CHARACTERIZATION OF NON-MINIMAL TREE ACTIONS

Lisa Carbone and Laura Ciobanu

Abstract

Let Γ be a group acting without inversions on a tree X. If there is no proper Γ-invariant subtree, we call the action of Γ on X minimal. Here we give a characterization of non-minimal tree actions. For a non-minimal action of Γ on X, we give structure theorems for the quotient graph of groups for Γ on X, its associated edge-indexed graph and its group of deck transformations.

1. Introduction.

Let Γ be a group acting without inversions on a locally finite tree X. We say that Γ acts minimally on X if there is no proper Γ-invariant subtree. As is the case with well known results concerning group actions on \mathbb{R}-trees, when the hyperbolic length function $l(\Gamma)$ of Γ is non-zero, there is a unique minimal Γ-invariant subtree $X_{0} \subset X$ (see for example [B]). Now set $G=\operatorname{Aut}(X)$. If X is uniform, that is, X is the universal cover of a finite connected graph, then by $([\mathrm{BL}],(9.7)), l(G) \neq 0$ and hence there is a unique minimal G-invariant subtree $X_{0} \subset X$.

Here we give a characterization of non-minimal actions in terms of the quotient graph of groups for Γ on X, its associated edge-indexed graph (Section 2) and its group of deck transformations, that is, the group of automorphisms of X that commute with the quotient morphism (Section 5). In each case, we give a 'decomposition' of the action into 'minimal and non-minimal components' (Section 4). This gives rise to a structure theorem for the group of deck transformations as a semi-direct product of its minimal component and a product of finite groups (Section 5).

When the edge-indexed quotient graph is finite, we show that it contains a unique minimal invariant subgraph which we describe geometrically (Section 4). Moreover, we give a procedure to find the minimal invariant subgraph.It follows that the minimal Γ-invariant subtree X_{0} of X is the universal covering of the minimal component of the quotient (Section 4).

The first author was supported in part by NSF grant \#DMS-0401107.
2000 Mathematics subject classification. Primary 20F32; secondary 22F50.

Our motivation for this work is two-fold. Primarily the results here of Section 2 and Section 4 are an important ingredient for the proof in [C] of Bass-Lubotzky's conjecture for the existence of non-uniform lattices on uniform trees ([BL], Ch 8). Let X be a uniform tree and let $G=\operatorname{Aut}(X)$. Let X_{0} be the unique minimal G-invariant subtree of X. Let $G_{0}=\left.\operatorname{Aut}(X)\right|_{X_{0}}$. Here we show that that $G_{0}=\operatorname{Aut}\left(X_{0}\right)$ (Section 5). In [C], the first author showed how to extend non-uniform lattice subgroups $\Gamma_{0} \leq G_{0}=\operatorname{Aut}\left(X_{0}\right)$ to nonuniform lattices $\Gamma \leq G=\operatorname{Aut}(X)$. An important ingredient in this proof is the geometric characterization of an edge-indexed graph in terms of its unique minimal subgraph obtained here in Section 4.

Secondly, this work fills a gap in the literature concerning non-minimal actions on simplicial trees. Our results in Sections 3 and 4 are essentially a reworking, in terms of edge-indexed graphs, of known results (see for example $[B]$ and $[B L]$). Our structure theorem (Section 5) for the deck transformation group of a non-minimal action is a straightforward consequence of [BL] Section 6, but does not seem to appear in the literature.

The authors would like to thank Hyman Bass for encouraging us to write this paper, and for useful discussions.

2. Group actions, edge-indexed quotients and minimality.

Let Γ be a group acting without inversions on a tree X. The fundamental theorem of Bass and Serre states that Γ is encoded (up to isomorphism) in a quotient graph of groups $\mathbb{A}=\Gamma \backslash \backslash X([\mathrm{~B}],[\mathrm{S}])$. Conversely a graph of groups \mathbb{A} gives rise to a group $\Gamma=\pi_{1}(\mathbb{A}, a)$, $a \in V \mathbb{A}$, acting on a tree $X=\widetilde{(\mathbb{A}, a)}$ without inversions.

Now assume that X is locally finite, and that Γ acts on X with quotient graph of groups $\mathbb{A}=\Gamma \backslash \backslash X$. Then \mathbb{A} naturally gives rise to an 'edge-indexed' graph (A, i), defined as follows. The graph A is the underlying graph of \mathbb{A} with vertex set $V A$, edge set $E A$, initial and terminal functions $\partial_{0}, \partial_{1}: E A \longmapsto V A$ which pick out the endpoints of an edge, and with fixed point free involution $-: E A \longmapsto E A$ which reverses the orientation. The indexing $i: E A \longmapsto \mathbb{Z}_{>0}$ of (A, i) is defined to be the group theoretic index

$$
i(e)=\left[\mathcal{A}_{\partial_{0} e}: \alpha_{e}\left(\mathcal{A}_{e}\right)\right],
$$

