ON THE CLASSIFICATION OF RANK 1 GROUPS OVER
NON-ARCHIMEDEAN LOCAL FIELDS

LISA CARBONE

ABSTRACT. We outline the classification of K-rank 1 groups over non—archimedean local fields
K up to strict isogeny, as obtained by Tits. We describe the possible Bruhat—Tits buildings
that can arise from such groups.

1. INTRODUCTION AND PRELIMINARIES

The classification of absolutely simple algebraic groups over non—archimedean local fields up to
strict isogeny is classical. Accounts of it have been written by Tits ([Til], [Ti2]) and Satake
([Sa]). Tits compiled tables of ‘admissible indices’ from which groups can be constructed.

Here we explain Tits’ tables for groups of relative rank 1 over non—archimedean fields, we describe
the groups that occur, as well as their Bruhat—Tits buildings which are trees.

The non-archimedean local fields K have been classified. If Char(K) = 0, then K is the field
Qp of p-adic numbers, or a finite extension of Q,. If Char(K) = p > 0, then K is isomorphic
to F,((t71)), the field of formal Laurent series in one variable over F,, where ¢ is a power of a
prime p. In each case, K has finite residue class field F,.

Let K be a non-archimedean local field, let K be its algebraic closure, and let
Gm/K =GLi(K) =2 K~

be the multiplicative group of K. Let G be a linear algebraic group defined over K. We recall
that a subgroup 7' C G is called a torus if T is isomorphic to (G,,)! over K. Since G is
finite dimensional, there is a torus of maximal dimension, called a mazimal torus. Over K, all
maximal tori are conjugate and hence have the same dimension, called the absolute rank of G.
If the isomorphism T 22 (G,,)! is defined over K, T is called split over K, or K —split. Since G
is finite dimensional, there is a K—split torus of maximal dimension, called a mazimal K—split
torus. Over K, all maximal K-split tori are conjugate and hence have the same dimension,
called the relative rank of G.

We say that G is split over K, if G contains a split maximal torus, and non—split otherwise. If
G is split over K, then the absolute rank of G equals the relative rank of G.

Let G and G’ be linear algebraic groups defined over K. Then G’ is called a K-form of G if
G = G’ over K or a finite extension of K.
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We recall that G is simple over K if G contains no infinite normal algebraic K-subgroup, and
absolutely simple over K if GG is simple over K.

An isogeny of algebraic groups is a surjective homomorphism with finite kernel. An isogeny is
strict (or central) if the kernel is central.

We now assume that G is absolutely simple over K. Let I' denote the Galois group Gal(K/K).
Let S be a maximal K-split torus of GG, and let T be a maximal torus containing S and
defined over K. Let N be the normalizer of T, and let W = N/T be the Weyl group. Let

X*(T) = Homgy(T, K ™) be the character group of T, and let © C X*(T') be the set of all roots
of G relative to T. Let A be the simple roots of G relative to T, and let ¢ be the corresponding—
Dynkin diagram (d has one vertex for each o € A). Let Ag C A be the simple roots that vanish
on S, and let §y be the corresponding Dynkin diagram, a subdiagram of §.

Let Z(S) be the centralizer of S and let DZ(S) be its derived group, called the semisimple
anisotropic kernel of G. 1f DZ (S) is trivial, G is called quasi-split. The Galois group I' =
Gal(K/K) acts on A and on the Dynkin diagram ¢.

A Tits index consists of:
(1) The simple roots A and corresponding Dynkin diagram J.
(2) The action of " on A and corresponding action on § (called the *-action).

We call a vertex of the Dynkin diagram § distinguished and circle it, if the corresponding simple
root does not belong to Ag. Vertices of the Dynkin diagram in the same orbit of I' are drawn
‘close together’, and if they are both distinguished, a common circle is drawn around them.

All orbits of I' = Gal(K/K) on § are distinguished (all vertices of § are circled) if and only if G
is quasi—split.

There is a unique involutory permuation of A, called the opposition involution, such that for
a € A, the mapping a — —i(«) extends to an action of the Weyl group: i leaves each connected
component of the Dynkin diagram ¢ invariant, and induces a non—trivial automorphism on a
connected component if and only if this component is of type A,, Dapt1, or Fg, in which case
there is only one possible non—trivial automorphism.

2. CLASSIFICATION THEOREMS

Theorem 2.1. We have the following.
(1) (Thm 1, [Ti2]) Over K, G is characterized up to strict isogeny by its Dynkin diagram.

