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Abstract. Let Γ be a group acting without inversions on a tree X. If there is no proper
Γ-invariant subtree, we call the action of Γ on X minimal. Here we give a characterization of
non-minimal tree actions. For a non-minimal action of Γ on X, we give structure theorems for
the quotient graph of groups for Γ on X, its associated edge-indexed graph and its group of deck
transformations.

1. Introduction.

Let Γ be a group acting without inversions on a locally finite tree X. We say that Γ acts
minimally on X if there is no proper Γ-invariant subtree. As is the case with well known
results concerning group actions on R-trees, when the hyperbolic length function l(Γ) of Γ
is non-zero, there is a unique minimal Γ-invariant subtree X0 ⊂ X (see for example [B]).
Now set G = Aut(X). If X is uniform, that is, X is the universal cover of a finite connected
graph, then by ([BL], (9.7)), l(G) �= 0 and hence there is a unique minimal G-invariant
subtree X0 ⊂ X.

Here we give a characterization of non-minimal actions in terms of the quotient graph
of groups for Γ on X, its associated edge-indexed graph (Section 2) and its group of deck
transformations, that is, the group of automorphisms of X that commute with the quotient
morphism (Section 5). In each case, we give a ‘decomposition’ of the action into ‘minimal and
non-minimal components’ (Section 4). This gives rise to a structure theorem for the group
of deck transformations as a semi-direct product of its minimal component and a product of
finite groups (Section 5).

When the edge-indexed quotient graph is finite, we show that it contains a unique minimal
invariant subgraph which we describe geometrically (Section 4). Moreover, we give a proce-
dure to find the minimal invariant subgraph.It follows that the minimal Γ-invariant subtree
X0 of X is the universal covering of the minimal component of the quotient (Section 4).
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Our motivation for this work is two-fold. Primarily the results here of Section 2 and
Section 4 are an important ingredient for the proof in [C] of Bass-Lubotzky’s conjecture for
the existence of non-uniform lattices on uniform trees ([BL], Ch 8). Let X be a uniform
tree and let G = Aut(X). Let X0 be the unique minimal G-invariant subtree of X. Let
G0 = Aut(X) |X0 . Here we show that that G0 = Aut(X0) (Section 5). In [C], the first
author showed how to extend non-uniform lattice subgroups Γ0 ≤ G0 = Aut(X0) to non-
uniform lattices Γ ≤ G = Aut(X). An important ingredient in this proof is the geometric
characterization of an edge-indexed graph in terms of its unique minimal subgraph obtained
here in Section 4.

Secondly, this work fills a gap in the literature concerning non-minimal actions on simpli-
cial trees. Our results in Sections 3 and 4 are essentially a reworking, in terms of edge-indexed
graphs, of known results (see for example [B] and [BL]). Our structure theorem (Section 5)
for the deck transformation group of a non-minimal action is a straightforward consequence
of [BL] Section 6, but does not seem to appear in the literature.

The authors would like to thank Hyman Bass for encouraging us to write this paper, and
for useful discussions.

2. Group actions, edge-indexed quotients and minimality.

Let Γ be a group acting without inversions on a tree X. The fundamental theorem of
Bass and Serre states that Γ is encoded (up to isomorphism) in a quotient graph of groups
A = Γ\\X ([B], [S]). Conversely a graph of groups A gives rise to a group Γ = π1(A, a),

a ∈ V A, acting on a tree X = (̃A, a) without inversions.
Now assume that X is locally finite, and that Γ acts on X with quotient graph of groups

A = Γ\\X. Then A naturally gives rise to an ‘edge-indexed’ graph (A, i), defined as follows.
The graph A is the underlying graph of A with vertex set V A, edge set EA, initial and
terminal functions ∂0, ∂1 : EA �−→ V A which pick out the endpoints of an edge, and with
fixed point free involution − : EA �−→ EA which reverses the orientation. The indexing
i : EA �−→ Z>0 of (A, i) is defined to be the group theoretic index

i(e) = [A∂0e : αe(Ae)],

where
(Aa)a∈V A and (Ae = Ae)e∈EA

are the vertex and edge groups of A, and αe : Ae ↪→ A∂0e are the boundary monomorphisms
of A. We write (A, i) = I(A) when i(e) = [A∂0e : αe(Ae)] for data

{Aa, Ae = Ae, αe : Ae ↪→ A∂0e}

from A. Conversely, an edge-indexed graph (A, i) is defined to be a graph A and an assignment
i(e) (�= i(e) in general) of a positive integer to each oriented edge. Then (A, i) determines a
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universal covering tree X = (̃A, i) up to isomorphism, and every edge-indexed graph arises
from a tree action [BL]. Here we assume i(e) is finite for each e ∈ EA. Under this assumption
the universal covering tree X = (̃A, i) is locally finite [BL].