where

$$
\left(\mathcal{A}_{a}\right)_{a \in V A} \text { and }\left(\mathcal{A}_{e}=\mathcal{A}_{\bar{e}}\right)_{e \in E A}
$$

are the vertex and edge groups of \mathbb{A}, and $\alpha_{e}: \mathcal{A}_{e} \hookrightarrow \mathcal{A}_{\partial_{0} e}$ are the boundary monomorphisms of \mathbb{A}. We write $(A, i)=I(\mathbb{A})$ when $i(e)=\left[\mathcal{A}_{\partial_{0} e}: \alpha_{e}\left(\mathcal{A}_{e}\right)\right]$ for data

$$
\left\{\mathcal{A}_{a}, \mathcal{A}_{e}=\mathcal{A}_{\bar{e}}, \alpha_{e}: \mathcal{A}_{e} \hookrightarrow \mathcal{A}_{\partial_{0} e}\right\}
$$

from \mathbb{A}. Conversely, an edge-indexed graph (A, i) is defined to be a graph A and an assignment $i(e)(\neq i(\bar{e})$ in general) of a positive integer to each oriented edge. Then (A, i) determines a
universal covering tree $X=\widetilde{(A, i)}$ up to isomorphism, and every edge-indexed graph arises from a tree action [BL]. Here we assume $i(e)$ is finite for each $e \in E A$. Under this assumption the universal covering tree $X=\widetilde{(A, i)}$ is locally finite [BL].

Let (A, i) be an edge-indexed graph. We say that (A, i) is minimal if it is the edgeindexed quotient of a minimal tree action. A vertex $a \in V A$ is a terminal vertex of (A, i) if $\operatorname{deg}_{(A, i)}(a)=1$, where

$$
d e g_{(A, i)}(a)=\sum_{e \in E_{0}(a)} i(e)
$$

and $E_{0}(a)=\left\{e \in E A \mid \partial_{0} e=a\right\}$. A terminal vertex in (A, i) is then a geometrically terminal vertex in the graph A. That is, there is a unique edge e with $\partial_{0} e=a$. If (A, i) consists of a single vertex v, we set $\operatorname{deg}_{(A, i)}(v)=0$ and so v is not a terminal vertex.

Now let $\mathbb{A}=(A, \mathcal{A})$ be a graph of groups. If $A^{\prime} \subset A$ is a connected subgraph of A, we write $\left.\mathbb{A}\right|_{A^{\prime}}$ for the subgraph of groups obtained by restriction to A^{\prime}. Following $([\mathrm{B}],(7.10))$ we call \mathbb{A} a minimal graph of groups if

$$
\pi_{1}\left(\left.\mathbb{A}\right|_{A^{\prime}}, a_{0}\right)=\pi_{1}\left(\mathbb{A}, a_{0}\right)
$$

only when $A^{\prime}=A$, where $a_{0} \in A^{\prime}$. We call a vertex $a \in V A$ a terminal vertex of \mathbb{A} if there is a unique edge e with $\partial_{0} e=a$ and $\alpha_{e}: \mathcal{A}_{e} \hookrightarrow \mathcal{A}_{a}$ is an isomorphism.
(2.1) Lemma. Let \mathbb{A} be a graph of groups and let $(A, i)=I(\mathbb{A})$. Then \mathbb{A} has no terminal vertices if and only if (A, i) has no terminal vertices.

Proof: Let a be a terminal vertex of \mathbb{A}. Then there is a unique edge e with $\partial_{0} e=a$ and $i(e)=\left[\mathcal{A}_{a}: \alpha_{e}\left(\mathcal{A}_{e}\right)\right]=1$. That is, a is a terminal vertex of (A, i).

Conversely suppose (A, i) has a terminal vertex $a \in V A$, that is, $\operatorname{deg}_{(A, i)}(a)=1$ and a is a geometrically terminal vertex. This forces $\left[\mathcal{A}_{a}: \alpha_{e}\left(\mathcal{A}_{e}\right)\right]=1$, which occurs if and only if $\alpha_{e}: \mathcal{A}_{e} \hookrightarrow \mathcal{A}_{a}$ is an isomorphism. Thus a is a terminal vertex of \mathbb{A}.

3. Characterizing minimal actions.

Our applications in $[\mathrm{C}]$ and section 5 require a detailed description of a non-minimal action on a simplicial tree. We use the formulation of Bass ([B]) of a minimal graph of groups to describe minimality of a tree action $\Gamma \times X \longrightarrow X$ in terms of the edge-indexed quotient $\operatorname{graph}(A, i)=I(\mathbb{A})$ of the graph of groups $\mathbb{A}=\Gamma \backslash \backslash X$.

Let \mathbb{A} be a graph of groups. The notion of a minimal graph of groups of Bass ([B], (7.10)) is given in terms of intrinsic properties of \mathbb{A}. Bass then showed that minimal graphs of groups encode minimal tree actions. His result is the following:
(3.1) Theorem ([B], (7.12)). Let \mathbb{A} be a graph of groups, let $a_{0} \in V A, \Gamma=\pi_{1}\left(\mathbb{A}, a_{0}\right)$, and $X=\left(\widetilde{\mathbb{A}, a_{0}}\right)$. The following conditions are equivalent.
(a) The action of Γ on X is minimal.
(b) \mathbb{A} is minimal.

