F}_{q}$ and $q=2^{s}$, the group P_{1}^{-}is isomorphic to the fundamental group of the following graph of groups:

where

$$
\begin{aligned}
& \omega_{0}: H \hookrightarrow B_{1,1}^{-} \\
& \alpha_{0}: H \hookrightarrow B_{0,1}^{-}
\end{aligned}
$$

are inclusion maps and for $n \geq 1$

$$
\alpha_{n, i}: B_{n, 1}^{-} \hookrightarrow B_{n, 1}^{-}
$$

are identity maps and for $n \geq 1$

$$
\omega_{n, i}: B_{n, 1}^{-} \hookrightarrow B_{n+1,1}^{-}
$$

are inclusion maps.
Theorem 3.9 follows immediately from the following.
Proposition 3.10. Let G be an affine or hyperbolic complete simply-connected Kac-Moody group over the finite field $k=\mathbb{F}_{q}$ and assume that $q=2^{s}$. Let $X=X_{q+1}$ be the Tits building of G. Let P_{1}^{-}be the negative standard parabolic subgroup of G and let $P_{1}=P_{1}^{+}$be the positive standard parabolic subgroup of G. Let $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)$ be an indexing of vertices

$$
\left\{P_{1}\right\} \cup \mathcal{A}_{0}^{+}=\left(P_{1}, P_{2}, w_{2} P_{1}, w_{2} w_{1} P_{2}, w_{2} w_{1} w_{2} P_{1}, \ldots\right)
$$

of X, where $\mathcal{A}_{0}^{+}=\left(P_{2}, w_{2} P_{1}, w_{2} w_{1} P_{2}, w_{2} w_{1} w_{2} P_{1}, \ldots\right)$ is the positive half of the fundamental apartment \mathcal{A}_{0}. Then
(1) $B_{0,1}^{-}$acts transitively on P_{1} / B sending all edges to B and fixing the coset P_{1}.
(2) $P_{1}^{-} \cap P_{1}^{+}=B_{0,1}^{-}$.
(3) For each $n \geq 1$, the group $B_{n, 1}^{-}$leaves the edge $\left(x_{n+1}, x_{n+2}\right)$ fixed and acts transitively on the set of edges with origin x_{n+1}, distinct from $\left(x_{n+1}, x_{n+2}\right)$ sending all the edges to $u_{n-1} B$, where $u_{n-1} \in \Omega_{1}$ with $\ell\left(u_{n-1}\right)=n-1$, setting $u_{0}=1$.
(4) For $n \geq 1$, the vertices x_{n} in the set

$$
\left\{P_{1}\right\} \cup \mathcal{A}_{0}^{+}=\left(P_{1}, P_{2}, w_{2} P_{1}, w_{2} w_{1} P_{2}, w_{2} w_{1} w_{2} P_{1}, \ldots\right)
$$

are not equivalent modulo P_{1}^{-}.

Proof. For $k=\mathbb{F}_{q}$ and $q=2^{s}$, the group T acts transitively on P_{1} / B (Lemma 3.8). The group H is contained in B and hence P_{1} and so H fixes P_{1}. Hence $B_{0,1}^{-}=\langle H, T\rangle$ acts transitively on P_{1} / B sending all edges to B and fixing the coset P_{1}.

For (2), by (1) we have

$$
P_{1}^{-} \cap P_{1}^{+}=\operatorname{Stab}_{P_{1}^{-}}\left(P_{1}^{+}\right)=B_{0,1}^{-} .
$$

For (3), since $B_{n, 1}^{-} \subseteq B_{n+1,1}^{-}$for $n \geq 1, B_{n, 1}^{-}$fixes the edge $\left(x_{n+1}, x_{n+2}\right)$. As in Proposition 3.4, we have if $b^{-} \in P_{1}^{-}$acts transitively on the set of edges with origin x_{n+1} for $n \geq 1$, distinct from $\left(x_{n+1}, x_{n+2}\right)$ sending all the edges to $u_{n-1} B$, then $b^{-} \in U_{n, 1}^{-}$. Also from the equation

$$
b^{-}\left[u_{n-1} \chi_{\alpha_{t}}(s) w_{t} B\right]=u_{n-1} B
$$

where $s \in \mathbb{F}_{q}, t=1$ if n is even and $t=2$ if n is odd, we obtain

$$
u_{n-1}^{-1} b^{-} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} \in B
$$

also

$$
u_{n-1}^{-1} b^{-} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} \in P_{1}^{-} .
$$

Hence

$$
u_{n-1}^{-1} b^{-} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} \in P_{1}^{-} \cap B=H,
$$

so $b^{-} \in H$. Therefore $b^{-} \in B_{n, 1}^{-}=\left\langle H, U_{n, 1}^{-}\right\rangle$and the proof of (3) is complete.
Part (4) follows easily from Proposition 3.4(3).

4. Congruence subgroups of Kac-Moody groups

Let $\Gamma=S L_{2}\left(\mathbb{F}_{q}[t]\right) \leq H=S L_{2}\left(\mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$. Then Γ is a nonuniform (arithmetic) lattice subgroup of $H([\mathrm{~S}])$. Let

$$
\Gamma_{0}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}\left(\mathbb{F}_{q}[t]\right) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod t\right.\right\}
$$

be the principal congruence subgroup of Γ. Then

$$
\Gamma_{0}=\operatorname{Ker}\left\{\rho: S L_{2}\left(\mathbb{F}_{q}[t]\right) \longrightarrow S L_{2}\left(\mathbb{F}_{q}\right) \mid t \mapsto 0\right\} .
$$

By $[\mathrm{S}]$ we have:

$$
\Gamma_{0}=*_{s \in S} \quad s \Lambda s^{-1}
$$

where

$$
\Lambda=\left(\begin{array}{cc}
1 & t \mathbb{F}_{q}[t] \\
0 & 1
\end{array}\right)
$$

and S is a set of coset representatives for $S L_{2}\left(\mathbb{F}_{q}\right) / B\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$, where $B\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$ denotes the Borel subgroup of $S L_{2}\left(\mathbb{F}_{q}\right)$.