(2) (2.7.2(b), [Ti2]) G is determined up to strict isogeny by its strict K —isogeny class, its Tits
indezx, and the K—isogeny class of its semisimple anisotropic kernel.

(3) ([Ti2]) If G is quasi-split, G is determined up to strict isogeny by its Tits index.

Tits’ strategy for classification is the following ([Ti2]):
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(Step 1) Find all admissible Tits indices over K, subject to the constraints ‘self-opposition’ and
‘induction’ described below.

(Step 2) For a given Tits index, determine the ‘anisotropic index’, by erasing all circled vertices
and incident edges.

(Step 3) From the anisotropic index, determine all possible semisimple anisotropic kernels.
(Step 4) Find a group with all of the above data.
The following are necessary conditions for admissibility of Tits indices ([Ti2]):

(1) Self-opposition: The Tits index of a group G should be invariant under the opposition
involution.

(2) Induction: If one removes a distinguished orbit from the Tits index, together with all edges
that have at least one endpoint in the orbit, the result should again be admissible.

Tits introduces the following notation for a Tits index: 9X}, . ([Ti2]), where

n = absolute rank = dim7T,

r = relative rank = dimJS,

g = order of quotient of Galois group I' which acts faithfully on 4,

t = degree(=+/dim) of division algebra which occurs in the definition of the considered form.
X = type of group over K.

Let D be a division algebra of degree d > 1 over K, and let o be an involution on D. We assume
that D is central, that is, the center of D is equal to the fixed field with respect to o. The
absolutely simple groups of relative rank 1 over non—archimedean local fields K are, up to strict
isogeny, either SLy(D), or SU, (D) for some n. The possible Tits indices are listed in Figure 1.

We let E denote a quadratic extension of K, and h a non—degenerate form on V = D™, hermitian
or skew hermitian relative to 0. We recall that the involution o on an algebra is of the first kind
if its restriction to the center is trivial (such as transpose), and of the second kind otherwise.
Moreover, o is of the :

d
first type, if the dimension of the field fixed by o is §(d +1),

d
second type, if the dimension of the field fixed by o is i(d -1).

In considering unitary groups over division algebras, varying the form h as hermitian or skew—
hermitian, and varying the kind and type of the involution o, allows us to determine the type
of unitary group over the algebraic closure, as is summarized by the following proposition:

Proposition 2.2. ([PR], p86) Let G = SU,,(D,h), where D is a division algebra of degree n,
with involution o, and h is a non—degenerate hermitian or skew—hermitian form on D™. Then

over K we have:
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(1) G = Spmn (type Cimny/2) if 0 is of the first kind and first type, and h is skew-hermitian, or
if o is of the first kind and second type, and h is hermitian.

(2) G = SOpmn (type Binn—1)/2 07 Dimn)j2) if o is of the first kind and first type, and h is
hermitian, or if o is of the first kind and second type, and h is skew—hermitian (here, type B
occurs only when n =1 in which case D = K ).

(8) G = SLyn (type Apn—1) if o is of the second kind.

3. GROUPS OVER NON—ARCHIMEDEAN LOCAL FIELDS

Here we describe the possible groups over non—archimedean local fields as in [Til].

(1) Tits index lAh, corresponding group G = SLa(D), D is a central division algebra of degree
d =1 over K, that is, D = K. The group G is a split form of SLs, and G is simply connected.

(2) Tits index 1A§ld_171, d > 2, corresponding group G = SLo(D), D is a central division—algebra
of degree d > 2 over K. We have

G(K) = SLy(D @K K) = SLy(My(K)) =2 SLay(K).
The group G is a non-split form of SLsg, and over K, G is simply connected.

(3) Tits index 243 ;, corresponding group G' = SU¥(h), D is a central division algebra of degree
d =1 (that is, D = K) over a quadratic extension E of K, with an involution o of the second
kind, h is a non-degenerate hermitian form relative to . Over K, S Uf =~ SLs. The group G
is a non-split form of SLs3, and over K, G is simply connected.

(4) Tits index QA}))J, corresponding group G = SUF (h), D is a central division algebra of degree
d =1 (that is, D = K) over a quadratic extension E of K, with an involution o of the second
kind, h is a non-degenerate hermitian form relative to 0. Over K, SUF = SL,. The group G
is a non-split form of SL4, and over K, G is simply connected.