These conditions imply:
(c) \mathbb{A} has no terminal vertices.

If A is finite then (c) is equivalent to the other conditions.
The following proposition gives a restatement of Bass' theorem in terms of the edgeindexed graph arising from \mathbb{A}.
(3.2) Proposition. Let Γ be a group acting without inversions on a tree X with quotient graph of groups $\mathbb{A}=\Gamma \backslash \backslash X$ and edge-indexed quotient $(A, i)=I(\mathbb{A})$.
(1) If (A, i) is minimal then (A, i) has no terminal vertices.
(2) If (A, i) is finite and has no terminal vertices then (A, i) is minimal.

Proof: (1) Suppose that (A, i) is minimal. Then (A, i) is the edge-indexed quotient graph of a minimal action $\Gamma^{\prime} \times X^{\prime} \longmapsto X^{\prime}$ which corresponds to the action of Γ on X up to isomorphism. Without loss of generality we take $\Gamma^{\prime}=\Gamma, X^{\prime}=X$. Then by Theorem (3.1), $\mathbb{A}=\Gamma \backslash \backslash X$ has no terminal vertices, which by Lemma (2.1) is equivalent to (A, i) having no terminal vertices.
(2) Since (A, i) has no terminal vertices, \mathbb{A} has no terminal vertices by Lemma (2.1). Assume that (A, i) is finite. Then by Theorem (3.1), Γ acts minimally on X. That is, $(A, i)=$ $I(\Gamma \backslash \backslash X)$ is minimal.

We remark that (2) in Proposition (3.2) is false without the assumption of finiteness of (A, i). This can be seen from the following example. Let (A, i) be the graph $A=\mathbb{Z}$ of the integer line with $i(e)=1$ for all edges except for a finite number of $e_{1}, e_{2}, \ldots, e_{n} \in E A$ with $\partial_{1} e_{j}=\partial_{0} e_{j+1}, j=1, \ldots, n-1$, so that $i\left(e_{j}\right)>1, j=1, \ldots, n$. If \mathbb{A} is any graph of groups with $(A, i)=I(\mathbb{A})$, then \mathbb{A} cannot be minimal, since $\pi_{1}\left(\left.\mathbb{A}\right|_{\gamma}, a_{0}\right)=\pi_{1}\left(\mathbb{A}, a_{0}\right)$, where γ is the path $\gamma=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and $a_{0} \in \gamma$.

In summary, we see that the property of minimality can be detected equivalently from a graph of groups \mathbb{A} or its edge-indexed graph (A, i) with $(A, i)=I(\mathbb{A})$. Combining the results of Lemma (2.1), Theorem (3.1) and Proposition (3.2), we have:
(3.3) Corollary. Let \mathbb{A} be a graph of groups and let $(A, i)=I(\mathbb{A})$. Assume that A is finite. Then the following conditions are equivalent:
(1) \mathbb{A} is minimal,
(2) \mathbb{A} has no terminal vertices,
(3) (A, i) is minimal,
(4) (A, i) has no terminal vertices.

4. Structure of non-minimal actions.

In this section we show that a finite edge-indexed quotient graph (A, i) of a non-minimal action has a unique minimal subgraph $\left(A_{0}, i_{0}\right) \subset(A, i)$. We describe (A, i) and $X=\widetilde{(A, i)}$ geometrically in terms of their 'minimal components'. We first recall the following results of $[B]$ and $[B L]$ which give criteria for the existence of minimal subtrees.
(4.1) Proposition ([B], (7.5)). Let Γ be a group acting on a tree X and let $l(\Gamma)$ be the hyperbolic length function of the action. If $l(\Gamma) \neq 0$ then there is a unique minimal Γ invariant subtree X_{Γ} of X. We have

$$
X_{\Gamma}=\bigcup_{\gamma \in \Gamma, l(\gamma)>0} X_{\gamma},
$$

where X_{γ} is the axis of translation of the hyperbolic element $\gamma \in \Gamma$.
If we consider subgroups of $\operatorname{Aut}(X)$ rather than general group actions, we obtain the following criterion of Bass and Lubotzky for the existence of a unique minimal invariant subtree of X.
(4.2) Proposition ([BL], (9.7)). Let X be a tree and let $G=\operatorname{Aut}(X)$. If X is uniform then $l(G) \neq 0$ and there is a unique minimal G-invariant subtree $X_{0} \subset X$.

Our aim is to obtain analogous results to Propositions (4.1) and (4.2) in terms of edgeindexed quotient graphs.

Let (T, i) be an edge-indexed graph. As in $[\mathrm{BL}]$ and $[\mathrm{R}]$ we say that (T, i) is a dominant edge-indexed tree if T is a tree, $|V T|>1$ and there is a vertex $a \in V T$ such that for all $e \in E T$

$$
d\left(\partial_{0} e, a\right)>d\left(\partial_{1} e, a\right) \text { implies } i(e)=1 .
$$

We call such a vertex $a \in V T$ a dominant root of (T, i) and we write (T, i, a) when (T, i) is a dominant edge-indexed tree, rooted at $a \in V T$.