For $r>1$, we also have the family of congruence subgroups:

$$
\Gamma_{0}(r)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}\left(\mathbb{F}_{q}[t]\right) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod t^{r}\right.\right\} .
$$

Our aim is to show that the subgroup P_{1}^{-}of our Kac-Moody group G contains a congruence subgroup analogous to Γ_{0}. In Section 5 we comment on the existence of congruence subgroups in Kac-Moody groups analogous to the family $\Gamma_{0}(r), r>1$.

We first define principal congruence subgroups of U^{-}as follows. We set

$$
K_{1, U^{-}}=\operatorname{Ker}\left\{\psi_{1, U^{-}}: U^{-} \rightarrow U_{-\alpha_{2}} \mid U_{13} \mapsto 1 \text { if } \ell(\alpha) \geq 1, \alpha \in \Delta_{-}^{r e} \backslash\left\{-\alpha_{2}\right\}\right\}
$$

$$
K_{2, U^{-}}=\operatorname{Ker}\left\{\psi_{2, U^{-}}: U^{-} \rightarrow U_{-\alpha_{1}} \mid U_{\alpha} \mapsto 1 \text { if } \ell(\alpha) \geq 1, \alpha \in \Delta_{-}^{r e} \backslash\left\{-\alpha_{1}\right\}\right\} .
$$

The groups $K_{i, U^{-}}$are the subgroups of U^{-}generated up to conjugacy by all negative root groups except for $U_{\alpha_{3-i}}$. Here we explicitly construct the graphs of groups for $K_{i, U^{-}}$giving generalized amalgam presentations for them.

For each $i=1,2$, the set $\mathcal{S}=\infty \sqcup\left\{\chi_{\alpha_{i}}(s) w_{i} \mid s \in \mathbb{F}_{q}\right\}$ may be identified with $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ whose elements are coset representatives of P_{i} / B.

For $s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1, s_{0}=0$, we set

$$
\begin{aligned}
& S_{1}=\left\{g_{0}=w_{1}, g_{1}=\chi_{\alpha_{1}}\left(s_{1}\right) w_{1}, g_{2}=\chi_{\alpha_{1}}\left(s_{2}\right) w_{1}, \ldots, g_{q-1}=\chi_{\alpha_{1}}\left(s_{q-1}\right) w_{1}\right\} \\
& S_{2}=\left\{h_{0}=w_{2}, h_{1}=\chi_{\alpha_{2}}\left(s_{1}\right) w_{2}, h_{2}=\chi_{\alpha_{2}}\left(s_{2}\right) w_{2}, \ldots, h_{q-1}=\chi_{\alpha_{2}}\left(s_{q-1}\right) w_{2}\right\} .
\end{aligned}
$$

For each $j=0,1,2, \ldots, q-1$, let $S_{1, j} \mathcal{A}_{0}^{+}$and $S_{2, j} \mathcal{A}_{0}^{-}$denote translates of the positive half $\mathcal{A}_{0}^{+}=$ $\left(P_{2}, w_{2} P_{1}, w_{2} w_{1} P_{2}, w_{2} w_{1} w_{2} P_{1}, \ldots\right)$ of the fundamental apartment \mathcal{A}_{0} by the elements g_{j} of S_{1} and of the negative half $\mathcal{A}_{0}^{-}=\left(P_{1}, w_{1} P_{2}, w_{1} w_{2} P_{1}, w_{1} w_{2} w_{1} P_{2}, \ldots\right)$ of the fundamental apartment \mathcal{A}_{0} by the elements h_{j} of of S_{2} respectively. Then $S_{1, j} \mathcal{A}_{0}^{+}$has vertex sequence

$$
\left\{x_{0, j}^{1,-}=P_{2}, x_{1, j}^{1,-}=\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} P_{2}, x_{2, j}^{1,-}=\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} w_{2} P_{1}, \ldots \mid s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1, s_{0}=0\right\}
$$

and $S_{2, j} \mathcal{A}_{0}^{-}$has vertex sequence

$$
\left\{x_{0, j}^{2,-}=P_{1}, x_{1, j}^{2,-}=\chi_{\alpha_{2}}\left(s_{j}\right) w_{2} P_{1}, x_{2, j}^{2,-}=\chi_{\alpha_{2}}\left(s_{j}\right) w_{2} w_{1} P_{2}, \ldots \mid s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1, s_{0}=0\right\} .
$$

The following theorem gives the graph of groups for $K_{i, U^{-}} i=1,2$.
Theorem 4.1. Let G be an affine or hyperbolic complete simply-connected Kac-Moody group over the finite field $k=\mathbb{F}_{q}$. Let U^{-}be subgroup of G generated by all negative real root subgroups. Let $K_{i, U^{-}}$be the principal congruence subgroup of U^{-}for $i=1,2$. Then the group

$$
K_{i, U^{-}}=\operatorname{Ker}\left\{\psi_{i, U^{-}}: U^{-} \rightarrow U_{-\alpha_{3-i}} \mid U_{\alpha} \mapsto 1 \text { if } \ell(\alpha) \geq 1, \alpha \in \Delta_{i,-}^{r e} \backslash\left\{\alpha_{3-i}\right\}\right\}
$$

is isomorphic to the fundamental group of the following graph of groups:
where the total number of rays is $q+1$ and is indexed over the set \mathcal{S},

$$
\alpha_{n}^{i, j}: \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \rightarrow \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right)
$$

are identity maps, for $i=1,2, n \geq 0, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ setting $s_{0}=0$ and $U_{0, i}^{-}=\{1\}$, and

$$
\omega_{n}^{i, j}: \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \hookrightarrow \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n+1, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right)
$$

are inclusion maps, for $i=1,2, n \geq 0, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ setting $s_{0}=0$ and $U_{0, i}^{-}=\{1\}$.
Lemmas 4.2 and 4.3 show that the vertex groups of the graph of groups in Theorem 4.1 are subgroups of $K_{i, U^{-}}$for $i=1,2$.
Lemma 4.2. For $s \in \mathbb{F}_{q}, i=1,2$

$$
\psi_{i, U^{-}}\left[\chi_{\alpha_{i}}(s)\right]=\psi_{i, U^{-}}\left[\chi_{w_{i}\left(-\alpha_{i}\right)}(s)\right]=1 .
$$