(5) Tits index 6’2271, corresponding group G = SUy(D, h), D is a quaternion division algebra of
degree d = 2 over K, with an involution o of the first kind, first type, h is a non—degenerate
skew—hermitian form relative to o. The group G is a non-split form of Sp,, and over K, G is
simply connected.

(6) Tits index Cg,l, corresponding group G = SUs3(D, h), D is a quaternion division algebra of
degree d = 2 over K, with an involution o of the first kind, first type, h is a non—degenerate
skew—hermitian form relative to o. The group G is a non-split form of Spg, and over K, G is
simply connected.

(7) Tits index 2D§71, corresponding group G = SUs(D,h), D is a central division algebra of
degree d = 2 over K, with an involution ¢ of the first kind, first type, h is a non—degenerate
hermitian form relative to o. The group G is a non-split form of SOg. Over K, G is not simply
connected.

(8) Tits index 2Df ;, corresponding group G = SUy(D,h), D is a central division algebra of
degree d = 2 over K, with an involution ¢ of the first kind, first type, h is a non—degenerate
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hermitian form relative to o. The group G is a non-split form of SOg. Over K, G is not simply
connected.

(9) Tits index 1D§,17 corresponding group G = SUs(D, h), D is a central division algebra of
degree d = 2 over K, with an involution o of the first kind, first type, h is a non—degenerate
hermitian form relative to o. The group G is a non-split form of SOj9. Over K, G is not simply
connected.
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FiGURE 1. The rank 1 groups

Notes.
(i) Cy = By reflects the isogeny of Spy with SOs.

(i) The Tits indices for 2D3; and 2A3, are the same, but Tits remarks ([Ti2]) that if a cyclic
group of order 2 acts on the Dynkin diagram, then there is a quadratic extension of K fixed
by the Galois group. In the case that this fixed field is ramified, the group is more naturally
described as type Ds. For 2A§71, the fixed field of the Galois action is unramified.
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(iii) QDil has 2 different affine root systems ((a) and (b) in Table 2.3) which give different
relative local Dynkin diagrams, and different isogeny classes of the group.

(iv) In every strict isogeny class, there is a unique simply connected group (see Proposition 2,
section 2.6, [Ti2]).

4. THE BRUHAT-TITS TREE OF A K—RANK 1 GROUP

The Bruhat-Tits tree X, of a K—rank 1 simple algebraic group G over a non-archimedean local
field K, is the building associated to G and is the non—archimedean analogue (in rank 1) of the
symmetric space of a real Lie group.

Here we describe how the Bruhat-Tits tree of G = SLa(K), for K = F,((t71)), is constructed
from a Tits system, or BN—pair for G. We have

K=Fy((t7")={D_ ant™" [ an € Fy},

which has infinitely many negative powers of ¢ and finitely many positive powers. The field K
has ring of integers

O =Tt = {Y  ant ™" | an € Fy},

n>0
with infinitely many negative powers of £ and no positive powers. The ring of integers O contains
the ‘prime element’ t~1. Also, O = F,[[t"!]] is open and compact in K = F,((¢t71)).

For G = SLy(K), we have the affine Tits system (G, B, N), (see [S] pp 89-91) where

b 1
B:{<Z d> ESL2(0)|CEOmOdt},

is the Iwahori subgroup, or the minimal parabolic subgroup. We let T denote the diagonal
subgroup of G.

We have

w=lon; Vofon(® D ={(o D) reeravi( L )ier).

The conjugation action of N on T permutes the diagonal entries, so N normalizes T'. The group

0
BON:{<8 al) |aEOX},

is the integral torus, and is normal in N. Set
g_ (0 -1 (0 —t
T o) e o)

W =N/(BAN)=Zx {+Id} = Dy

Then the Weyl group

is generated by S.



If we consider the Bruhat cells Bwy B and Bws B, we obtain the standard parabolic subgroups
P, := BU Bw B,

and
Py := Bl BwyB.
For G = SLy(K), we have (see [S], p 91)

P, = SLy(0),
a tb a b
n=1(5 D) 1(¢ 1) < smon.
and PoNP, =B.

The Bruhat-Tits building of G is a simplicial complex of dimension 1, a tree X. The vertices
of X are the conjugates of P; and P» in G. If @1 and ()2 are vertices, then there is an edge
connecting ()1 and Q9 if and only if )1 N Q)2 contains a conjugate of B. We have an action of
G on X by conjugation.