If (T, i, a) is a dominant rooted edge-indexed tree then it is clear from the definition that (T, i, a) contains a terminal vertex.

Let (A, i) be any finite edge-indexed graph. We may view (A, i) as the edge-indexed quotient of a tree action $\Gamma \times X \longrightarrow X$, with $X=\widetilde{(A, i)} I(\Gamma \backslash \backslash X)=(A, i)$, that is in general non-minimal. The following theorem establishes the existence of a minimal subgraph $\left(A_{0}, i_{0}\right) \subset(A, i)$. The edge-indexed graph $\left(A_{0}, i_{0}\right)$ will then coincide (up to isomorphism) with the edge-indexed quotient graph of any action $\Gamma_{0} \times X_{0} \longrightarrow X_{0}$ on the minimal subtree $X_{0} \subset X$. Our assumption that (A, i) is finite guarantees that $X=(\widetilde{A, i})$ is uniform and hence by Proposition (4.2) there is a unique minimal subtree $X_{0} \subset X$.

Moreover, we will show that the minimal subgraph $\left(A_{0}, i_{0}\right)$ is essesntially unique. That is, $\left(A_{0}, i_{0}\right)$ is unique unless (A, i) is a tree, in which case $\left(A_{0}, i_{0}\right)$ is unique up to isomorphism (Theorem (4.5) below).
(4.3) Theorem. Let (A, i) be a finite edge-indexed graph. Then
(1) There is a connected subgraph $\left(A_{0}, i_{0}\right)$ of (A, i), maximal with respect to the property of having no terminal vertices, such that $\left(A_{0}, i_{0}\right)$ contains the union of all closed paths in (A, i) and $(A, i) \backslash\left(A_{0}, i_{0}\right)$ is a disjoint union of edge-indexed trees.
(2) Let $\left(A_{0}, i_{0}\right)$ be the subgraph of (A, i) as in (1). Then (A, i) is a union of $\left(A_{0}, i_{0}\right)$ and dominant rooted edge-indexed trees with roots in $\left(A_{0}, i_{0}\right)$. That is,

$$
(A, i)=\left(A_{0}, i_{0}\right) \amalg \coprod_{a_{j} \in \Delta}\left(T_{j}, i_{j}, a_{j}\right),
$$

where $\Delta=\left\{a_{1}, \ldots, a_{n}\right\}$ is a subset of $V A_{0},\left(T_{j}, i_{j}, a_{j}\right)$ are finite dominant-rooted edgeindexed trees with root vertices $a_{j} \in V A_{0}, j=1 \ldots n$.
Proof: (1) If (A, i) has no terminal vertices, then (A, i) is minimal and we take $\left(A_{0}, i_{0}\right)=$ (A, i). Now suppose (A, i) has terminal vertices. In order to obtain $\left(A_{0}, i_{0}\right)$ we will use a minimalization procedure which we now describe.

Suppose (A, i) has terminal vertices $v_{11}, \ldots, v_{1 n_{1}}$, where n_{1} is some positive integer. Then for each $v_{1 j}$ there is a unique edge $e_{1 j}$ with $\partial_{0} e_{1 j}=v_{1 j}, j=1 \ldots n_{1}$. Since $v_{1 j}$ is terminal, $e_{1 j}$ cannot belong to a closed path in (A, i). Let $\left(A_{2}, i_{2}\right)$ be the subgraph of $\left(A_{1}, i_{1}\right)=(A, i)$ obtained by removing $v_{1 j}$ and $e_{1 j}$ but not $\partial_{1} e_{1 j}, j=1, \ldots n_{1}$. If (A_{2}, i_{2}) has no terminal vertices then set $\left(A_{0}, i_{0}\right)=\left(A_{2}, i_{2}\right)$ and we are done. Note that removing $v_{1 j}$ and $e_{1 j}$ may give rise to terminal vertices in $\left(A_{2}, i_{2}\right)$. Suppose that $\left(A_{2}, i_{2}\right)$ has terminal vertices. Let $\left(A_{3}, i_{3}\right)$ be the subgraph of $\left(A_{2}, i_{2}\right)$ obtained by removing the terminal vertices of $\left(A_{2}, i_{2}\right)$ and their unique incident edges.

If at some stage of the procedure, the subgraph $\left(A_{n}, i_{n}\right)$ consists of exactly two vertices connected by an edge, we can remove either of the two vertices and obtain a subgraph consisting of only one vertex.

Since (A, i) is finite, the successive 'pruning' of terminal vertices eventually produces a non-empty, connected subgraph $\left(A_{0}, i_{0}\right)$ of (A, i) that is maximal with respect to the property of having no terminal vertices. Moreover, $\left(A_{0}, i_{0}\right)$ contains the union of all closed paths in (A, i).