Proof. This is obvious from the definition of $\psi_{i, U^{-}}$.
Lemma 4.3. For each $i=1,2, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$ we have

$$
\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{j}}\left(-s_{j}\right) \subseteq K_{i, U^{-}} .
$$

Proof. For each $i=1,2, n \geq 1, s_{k} \in \mathbb{F}_{q}, k=0,1,2, \ldots, n$ we have,

$$
\begin{aligned}
w_{i} U_{n, i}^{-} w_{i}^{-1} & =\left\{w_{i} \chi_{-\alpha_{3-i}}\left(s_{1}\right) \chi_{-w_{3-i} \alpha_{i}}\left(s_{2}\right) \ldots \chi_{\alpha_{k}}\left(s_{n}\right) w_{i}^{-1}\right\} \\
& =\left\{\left(w_{i} \chi_{-\alpha_{3-i}}\left(s_{1}\right) w_{i}^{-1}\right)\left(w_{i} \chi_{-w_{3-i} \alpha_{i}}\left(s_{2}\right) w_{i}^{-1}\right) \ldots\left(w_{i} \chi_{\alpha_{k}}\left(s_{n}\right) w_{i}^{-1}\right)\right\} \\
& =\left\{\chi_{-w_{i} \alpha_{3-i}}\left(s_{1}\right) \chi_{-w_{i} w_{3-i} \alpha_{i}}\left(s_{2}\right) \ldots \chi_{w_{i} \alpha_{k}}\left(s_{n}\right)\right\}
\end{aligned}
$$

where for each $k, \alpha_{k} \in \Delta_{i,-}^{r e}$ with $l\left(\alpha_{k}\right)=n$. Hence for each $i=1,2, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$

$$
\begin{aligned}
\psi_{i, U^{-}}\left[\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-} \chi_{\alpha_{i}}\left(-s_{j}\right)\right] & =\psi_{i, U^{-}}\left[\chi_{\alpha_{i}}\left(s_{j}\right) \chi_{-w_{i} \alpha_{3-i}}\left(s_{1}\right) \chi_{-w_{i} w_{3-i} \alpha_{i}}\left(s_{2}\right) \ldots \chi_{w_{i} \alpha_{k}}\left(s_{n}\right) \chi_{\alpha_{i}}\left(-s_{j}\right)\right] \\
& =\{1\},
\end{aligned}
$$

by the definition of $\psi_{i, U^{-}}$.
Theorem 4.4. Let G be a rank 2 affine or hyperbolic complete simply-connected Kac-Moody group over the finite field $k=\mathbb{F}_{q}$. Let U^{-}be subgroup of G generated by all negative real root subgroups. Let $K_{i, U^{-}}$be principal congruence subgroup of U^{-}for $i=1,2$, then we have,
(1) for $i=1,2, K_{i, U^{-}} \cap P_{i}=\{1\}$.
(2) For $i=1,2, n \geq 1, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$,

$$
\operatorname{Stab}_{K_{i, U^{-}}}\left(x_{n, j}^{i,-}\right)=\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) .
$$

(3) For $i=1,2, n \geq 1, j=0,1,2, \ldots, q-1$, the vertices $x_{n, j}^{i,-}$ are not equivalent mod $K_{i, U^{-}}$.
(4) For $i=1,2, n \geq 1, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$ and Ω_{i} be as before the coset $\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right)$ fixes the edge $\left(x_{n, j}^{i,-}, x_{n+1, j}^{i,-}\right)$ and acts transitively on the set of edges with origin $x_{n, j}^{i,-}$ distinct from $\left(x_{n, j}^{i,-}, x_{n+1, j}^{i,-}\right)$, sending all edges to $\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} B$, where $u_{n-1} \in \Omega_{i}$ with $\ell\left(u_{n-1}\right)=n-1$, setting $u_{0}=1$.

Proof. For (1), we recall that

$$
K_{i, U^{-}} \cap P_{i} \subseteq\left(U^{-} \cap P_{i}\right)=U_{-\alpha_{i}}, \text { by Lemma 3.3. }
$$

But

$$
K_{i, U^{-}} \cap U_{-\alpha_{i}}=\{1\}
$$

by definition of $K_{i, U^{-}}$, so $K_{i, U^{-}} \cap P_{i}=\{1\}$.
For (2), from Proposition 3.4 for each $n \geq 1, i=1,2$, we have

$$
U_{n, i}^{-} \leq u_{n} B u_{n-1}^{-1}=u_{n-1} P_{t} u_{n-1}^{-1} \cap u_{n} P_{3-t} u_{n}^{-1}
$$

where $u_{n} \in W$ is the unique element of the Ω_{i}, where

$$
\Omega_{1}=\left\{1, w_{2}, w_{2} w_{1}, w_{2} w_{1} w_{2}, \ldots\right\}, \quad \Omega_{2}=\left\{1, w_{1}, w_{1} w_{2}, w_{1} w_{2} w_{1}, \ldots\right\}
$$

with $\ell\left(u_{n}\right)=n$, with setting $u_{0}=1$, and $t=i$ if n is even and $t=3-i$ if n is odd. Then for each $n \geq 1, i=1,2, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ with $s_{0}=0$ we have

$$
\begin{aligned}
\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) & \subseteq \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n} B u_{n}^{-1} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
& =\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} P_{t} u_{n-1}^{-1} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \cap \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n} P_{3-t} u_{n}^{-1} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
& \subseteq \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} P_{t} u_{n-1}^{-1} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) .
\end{aligned}
$$