We will make use of the following basic facts:

o 1)

(2) Each P; is its own normalizer in G, i = 1,2, and B is its own normalizer in G.

(1) P, and P are conjugate in GLy(K), by

but not conjugate in SLa(K).

Let g € G. Then (1) and (2) imply that the maps:

fo:9B — gBg™ ",

fi:gPr— gPig™!,

fa:gPy — gPag™!

are bijections. Thus
G /P, = all conjugates of P; in G,
G/ P, = all conjugates of P» in G,
G /B = all conjugates of B in G.

We have
G = P1 *B PQ.
We obtain the following description of the Bruhat-Tits tree X:
VX = G/P1 L G/P27
EX =G/BUG/B,

where G/B is a copy of the set G/B, giving an orientation to EX, so that positively oriented

edges come from G/B, and negatively oriented edges come from G/B.
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The group G acts by left multiplication on cosets. There is a natural projection on cosets induced
by the inclusion of B in P; andPs:

7:G/B— G/P;, i=1,2.

If v; is a vertex, and St~ (v;) = 7! (v;) is the set of edges with origin v;, then St~ (v;) is indexed
by P;/B C G/B,i=1,2.

For G = SLy(K), X is a homogeneous, bipartite tree of degree
[PliB]: [PQB] =q+1.
The following lemma describes how the cosets Bw; B and BwsB are indexed modulo B:

Lemma 4.1. [IM] For G = SLy(K), K =F,((t™1)), we have:
BwB/B = {((1) f) w1 B/B | s € B},

BuwsB/B = {(S}t ‘f) wiB/B | s € F,}.0

It follows that the edges emanating from P; and P, can be indexed as follows:

St¥(P) ={B, (é f) wiB/B | s € Fy},

St (Py) = (B, (}t ‘f) wB/B | 5 €F,},

and the stars of other vertices are obtained by translating (conjugating) these ones.

Apartments in X are infinite lines in one—to—one correspondence with the maximal K-split tori
of G. The standard apartment Ay in X, corresponding to the diagonal subgroup T, consists of
all Weyl group translates of the standard simplex.

Moreover, G = SLqy acts transitively on edges of X, and has 2 orbits for the vertices, corre-
sponding to vertices that come from P; or P»

The group B of the Tits system is the stabilizer of the standard simplex Cy, and N is the
stabilizer of the standard apartment Ajg.

For G = SLy(F,((t71))), Figure 2 shows the tree of the field with 2 elements.

We may obtain additional information about G and in particular its Bruhat—Tits tree from the
relative local Dynkin diagram arising from an ‘affine root system’ for G (see [Til]).

The relative local Dynkin diagrams of K-rank 1 groups are given in [Til], and are included in
Figure 1. The labels s and hs on the vertices of the relative local Dynkin diagram for G denote
‘special’ and ‘hyperspecial’ vertices. We refer the reader to ([Til], pp35) for definitions.

In general, the degrees of homogeneity of the Bruhat—Tits tree of a simple rank 1 group over a
non-archimedean local field can be determined as follows:
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w,P, P,
1 o 11
'(m 1) Py w,w,P, w,w, P, W, 1 w,P,

FIGURE 2. The tree of SLao(Fo((t71)))

(1) Let G be a K-rank 1 simple algebraic group over a non-archimedean local field K. If K has
residue class field F,, and if d and d’ are the integers attached to the two vertices of the relative
local Dynkin diagram for G, then G has Bruhat-Tits tree X = X 4, o ([Ti1]). Moreover, if
B is the minimal parabolic subgroup of GG, and P; and P; are the two maximal proper parabolic
subgroups of G, then ¢% 4+ 1 = [P, : B] and ¢ +1= [P, : B]. For a general rank 1 group, the
indices [Py : B] and [P» : B] can be different, but for G = SLs they are the same.

(2) Let K’ be a ramified extension of K whose ramification index equals the degree of the
extension. If K has residue class field k, then K’ also has residue class field k. By (1) above, if
G is a simple algebraic group of-relative rank 1, defined over both K and K’, then G/K and
G/K' have the same Bruhat-Tits tree.

For a general rank 1 group G, if G is simply connected, then G acts without inversions on the
Bruhat—Tits tree X, but if G is not simply connected, G may act with inversions. In this case,
we may replace G' by a subgroup of index 2 which acts without inversions. We recall, however,
that in each strict isogeny class, there is a unique simply connected group.
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