We remark that this minimalization procedure is not unique. For example, one can 'prune a branch at a time'. That is, we can successively remove all vertices on a path from a given terminal vertex that are not terminal in (A, i) but become terminal at some stage of the procedure.
(2) Let $\left(A_{0}, i_{0}\right)$ be the minimal subgraph of (A, i) as in (1), obtained by a minimalization procedure. We claim that (A, i) is a union of $\left(A_{0}, i_{0}\right)$ and a finite number of dominant rooted trees $\left(T_{j}, i_{j}\right), j=1 \ldots n$, rooted at $a_{j} \in V A_{0}, j=1 \ldots n$. From (1) we have that $(A, i) \backslash\left(A_{0}, i_{0}\right)$ is a disjoint union of edge-indexed trees, say $\left(T_{j}, i_{j}\right), j=1 \ldots n$. It remains to show that each $\left(T_{j}, i_{j}\right)$ is a dominant rooted edge-indexed tree with root vertices in $V A_{0}$.

Let $e \in E A \backslash E A_{0}$ be such that $d\left(\partial_{0} e, A_{0}\right)=1$ and e points 'towards' $\left(A_{0}, i_{0}\right)$ where for $a \in V A$

$$
d\left(a, A_{0}\right)=\min _{x \in V A}^{6} \text { d } d(a, x),
$$

and $d: V A \longrightarrow \mathbb{Z}_{>0}$ is the edge-path distance. Then we must have $i(e)=1$, otherwise $\left(A_{0}, i_{0}\right) \cup\{e\}$ is minimal, contradicting the fact that $\left(A_{0}, i_{0}\right)$ is maximal with respect to having no terminal vertices. Let

$$
S\left(A_{0}, r\right)=\left\{e \in E A \backslash E A_{0} \mid d\left(\partial_{0} e, A_{0}\right)=r \text { and } e \text { points towards } A_{0}\right\}
$$

be the sphere of radius r in (A, i) about $\left(A_{0}, i_{0}\right)$. Let m be the maximum radius of any sphere in (A, i) about $\left(A_{0}, i_{0}\right)$. For each $k=1 \ldots m$, let $\left(A_{k}, i_{k}\right)=\left(A_{0}, i_{0}\right) \cup S\left(A_{0}, k\right)$. Then for each $e \in\left(A_{k}, i_{k}\right) \backslash\left(A_{0}, i_{0}\right)$ we must have $i(e)=1$. Otherwise

$$
\left(A_{0}, i_{0}\right) \cup \gamma \cup\{e\}
$$

is minimal, where γ is the unique path from $\partial_{1} e$ to $\left(A_{0}, i_{0}\right)$, contradicting the maximality of $\left(A_{0}, i_{0}\right)$. Now let $\left(T_{j}, i_{j}\right)$ denote the connected components of $(A, i) \backslash\left(A_{0}, i_{0}\right), j=1 \ldots n$. For each $j=1 \ldots n$, let $a_{j} \in V A_{0}$ be such that $a_{j}=\partial_{1} e$ for some $e \in S\left(A_{0}, 1\right)$. Then for each $e \in E T_{j}$ we have shown that $d\left(\partial_{0} e, a_{j}\right)>d\left(\partial_{1} e, a_{j}\right)$ implies $i(e)=1$. That is, $\left(T_{j}, i_{j}\right)$ is a dominant rooted tree, rooted at $a_{j} \in V A_{0}$. In general

$$
(A, i)=\left(A_{0}, i_{0}\right) \amalg \coprod_{a_{j} \in \Delta}\left(T_{j}, i_{j}, a_{j}\right),
$$

where $\Delta=\left\{a_{1}, \ldots, a_{n}\right\}$ is a subset of $V A_{0}$.
The proof of Theorem (4.3) shows that any dominant rooted edge-indexed tree (T, i, a) in (A, i) is removed during minimalizatiation, while the root a remains in $\left(A_{0}, i_{0}\right)$. We obtain the following corollary.
(4.4) Corollary. Let (A, i) be a finite edge-indexed graph. Let $\left(A_{0}, i_{0}\right)$ be as in Theorem (4.3). If $v \in V A$ is the root of a dominant rooted edge-indexed tree in (A, i), v is a vertex of $\left(A_{0}, i_{0}\right)$.
(4.5) Theorem. Let (A, i) be a finite edge-indexed graph. Let $\left(A_{0}, i_{0}\right)$ be a connected subgraph, maximal with respect to having no terminal vertices, as in (1) of Theorem (4.4). If (A, i) is a tree then $\left(A_{0}, i_{0}\right)$ may not be unique, but is unique up to isomorphism. Otherwise $\left(A_{0}, i_{0}\right)$ is unique.
Proof: Suppose that $\left|V_{A_{0}}\right|=1$. Then either (A, i) is a tree in which case A_{0} consists of a single vertex and is unique up to isomorphism, or (A, i) is not a tree in which case $\left(A_{0}, i_{0}\right)$ is a bouquet of loops attached at a single vertex, and is unique. This completes the proof when $\left|V_{A_{0}}\right|=1$.