where $t=i$ if n is even and $t=3-i$ if n is odd. Hence

$$
\begin{aligned}
\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) & \subseteq \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} P_{t} u_{n-1}^{-1} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \cap K_{i, U^{-}} \\
& =\operatorname{Stab}_{G}\left(x_{n, j}^{i,-}\right) \cap K_{i, U^{-}} \\
& =\operatorname{Stab}_{K_{i, U}}\left(x_{n, j}^{i,-}\right)
\end{aligned}
$$

for $i=1,2, n \geq 1, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$. Conversely,

$$
\begin{aligned}
\operatorname{Stab}_{K_{i, U}}\left(x_{n, j}^{i,-}\right) & =\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} P_{t} u_{n-1}^{-1} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \cap K_{i, U^{-}} \\
& =\chi_{\alpha_{i}}\left(s_{j}\right) w_{i}\left(u_{n-1} P_{t} u_{n-1}^{-1} \cap K_{i, U^{-}}\right) w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
& \subseteq \chi_{\alpha_{i}}\left(s_{j}\right) w_{i}\left(u_{n-1} P_{t} u_{n-1}^{-1} \cap U^{-}\right) w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
& =\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} \operatorname{Sab}_{U U^{-}}\left(x_{n, j}^{i,-}\right) w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
& =\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) .
\end{aligned}
$$

So, for $i=1,2, n \geq 1$,

$$
\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right)=\operatorname{Stab}_{K_{i, U^{-}}}\left(x_{n, j}^{i,-}\right)
$$

for each $s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$.
Since $K_{i, U^{-}} \leq U^{-},(3)$ of the theorem follows easily from Proposition 3.4(3).

For (4), the chain of inclusions

$$
U_{1, i}^{-} \subseteq U_{2, i}^{-} \subseteq U_{3, i}^{-} \subseteq \ldots,
$$

for $i=1,2$, yields

$$
\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{1, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \subseteq \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{2, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \quad \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{3, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \ldots
$$

which shows that for $n \geq 1, i=1,2$ and $s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$, the coset $\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right)$ fixes the edge $\left(x_{n, j}^{i,-}, x_{n+1, j}^{i,-}\right)$.

For $n \geq 1, i=1,2, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ with $s_{0}=0$ the edge $\left(x_{n, j}^{i,-}, x_{n+1, j}^{i,-}\right)$ corresponds to the coset $\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} w_{t} B$ where u_{n-1} is the unique element of Ω_{i} with $\ell\left(u_{n-1}\right)=n-1$ having set $u_{0}=1$, and $t=i$ if n is even and $t=3-i$ if n is odd. For each $n \geq 1, i=1,2, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ with $s_{0}=0$, the coset $\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} w_{t} B$ belongs to the set

$$
E_{0}^{X}\left(x_{n, j}^{i,-}\right)=\left\{\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} B\right\} \cup\left\{\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} B \mid s_{j} \in \mathbb{F}_{q}, s \in \mathbb{F}_{q}\right\} .
$$

We are left to consider

$$
\left\{\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} B\right\} \cup\left\{\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} B \mid s_{j} \in \mathbb{F}_{q}, s \in \mathbb{F}_{q}^{\times}\right\}
$$

which are the edges with origin $x_{n, j}^{i,-}$ distinct from $\left(x_{n, j}^{i,-}, x_{n+1, j}^{i,-}\right)$, for $n \geq 1, i=1,2, s_{j} \in \mathbb{F}_{q}, j=$ $0,1,2, \ldots, q-1$ with $s_{0}=0$. We claim that if for some $u_{i} \in G$

$$
u_{i} \cdot\left[\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} B\right]=\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} B=\left(x_{n-1, j}^{i,-}, x_{n, j}^{i,-}\right)
$$

then

$$
u_{i} \in \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) .
$$

In fact for $n \geq 1, i=1,2, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ with $s_{0}=0$

$$
\begin{aligned}
u_{i} & =\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} w_{t}^{-1} \chi_{\alpha_{t}}(-s) u_{n-1}^{-1} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
& \in \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} u_{n-1} U_{-\alpha_{t}} u_{n-1}^{-1} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
& =\chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{-u_{n-1} \alpha_{t}} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
& \subseteq \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) .
\end{aligned}
$$

This completes the proof of (4).
The following corollary is immediate.
Corollary 4.5. For $i=1,2, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ with $s_{0}=0$, we have

$$
K_{i, U^{-}}=\quad *_{s_{j} \in \mathbb{F}_{q}}\left[\bigcup_{n \geq 1} \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} U_{n, i}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right)\right] .
$$

We note that for $i=1,2$, the group $K_{i, U^{-}}$is a nonuniform lattice subgroup of G.
4.1. Principal congruence subgroup of P_{1}^{-}. For $k=\mathbb{F}_{q}$ and $q=2^{s}$, we define the principal congruence subgroup $K_{P_{1}^{-}}$of P_{1}^{-}as follows:

$$
K_{P_{1}^{-}}=\operatorname{Ker}\left\{\psi_{P_{1}^{-}}: P_{1}^{-} \rightarrow P_{0} \mid U_{\alpha} \mapsto\{1\} \text { if } \ell(\alpha) \geq 1, \alpha \in \Delta_{-}^{r e} \backslash\left\{-\alpha_{1}\right\}\right\} .
$$

Where $P_{0}=\phi_{1}\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$ is generated by $\chi_{\alpha_{1}}(s), \chi_{-\alpha_{1}}(t), s, t \in \mathbb{F}_{q}$ and ϕ_{1} is the map defined in Lemma 3.6.

Lemma 4.6 and Lemma 4.7 justify the definition of $K_{P_{1}^{-}}$.

Lemma 4.6. For $k=\mathbb{F}_{q}$ and $q=2^{s}$

$$
\psi_{P_{1}^{-}}\left(U^{-}\right)=U_{-\alpha_{1}}
$$

The proof of Lemma 4.6 follows from the definition of $\psi_{P_{1}^{-}}$.
Lemma 4.7. For $s \in \mathbb{F}_{q}^{\times}$and $q=2^{s}$, we have

$$
\psi_{P_{1}^{-}}\left[h_{\alpha_{1}}(s)\right]=\chi_{-\alpha_{1}}\left(-s^{-1}\right) \chi_{-\alpha_{1}}\left(1^{-1}\right) .
$$

Proof. For $s \in \mathbb{F}_{q}^{\times}$and $q=2^{s}$

$$
\begin{aligned}
h_{\alpha_{1}}(s) & =\widetilde{w}_{1}(s) \widetilde{w}_{1}(1)^{-1} \\
& =\chi_{\alpha_{1}}(s) \chi_{-\alpha_{1}}\left(-s^{-1}\right) \chi_{\alpha_{1}}(s) \chi_{\alpha_{1}}(1) \chi_{-\alpha_{1}}\left(1^{-1}\right) \chi_{\alpha_{1}}(1) .
\end{aligned}
$$

Hence,

$$
\psi_{P_{1}^{-}}\left[h_{\alpha_{1}}(s)\right]=\chi_{-\alpha_{1}}\left(-s^{-1}\right) \chi_{-\alpha_{1}}\left(1^{-1}\right) .
$$

Lemma 4.8. For $k=\mathbb{F}_{q}$ and $q=2^{s}$

$$
K_{P_{1}^{-}} \cap H_{\alpha_{1}}=\{1\}
$$

Lemma 4.8 is a consequence of Lemma 4.7.
Lemma 4.9. For $s \in k=\mathbb{F}_{q}, q=2^{s}$, we have

$$
\psi_{P_{1}^{-}}\left[\chi_{\alpha_{1}}(s) w_{1} H_{\alpha_{2}} w_{1}^{-1} \chi_{\alpha_{1}}(-s)\right]=\{1\} .
$$

Proof. For $s \in \mathbb{F}_{q}$ and $t \in \mathbb{F}_{q}^{\times}$, we have

$$
\begin{aligned}
w_{1} h_{\alpha_{2}}(t) & w_{1}^{-1} \\
= & w_{1}\left(\widetilde{w}_{2}(t) \widetilde{w}_{2}(1)^{-1}\right) w_{1}^{-1} \\
= & w_{1}\left[\chi_{\alpha_{2}}(t) \chi_{-\alpha_{2}}\left(-t^{-1}\right) \chi_{\alpha_{2}}(t) \chi_{\alpha_{2}}(1) \chi_{-\alpha_{2}}\left(1^{-1}\right) \chi_{\alpha_{2}}(1)\right] w_{1}^{-1} \\
= & \left(w_{1} \chi_{\alpha_{2}}(t) w_{1}^{-1}\right)\left(w_{1} \chi_{-\alpha_{2}}\left(-t^{-1}\right) w_{1}^{-1}\right)\left(w_{1} \chi_{\alpha_{2}}(t) w_{1}^{-1}\right) \\
& \cdot\left(w_{1} \chi_{\alpha_{2}}(1) w_{1}^{-1}\right)\left(w_{1} \chi_{-\alpha_{2}}\left(1^{-1}\right) w_{1}^{-1}\right)\left(w_{1} \chi_{\alpha_{2}}(1) w_{1}^{-1}\right) \\
= & \chi_{w_{1} \alpha_{2}}(t) \chi_{-w_{1} \alpha_{2}}\left(-t^{-1}\right) \chi_{w_{1} \alpha_{2}}(t) \chi_{w_{1} \alpha_{2}}(1) \chi_{-w_{1} \alpha_{2}}\left(1^{-1}\right) \chi_{w_{1} \alpha_{2}}(1) .
\end{aligned}
$$

So

$$
\begin{gathered}
\chi_{\alpha_{1}}(s) w_{1} h_{\alpha_{2}}(t) w_{1}^{-1} \chi_{\alpha_{1}}(-s) \\
=\chi_{\alpha_{1}}(s) \chi_{w_{1} \alpha_{2}}(t) \chi_{-w_{1} \alpha_{2}}\left(-t^{-1}\right) \chi_{w_{1} \alpha_{2}}(t) \chi_{w_{1} \alpha_{2}}(1) \chi_{-w_{1} \alpha_{2}}\left(1^{-1}\right) \chi_{w_{1} \alpha_{2}}(1) \chi_{\alpha_{1}}(-s) .
\end{gathered}
$$

Hence

$$
\psi_{P_{1}^{-}}\left[\chi_{\alpha_{1}}(s) w_{1} H_{\alpha_{2}} w_{1}^{-1} \chi_{\alpha_{1}}(-s)\right]=\{1\}
$$

by the definition of $\psi_{P_{1}^{-}}$.
Lemma 4.10. For $n \geq 1, s \in \mathbb{F}_{q}, q=2^{s}$,

$$
\psi_{P_{1}^{-}}\left[\chi_{\alpha_{1}}(s) w_{1} U_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}(-s)\right]=\{1\} .
$$

Proof. For $n \geq 1, u_{\alpha}, s \in \mathbb{F}_{q}, q=2^{s}$,

$$
\begin{aligned}
\chi_{\alpha_{1}}(s) w_{1} U_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}(-s) & =\chi_{\alpha_{1}}(s) w_{1}\left[\left\{\prod_{\substack{\alpha \in \Delta_{1}^{r e}, 1 \leq \ell(\alpha) \leq n}} \chi_{\alpha}\left(u_{\alpha}\right)\right\}\right] w_{1}^{-1} \chi_{\alpha_{1}}(-s) \\
& =\chi_{\alpha_{1}}(s)\left\{\prod_{\substack{\alpha \in \Delta_{1, e}^{r e} \\
1 \leq \ell(\alpha) \leq n}}\left[w_{1} \chi_{\alpha}\left(u_{\alpha}\right) w_{1}^{-1}\right]\right\} \chi_{\alpha_{1}}(-s) \\
& =\chi_{\alpha_{1}}(s)\left\{\prod_{\substack{\alpha \in \Delta_{1}^{r e} \\
1 \leq \ell(\alpha) \leq n}} \chi_{w_{1} \alpha}\left(u_{\alpha}\right)\right\} \chi_{\alpha_{1}}(-s) .
\end{aligned}
$$

So, for $n \geq 1, s \in \mathbb{F}_{q}$,

$$
\psi_{P_{1}^{-}}\left[\chi_{\alpha_{1}}(s) w_{1} U_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}(-s)\right]=\{1\}
$$

by the definition of $\psi_{P_{1}^{-}}$.
In order to give the graph of groups presentation for $K_{P_{1}^{-}}$, we take the following coset representatives for P_{1} / B,

$$
\mathcal{S}=\left\{g_{j}=\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} \mid s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1, \text { with } s_{0}=0\right\}
$$

For each $j=0,1,2, \ldots, q-1$, we take translates $g_{j} \mathcal{A}_{0}^{+}$of the positive half \mathcal{A}_{0}^{+}of the fundamental apartment.