Now suppose that $\left|V_{A_{0}}\right| \geq 2$, and that $\left(B_{0}, j_{0}\right)$ is another minimal subgraph of (A, i). Suppose that $\left(B_{0}, j_{0}\right) \cap\left(A_{0}, i_{0}\right)=\varnothing$. This implies that (A, i) is a tree, since by Theorem (4.3) both $\left(B_{0}, j_{0}\right)$ and $\left(A_{0}, i_{0}\right)$ contain the union of all closed paths in (A, i). If (A, i) is a tree, and $\left(B_{0}, j_{0}\right) \cap\left(A_{0}, i_{0}\right)=\varnothing$, then $\left(B_{0}, j_{0}\right)$ and $\left(A_{0}, i_{0}\right)$ are joined by a separating path
γ that is removed during minimalization, since $\left|V_{A_{0}}\right| \geq 2$ and $\left|V_{B_{0}}\right| \geq 2$. This is impossible as no vertex of γ is a terminal vertex at any stage of minimalization. Hence we must have $\left(B_{0}, j_{0}\right) \cap\left(A_{0}, i_{0}\right) \neq \varnothing$. We no longer assume that (A, i) is a tree.

Let $x_{0} \in V B_{0} \backslash V A_{0}$. Then x_{0} belongs to a dominant rooted edge-indexed tree (T, i, a) in (A, i) removed during a minimalization procedure that produces $\left(A_{0}, i_{0}\right)$. In particular x_{0} is not the root vertex a, since by Corollary (4.4), (A_{0}, i_{0}) contains all dominant roots of (A, i). But x_{0} is the root vertex of the subtree of (T, i, a) consisting of all paths from x_{0} to terminal vertices of (A, i). Hence x_{0} is removed during a minimalization procedure that produces $\left(B_{0}, j_{0}\right)$, which is a contradiction. Hence $\left(B_{0}, j_{0}\right)=\left(A_{0}, i_{0}\right)$ and the minimal subgraph is unique.

We call $\left(A_{0}, i_{0}\right)$ in Theorems (4.3) and (4.5) the unique minimal subgraph of (A, i). Let (A, i) be finite and $X=\widetilde{(A, i)}$. Suppose we apply the above minimalization procedure to X and (A, i) simultaneously. That is, when we remove an edge e from A, we remove all edges in X in the fiber above e. Once we obtain the unique minimal subgraph $\left(A_{0}, i_{0}\right)$ we have also obtained its covering tree $\left(\widetilde{A_{0}, i_{0}}\right)$. It can be easily shown that $\left(\widetilde{A_{0}, i_{0}}\right)$ coincides with the unique minimal subtree $X_{0} \subset X$. That is,

$$
(A, i)=\left(A_{0}, i_{0}\right) \amalg \coprod_{a_{j} \in \Delta \subseteq V A_{0}}\left(T_{j}, i_{j}, a_{j}\right),
$$

and X has the form

$$
\begin{equation*}
X \quad=\quad X_{0} \quad \amalg \coprod_{x_{j, k} \in p^{-1}\left(a_{j}\right), a_{j} \in V A_{0}}\left(Y_{j, k}, x_{j, k}\right), \tag{4.6}
\end{equation*}
$$

where $X_{0}=\left(\widetilde{A_{0}, i_{0}}\right),\left(Y_{j, k}, x_{j, k}\right)=\left(\widetilde{T_{j}, i_{j}, a_{j}}\right), p$ is the covering map, $p\left(x_{j, k}\right)=a_{j}, j=1 \ldots n$, $k \geq 1$. Since T_{j} is a dominant rooted edge-indexed tree and X is uniform, for $j=1 \ldots n$, $k \geq 1, Y_{j, k}$ is a finite rooted tree, rooted at $x_{j, k} \in p^{-1}\left(a_{j}\right), a_{j} \in V A_{0}$. Combining the results in this section we obtain the following.
(4.7) Corollary. Let X be a uniform tree, let $G=\operatorname{Aut}(X)$, and let $(A, i)=I(G \backslash \backslash X)$. Then there is a unique minimal G-invariant subtree $X_{0} \subset X$ and a unique minimal subgraph $\left(A_{0}, i_{0}\right) \subset(A, i)$. Moreover $X_{0}=\left(\widetilde{A_{0}, i_{0}}\right)$, and $\left(A_{0}, i_{0}\right)=I\left(G \backslash \backslash X_{0}\right)$. Conversely, for any finite edge-indexed graph (A, i) and universal covering tree $X=(\widetilde{A, i})$, there is a unique minimal subgraph $\left(A_{0}, i_{0}\right)$, of (A, i), unique minimal subtree X_{0} of X, and $X_{0}=\left(\widetilde{A_{0}, i_{0}}\right)$.