Then for $n \geq 1, j=0,1,2, \ldots, q-1$ the half-ray $g_{j} \mathcal{A}_{0}^{+}$has the following sequence of vertices

$$
\left\{a_{0, j}^{1,-}=P_{2}, a_{n, j}^{1,-}=\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} P_{i} \mid s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1, s_{0}=0\right\}
$$

where u_{n-1} is unique element of $\Omega_{1}, \ell\left(u_{n-1}\right)=n-1$ with $u_{0}=1$ and $i=1$ if n is even and $i=2$ if n is odd.

For $n \geq 1$, we define subgroups of P_{1}^{-}

$$
K_{n, 1}^{-}=\left\langle U_{n, 1}^{-}, H_{\alpha_{2}}\right\rangle
$$

which satisfy the following ascending chain of inclusions:

$$
K_{1,1}^{-} \subseteq K_{2,1}^{-} \subseteq K_{3,1}^{-} \subseteq \ldots
$$

Next lemma shows that translates of these subgroups by the cosets representatives of P_{1} / B are contained in the principal congruence subgroup $K_{P_{1}^{-}}$.
Lemma 4.11. For $s \in k=\mathbb{F}_{q}, q=2^{s}$,

$$
\chi_{\alpha_{1}}(s) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}(-s)=\chi_{\alpha_{1}}(s) w_{1}\left\langle U_{n, 1}^{-}, H_{\alpha_{2}}\right\rangle w_{1}^{-1} \chi_{\alpha_{1}}(-s) \subseteq K_{P_{1}^{-}} .
$$

This follows from Lemma 4.9 and Lemma 4.10.
We now give the graph of groups for $K_{P_{1}^{-}}$.
Theorem 4.12. Let G be an affine or hyperbolic complete simply-connected Kac-Moody group over the finite field $k=\mathbb{F}_{q}$ and assume that $q=2^{s}$. Let P_{1}^{-}be the negative standard parabolic subgroup of G. Then the principal congruence subgroup

$$
K_{P_{1}^{-}}=\operatorname{Ker}\left\{\psi_{P_{1}^{-}}: P_{1}^{-} \rightarrow P_{0} \mid U_{\alpha} \mapsto\{1\} \text { if } \ell(\alpha) \geq 1, \alpha \in \Delta_{-}^{r e} \backslash\left\{-\alpha_{1}\right\}\right\} .
$$

of P_{1}^{-}has the following graph of groups:

where where the total number of rays is $q+1$, indexed over the set \mathcal{S},

$$
\alpha_{0}^{1, j}: K_{1,1}^{-} \rightarrow K_{1,1}^{-}
$$

and

$$
\alpha_{n}^{1, j}: \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \rightarrow \chi_{\alpha_{1}}\left(s_{j}\right) w_{i} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right)
$$

are identity maps, for $n \geq 1, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ setting $s_{0}=0$,

$$
\begin{gathered}
\omega_{0}^{1, j}: K_{1,1}^{-} \rightarrow \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} K_{1,1}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right) \\
\omega_{n}^{1, j}: \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \hookrightarrow \chi_{\alpha_{i}}\left(s_{j}\right) w_{i} K_{n+1,1}^{-} w_{i}^{-1} \chi_{\alpha_{i}}\left(-s_{j}\right)
\end{gathered}
$$

are inclusion maps, for $n \geq 1, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ setting $s_{0}=0$.
Theorem 4.12 is a consequence of the following.
Proposition 4.13. Let $K_{P_{1}^{-}}$be the principal congruence subgroup of the standard parabolic subgroup P_{1}^{-}. Let $k=\mathbb{F}_{q}$ and assume that $q=2^{s}$.
(1) We have $K_{P_{1}^{-}} \cap P_{2}=K_{1,1}^{-}$.
(2) For $n \geq 1, s_{j} \in k=\mathbb{F}_{q}, q=2^{s}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$ we have

$$
\operatorname{Stab}_{K_{P_{1}^{-}}}\left(a_{n, j}^{1,-}\right)=\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) .
$$

(3) The vertices $a_{n, j}^{1,-}, n \geq 1, j=0,1,2, \ldots, q-1$ are not equivalent $\bmod K_{P_{1}^{-}}$.
(4) For $n \geq 1, s_{j} \in k=\mathbb{F}_{q}, q=2^{s}, j=0,1,2, \ldots, q-1$ with $s_{0}=0$, the coset $\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right)$ fixes the edge $\left(a_{n, j}^{1,-}, a_{n+1, j}^{1,-}\right)$ and acts transitively on the set of edges with origin $a_{n, j}^{1,-}$ distinct from
$\left(a_{n, j}^{1,-}, a_{n+1, j}^{1,-}\right)$ taking all edges to $\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} B$, where $u_{n-1} \in \Omega_{1}$ with $\ell\left(u_{n-1}\right)=n-1$, setting $u_{0}=1$.

Proof. We have

$$
K_{P_{1}^{-}} \cap P_{2} \subseteq P_{1}^{-} \cap P_{2}=B_{1,1}^{-}=\left\langle H, U_{-\alpha_{2}}\right\rangle
$$

But $K_{P_{1}^{-}} \cap H=H_{\alpha_{2}}$ and $U_{-\alpha_{2}} \subset K_{P_{1}^{-}}$, so $K_{P_{1}^{-}} \cap P_{2}=K_{1,1}^{-}$. This proves (1).

For (2), for $n \geq 1$ and $s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$, setting $s_{0}=0$ we have

$$
\begin{aligned}
\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) & =\chi_{\alpha_{1}}\left(s_{j}\right) w_{1}\left\langle H_{\alpha_{2}}, U_{n, 1}^{-}\right\rangle w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \\
& \subset \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} B_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right)
\end{aligned}
$$

Also from Lemma 4.11

$$
\chi_{\alpha_{1}}(s) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}(-s)=\chi_{\alpha_{1}}(s) w_{1}\left\langle U_{n, 1}^{-}, H_{\alpha_{2}}\right\rangle w_{1}^{-1} \chi_{\alpha_{1}}(-s) \subseteq K_{P_{1}^{-}}
$$

So,

$$
\begin{aligned}
\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) & \subseteq \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} B_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \cap K_{P_{1}^{-}} \\
& =\operatorname{Stab}_{P_{1}^{-}}\left(a_{n, j}^{1,-}\right) \cap K_{P_{1}^{-}} \\
& =\operatorname{Stab}_{K_{P_{1}^{-}}}\left(a_{n, j}^{1,-}\right)
\end{aligned}
$$

Conversely, for $n \geq 1, s_{j} \in k=\mathbb{F}_{q}, q=2^{s}, j=0,1,2, \ldots, q-1$, with $s_{0}=0$ and $t=1$ if n is odd and $t=2$ if n is even,

$$
\begin{aligned}
\operatorname{Stab}_{K_{P_{1}^{-}}}\left(a_{n, j}^{1,-}\right) & =\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} P_{t} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \cap K_{P_{1}^{-}} \\
& \subseteq \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} P_{t} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \cap P_{1}^{-} \\
& =\chi_{\alpha_{1}}\left(s_{j}\right) w_{1}\left(u_{n-1} P_{t} \cap P_{1}^{-}\right) w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \\
& =\chi_{\alpha_{1}}\left(s_{j}\right) w_{1}\left\langle H, U_{n, 1}^{-}\right\rangle w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \\
& =\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} B_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right)
\end{aligned}
$$

So $\operatorname{Stab}_{K_{P_{1}^{-}}}\left(a_{n, j}^{1,-}\right) \subseteq \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} B_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \cap K_{P_{1}^{-}}$. Hence $\operatorname{Stab}_{K_{P_{1}^{-}}}\left(a_{n, j}^{1,-}\right)=\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right)$.
Part (3) is obvious.

For (4), the chain of inclusions $K_{1,1}^{-} \subseteq K_{2,1}^{-} \subseteq K_{3,1}^{-} \subseteq \ldots$ yields

$$
\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{1,1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \subseteq \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{2,1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \quad \subseteq \quad \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{3,1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) \ldots
$$

which shows that for $n \geq 1, s_{j} \in \mathbb{F}_{q}, j=0,1,2,3, \ldots, q-1$, with $s_{0}=0$, the $\operatorname{coset} \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right)$ fixes the edge $\left(a_{n, j}^{1,-}, a_{n+1, j}^{1,-}\right)$.

For $n \geq 1, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots, q-1$ with $s_{0}=0$, the edge $\left(a_{n, j}^{1,-}, a_{n+1, j}^{1,-}\right)$ corresponds to the coset $\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} w_{t} B$ where u_{n-1} is the unique element of Ω_{1} with $\ell\left(u_{n-1}\right)=n-1$ having set $u_{0}=1$ and $t=1$ if n is even and $t=2$ if n is odd. The coset $\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} w_{t} B$ for $j=0,1,2,3, \ldots, q-1$ is an elements of the set

$$
E_{0}^{X}\left(a_{n, j}^{1,-}\right)=\left\{\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} B\right\} \cup\left\{\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} B \mid s_{j} \in \mathbb{F}_{q}, s \in \mathbb{F}_{q}\right\}
$$

for each $n \geq 1, s_{j} \in \mathbb{F}_{q}, j=0,1,2, \ldots q-1$ with $s_{0}=0$. We are left to consider

$$
\left\{\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} B\right\} \cup\left\{\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} B \mid s_{j} \in \mathbb{F}_{q}, s \in \mathbb{F}_{q}^{\times}\right\}
$$

which are the edges with origin $a_{n, j}^{1,-}$ distinct from $\left(a_{n, j}^{1,-}, a_{n+1, j}^{1,-}\right), j=0,1,2, \ldots, q-1$. We claim that for some $u_{i} \in K_{P_{1}^{-}}$

$$
u_{i} \cdot\left[\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} B\right]=\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} B=\left(a_{n-1, j}^{1,-}, a_{n, j}^{1,-}\right)
$$

then by Theorem 4.4

$$
u_{i} \in \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} U_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) .
$$

Also,

$$
u_{n-1}^{-1} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) u_{i} \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} \in B
$$

which implies

$$
u_{n-1}^{-1} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) u_{i} \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} u_{n-1} \chi_{\alpha_{t}}(s) w_{t} \in B \cap K_{P_{1}^{-}}=H_{\alpha_{2}} .
$$

So,

$$
u_{i} \in \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} H_{\alpha_{2}} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) .
$$

Hence

$$
u_{i} \in \chi_{\alpha_{1}}\left(s_{j}\right) w_{1}\left\langle H_{\alpha_{2}}, U_{n, 1}^{-}\right\rangle w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right)=\chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right) .
$$

This completes the proof.
The following corollary is immediate.
Corollary 4.14. For $s_{j} \in k=\mathbb{F}_{q}, q=2^{s}$ we have

$$
K_{P_{1}^{-}}=*_{K_{1,1}^{-}}\left[\bigcup_{n \geq 1, s_{j} \in \mathbb{F}} \chi_{\alpha_{1}}\left(s_{j}\right) w_{1} K_{n, 1}^{-} w_{1}^{-1} \chi_{\alpha_{1}}\left(-s_{j}\right)\right] .
$$

Where $j=0,1,2, \ldots, q-1$ with $s_{0}=0$.
We note that $K_{P_{1}^{-}}$is a nonuniform lattice subgroup of G whose graph of groups has volume a scalar multiple of $1+\sum_{n \geq 1} \frac{1}{q^{n}}$.