5. Structure of deck transformation groups for non-minimal actions.

Let (A, i) be a finite edge-indexed graph, and let $\left(A_{0}, i_{0}\right)$ be the unique minimal subgraph of (A, i). Let $X_{0}=\left(\widetilde{A_{0}, i_{0}}\right)$ and $X=\widetilde{(A, i)}$ with corresponding covering maps $p_{0}: X_{0} \longrightarrow$
$\left(A_{0}, i_{0}\right)$ and $p: X \longrightarrow(A, i)$. By (4.3) we have

$$
(A, i)=\left(A_{0}, i_{0}\right) \amalg \coprod_{a_{j} \in \Delta \subseteq V A_{0}}\left(T_{j}, i_{j}, a_{j}\right),
$$

and by (4.6) the universal covering tree $X=\widetilde{(A, i)}$ has the form

$$
X \quad=\quad X_{0} \quad \amalg \coprod_{x_{j, k} \in p^{-1}\left(a_{j}\right), a_{j} \in V A_{0}}\left(Y_{j, k}, x_{j, k}\right),
$$

where $X_{0}=\left(\widetilde{\left(A_{0}, i_{0}\right.}\right),\left(Y_{j, k}, x_{j, k}\right)=\left(\widetilde{T_{j}, i_{j}, a_{j}}\right), p$ is the covering map, $p\left(x_{j, k}\right)=a_{j}, j=1 \ldots n$, $k \geq 1$. The subgroups of $\operatorname{Aut}(X)$

$$
\begin{align*}
G_{\left(A_{0}, i_{0}\right)} & =\left\{g \in A u t\left(X_{0}\right) \mid g \circ p_{0}=p_{0}\right\} \tag{5.1}\\
G_{(A, i)} & =\{g \in A u t(X) \mid g \circ p=p\} \tag{5.2}
\end{align*}
$$

are the groups of deck transformations of $\left(A_{0}, i_{0}\right)$, and (A, i) respectively. The following lemma shows that deck transformations of the minimal subtree X_{0} extend naturally to deck transformations of X.
(5.3) Lemma. Let $g_{0} \in G_{\left(A_{0}, i_{0}\right)}$. Then g_{0} extends to $g \in G_{(A, i)}$.

Proof: Let $a_{0} \in V A_{0}$ and let $\left(T_{a_{0}}, i, a_{0}\right)$ be a dominant rooted edge-indexed tree attached at a_{0}. Let $x_{0} \in p_{0}^{-1}\left(a_{0}\right) \in V X_{0}$, and let $g_{0} \in G_{\left(A_{0}, i_{0}\right)}$. Let $y_{0}=g_{0}\left(x_{0}\right)$. Then

$$
p_{0}\left(y_{0}\right)=p_{0}\left(g_{0}\left(x_{0}\right)\right)=p_{0}\left(x_{0}\right)=a_{0}
$$

Thus $y_{0} \in p_{0}^{-1}\left(a_{0}\right)$. Let $\left(Y_{x_{0}}, x_{0}\right)=\left(\widetilde{T_{a_{0}}, i, a_{0}}\right)$. Then $Y_{x_{0}}$ is a finite rooted tree, rooted at x_{0}. Moreover since $y_{0} \in p_{0}^{-1}\left(a_{0}\right)$, there is a finite rooted tree, $Y_{y_{0}}$, rooted at y_{0}, such that

$$
\left.\left(Y_{y_{0}}, y_{0}\right)=\widetilde{\left(T_{a_{0}}, i, a_{0}\right.}\right) \cong\left(Y_{x_{0}}, x_{0}\right)
$$

That is, we can extend $g_{0} \in G_{\left(A_{0}, i_{0}\right)}$ to $g \in G_{(A, i)}$ in such a way that $\left.g\right|_{X_{0}}=g_{0}$, and g carries $Y_{x_{0}}$ isomorphically to $Y_{g\left(x_{0}\right)}=Y_{y_{0}}$.
(5.4) Corollary. We have

$$
\left.G_{(A, i)}\right|_{X_{0}}=G_{\left(A_{0}, i_{0}\right)}
$$

Proof: Let $g \in G_{(A, i)} \mid X_{0}$. Then $g\left(X_{0}\right)=X_{0}$ and $p\left(g\left(X_{0}\right)\right)=A_{0}$. So $\left.g\right|_{X_{0}} \in G_{\left(A_{0}, i_{0}\right)}$. Conversely, let $g_{0} \in G_{\left(A_{0}, i_{0}\right)}$. By Lemma (5.3) g_{0} extends to $g \in G_{(A, i)}$ in such a way that $\left.g\right|_{X_{0}}=g_{0}$.