5. Other directions

5.1. Higher level congruence subgroups. The congruence subgroups $K_{i, U^{-}}$and $K_{P_{1}^{-}}$defined in the previous sections may be viewed as principal or 'level 1' congruence subgroups in an infinite sequence of congruence subgroups. In this subsection we define higher level congruence subgroups of P_{1}^{-}. We recall that

$$
K_{P_{1}^{-}}=\operatorname{Ker}\left\{\psi_{P_{1}^{-}}: P_{1}^{-} \rightarrow P_{0} \mid U_{\alpha} \mapsto\{1\} \text { if } \ell(\alpha) \geq 1, \alpha \in \Delta_{-}^{r e} \backslash\left\{-\alpha_{1}\right\}\right\}
$$

where $P_{0}=\phi_{1}\left(S L_{2}\left(\mathbb{F}_{q}\right)\right)$ and ϕ_{1} is the map defined in Lemma 3.6.
For $n \geq 2$, we define

$$
K_{P_{1}^{-}}(n)=\operatorname{Ker}\left\{\rho: P_{1}^{-} \rightarrow Q_{n} \mid U_{\alpha} \mapsto 1 \text { if } \ell(\alpha) \geq n\right\},
$$

where $Q_{n}=\phi_{n}\left(S L_{2}\left(\mathbb{F}_{q}[t] /\left(t^{n}\right)\right)\right)$, where ϕ_{n} is the map that extends naturally from $S L_{2}\left(\mathbb{F}_{q}\right)$ to $S L_{2}\left(\mathbb{F}_{q}[t] /\left(t^{n}\right)\right)$.

Higher level congruence subgroups of U^{-}can be defined similarly. By analogy with the classical case, we expect the graphs of groups of $K_{P_{1}^{-}}(n)$ to be significantly more complicated than that of $K_{P_{1}^{-}}$(cf. $[\mathrm{CCM}])$. Instead of a core graph consisting of a single vertex, as is the case for $K_{P_{1}^{-}}$, we expect to find
a core graph consisting of a complete bipartite graph with the number of cusps growing exponentially with the size of the core.

References

[BC] Bao, L. and Carbone, L. Integer forms of Kac-Moody groups and Eisenstein series in low dimensional supergravity theories, Submitted arXiv:1308.6194, (2014)
[B] Bass, H. Covering theory for graphs of groups, Journal of Pure and Applied Algebra 89 (1993) 3-47
[BL] Bass, H. and Lubotzky, A. Tree lattices. With appendices by H. Bass, L. Carbone, A. Lubotzky, G. Rosenberg and J. Tits, Progress in Mathematics, 176. Birkhaüser Boston, Inc., Boston, MA, (2001). xiv+233 pp.
[C] Carbone, L. Conjecture on the structure of fundamental domains for nonuniform lattices in Kac-Moody groups, Presented at the workshop 'DIAMANT meets GQT', Lorentz Center, Leiden, Netherlands, October 2008, http://www.math.rutgers.edu/ carbonel/
[CC] Carbone, L. and Cobbs, C. Infinite descending chains of cocompact lattices in Kac-Moody groups, Journal of Algebra and its Applications, Vol 10, No. 6, pp 1-33 (2011)
[CCM] Carbone, L., Cobbs, C. and Murray, S. Fundamental domains for congruence subgroups of $S L_{2}$ in positive characteristic, Journal of Algebra, 325, 2011, 431-439.
[CER] Carbone, L., Ershov, M. and Ritter, G. Abstract simplicity of complete Kac-Moody groups over finite fields, Journal of Pure and Applied Algebra, 212, (2008), 2147-2162.
[CG] Carbone, L. and Garland, H. Existence of Lattices in Kac-Moody Groups over Finite Fields, Communications in Contemporary Math, Vol 5, No.5, (2003) 813-867
[CGGL] Carbone, L., Garland, H., Gourevich, D. and Liu, D. Eisenstein series on rank 2 Kac-Moody groups over finite fields, Preprint, (2014)
[CLL] Carbone, L., Lee, K.-H. and Liu, D. Eisenstein series on rank 2 hyperbolic Kac-Moody groups over \mathbb{R}, Submitted, arXiv:1306.3280, (2014)
[Ga] Garland, H. On extending the Langlands-Shahidi method to arithmetic quotients of loop groups, http://arxiv.org/pdf/1009.4507
[KP] Kac, V. and Peterson, D. Defining relations of certain infinite-dimensional groups, Astérisque Numéro Hors Série (1985), 165-208.
[Lu] Lubotzky, A. Lattices of minimial covolume in $S L_{2}$, Journal of the Amer. Math. Society, 78 (1999), 961-975.
[Re1] Rémy, B. Groupes de Kac-Moody déployés et presque déployés. (French) [Split and almost split Kac-Moody groups], Astérisque No. 277 (2002), viii+348 pp
[Ro] Ronan, M. Lectures on Buildings, Updated and Revised, University of Chicago Press, (2009)
[S] Serre, J. P. Trees, Translated from the French by John Stillwell. Springer-Verlag, Berlin-New York, (1980). $\mathrm{ix}+142 \mathrm{pp}$.
[Ti1] Tits, J. Resume de Cours - Theorie des Groupes, Annuaire du College de France, 1980-1981, 75 -87
[Ti2] Tits, J. Uniqueness and presentation of Kac-Moody groups over fields, Journal of Algebra, 105 (1987), 542-573

[^0]: Date: September 11, 2014.
 The first author was supported in part by NSF grant \#DMS-1101282.