Let $G_{X_{0}}=\operatorname{Stab}_{G}\left(X_{0}\right)=\left\{g \in G \mid g x=x, x \in V X_{0}\right\}$, and set

$$
\operatorname{Stab}_{G_{(A, i)}}\left(X_{0}\right)=G_{(A, i)} \cap G_{X_{0}}
$$

(5.5) Theorem. There is a split short exact sequence

$$
\begin{equation*}
1 \longrightarrow \operatorname{Stab}_{G_{(A, i)}}\left(X_{0}\right) \longrightarrow G_{(A, i)} \longrightarrow G_{(A, i)} \mid X_{0} \longrightarrow 1 \tag{5.6}
\end{equation*}
$$

Proof: Since X_{0} is $G_{(A, i)}$-invariant, by ([BL], (6.6)(6)) there is an exact sequence

$$
\left.1 \longrightarrow \operatorname{Stab}_{G_{(A, i)}}\left(X_{0}\right) \longrightarrow G_{(A, i)} \longrightarrow G_{(A, i)}\right|_{X_{0}} \longrightarrow 1
$$

By Lemma (5.3), given $\left.g_{0} \in G_{(A, i)}\right|_{X_{0}}=G_{\left(A_{0}, i_{0}\right)}, g_{0}$ extends to $g \in G_{(A, i)}$ in such a way that $\left.g\right|_{X_{0}}=g_{0}$. Hence there is a map $\mu:\left.G_{(A, i)}\right|_{X_{0}} \longrightarrow G_{(A, i)}$ such that $\mu \circ \phi=1$, where ϕ is the restriction map $\phi:\left.G_{(A, i)} \longrightarrow G_{(A, i)}\right|_{X_{0}}$ Thus (5.6) is a split exact sequence.
An immediate consequence of Theorem (5.5) is the following.
(5.7) Corollary. Using the notation in this section, we have

$$
G_{(A, i)} \cong \operatorname{Stab}_{G_{(A, i)}}\left(X_{0}\right) \quad \rtimes \quad G_{\left(A_{0}, i_{0}\right)} .
$$

Using ([BL], (6.6)) we obtain the following description of $G_{X_{0}}=\operatorname{Stab}_{G}\left(X_{0}\right)$ as the product of automorphism groups of rooted trees attached at the vertices of X_{0}.
(5.8) Corollary. Using the notation in this section, by ([BL], (6.6) (3)) we have

$$
G_{X_{0}}=\operatorname{Stab}_{G}\left(X_{0}\right) \cong \prod_{x_{j, k} \in p^{-1}\left(a_{j}\right), a_{j} \in V A_{0}} \operatorname{Aut}\left(Y_{j, k}, x_{j, k}\right),
$$

where $j=1 \ldots n, k \geq 1$, and since each $Y_{j, k}$ is a finite tree, $\operatorname{Aut}\left(Y_{j, k}, x_{j, k}\right)$ is a finite group. Furthermore, for $j=1 \ldots n, k \geq 1$ we have

$$
\operatorname{Stab}_{G_{(A, i)}}\left(X_{0}\right) \cong \prod_{x_{j, k} \in p^{-1}\left(a_{j}\right), a_{j} \in V A_{0}} \operatorname{Aut}\left(Y_{j, k}, x_{j, k}\right) \cap G_{(A, i)} .
$$

We illustrate the results of this section with the following example.

Let $\Gamma=A u t(X)$. The action of Γ on X leaves the central axis invariant. In the edge-indexed quotient (A, i) we have $i(e)=1$ for every $e \in E A$. The unique minimal subgraph is:

We have $G_{(A, i)}=\operatorname{Aut}(X)$ and X_{0} is (isomorphic to) the integer line \mathbb{Z}. Applying Corollary (5.7) and Corollary (5.8) we obtain:

$$
\begin{aligned}
\operatorname{Stab}_{G_{(A, i)}}\left(X_{0}\right)= & (\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}} \text { and } G_{\left(A_{0}, i_{0}\right)}=D_{\infty}, \\
G_{(A, i)} & \cong(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}} \rtimes D_{\infty},
\end{aligned}
$$

where D_{∞} denotes the infinite dihedral group, which acts as deck transformations on the central axis, and $\operatorname{Stab}_{G_{(A, i)}}\left(X_{0}\right)=(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}}$ acts as flips (of order 2) about the central axis.

References

[B] Bass, H, Covering Theory for Graphs of Groups, Journal of Pure and Applied Algebra 89 (1993), 3-47.
[BL] Bass, H. and Lubotzky A., Tree Lattices, Progress in Mathematics 176, Birkhauser, Boston (2000).
[C] Carbone, L., Non-minimal Tree Actions and the Existence of Non-uniform Tree Lattices, Bulletin of the Australian Mathematical Society, Vol. 70 (2004), 257-266.
[R] Rosenberg, G., Towers and Covolumes of Tree Lattices, PhD. Thesis, Columbia University (2001).
[S] Serre, J.-P., Trees (Translated from the French by John Stilwell) (1980), Springer-Verlag, Berlin Heidelberg.

```
Lisa Carbone
Department of Mathematics
Hill Center-Busch Campus
Rutgers,The State University of New Jersey
110 Frelinghuysen Rd
Piscataway, NJ 08854-8019
e-mail: carbonel@math.rutgers.edu
Laura Ciobanu
Department of Mathematics,
University of Auckland,
Private Bag 92019, Auckland,
New Zealand
e-mail: ciobanu@math.rutgers.edu
```