Let (A, i) be an edge-indexed graph. We say that (A, i) is minimal if it is the edge-
indexed quotient of a minimal tree action. A vertex a ∈ V A is a terminal vertex of (A, i) if
deg(A,i)(a) = 1, where

deg(A,i)(a) =
∑

e∈E0(a)

i(e),

and E0(a) = {e ∈ EA | ∂0e = a}. A terminal vertex in (A, i) is then a geometrically terminal
vertex in the graph A. That is, there is a unique edge e with ∂0e = a. If (A, i) consists of a
single vertex v, we set deg(A,i)(v) = 0 and so v is not a terminal vertex.

Now let A = (A,A) be a graph of groups. If A′ ⊂ A is a connected subgraph of A, we
write A |A′ for the subgraph of groups obtained by restriction to A′. Following ([B], (7.10))
we call A a minimal graph of groups if

π1(A |A′ , a0) = π1(A, a0)

only when A′ = A, where a0 ∈ A′. We call a vertex a ∈ V A a terminal vertex of A if there
is a unique edge e with ∂0e = a and αe : Ae ↪→ Aa is an isomorphism.

(2.1) Lemma. Let A be a graph of groups and let (A, i) = I(A). Then A has no terminal
vertices if and only if (A, i) has no terminal vertices.

Proof: Let a be a terminal vertex of A. Then there is a unique edge e with ∂0e = a and
i(e) = [Aa : αe(Ae)] = 1. That is, a is a terminal vertex of (A, i).

Conversely suppose (A, i) has a terminal vertex a ∈ V A, that is, deg(A,i)(a) = 1 and a is
a geometrically terminal vertex. This forces [Aa : αe(Ae)] = 1, which occurs if and only if
αe : Ae ↪→ Aa is an isomorphism. Thus a is a terminal vertex of A. �

3. Characterizing minimal actions.

Our applications in [C] and section 5 require a detailed description of a non-minimal action
on a simplicial tree. We use the formulation of Bass ([B]) of a minimal graph of groups to
describe minimality of a tree action Γ × X −→ X in terms of the edge-indexed quotient
graph (A, i) = I(A) of the graph of groups A = Γ\\X.

Let A be a graph of groups. The notion of a minimal graph of groups of Bass ([B], (7.10))
is given in terms of intrinsic properties of A. Bass then showed that minimal graphs of groups
encode minimal tree actions. His result is the following:
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(3.1) Theorem ([B], (7.12)). Let A be a graph of groups, let a0 ∈ V A, Γ = π1(A, a0),
and X = (Ã, a0). The following conditions are equivalent.

(a) The action of Γ on X is minimal.
(b) A is minimal.

These conditions imply:
(c) A has no terminal vertices.

If A is finite then (c) is equivalent to the other conditions.

The following proposition gives a restatement of Bass’ theorem in terms of the edge-
indexed graph arising from A.

(3.2) Proposition. Let Γ be a group acting without inversions on a tree X with quotient
graph of groups A = Γ\\X and edge-indexed quotient (A, i) = I(A).

(1) If (A, i) is minimal then (A, i) has no terminal vertices.
(2) If (A, i) is finite and has no terminal vertices then (A, i) is minimal.

Proof: (1) Suppose that (A, i) is minimal. Then (A, i) is the edge-indexed quotient graph of a
minimal action Γ′ x X ′ �−→ X ′ which corresponds to the action of Γ on X up to isomorphism.
Without loss of generality we take Γ′ = Γ, X ′ = X. Then by Theorem (3.1), A = Γ\\X
has no terminal vertices, which by Lemma (2.1) is equivalent to (A, i) having no terminal
vertices.
(2) Since (A, i) has no terminal vertices, A has no terminal vertices by Lemma (2.1). Assume
that (A, i) is finite. Then by Theorem (3.1), Γ acts minimally on X. That is, (A, i) =
I(Γ\\X) is minimal. �

We remark that (2) in Proposition (3.2) is false without the assumption of finiteness of
(A, i). This can be seen from the following example. Let (A, i) be the graph A = Z of the
integer line with i(e) = 1 for all edges except for a finite number of e1, e2, . . . , en ∈ EA with
∂1ej = ∂0ej+1, j = 1, . . . , n − 1, so that i(ej) > 1, j = 1, . . . , n. If A is any graph of groups
with (A, i) = I(A), then A cannot be minimal, since π1(A |γ , a0) = π1(A, a0), where γ is the
path γ = (e1, e2, . . . , en) and a0 ∈ γ.

In summary, we see that the property of minimality can be detected equivalently from a
graph of groups A or its edge-indexed graph (A, i) with (A, i) = I(A). Combining the results
of Lemma (2.1), Theorem (3.1) and Proposition (3.2), we have:

(3.3) Corollary. Let A be a graph of groups and let (A, i) = I(A). Assume that A is finite.
Then the following conditions are equivalent:

(1) A is minimal,
(2) A has no terminal vertices,
(3) (A, i) is minimal,
(4) (A, i) has no terminal vertices.
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4. Structure of non-minimal actions.

In this section we show that a finite edge-indexed quotient graph (A, i) of a non-minimal
action has a unique minimal subgraph (A0, i0) ⊂ (A, i). We describe (A, i) and X = (̃A, i)
geometrically in terms of their ‘minimal components’. We first recall the following results of
[B] and [BL] which give criteria for the existence of minimal subtrees.

(4.1) Proposition ([B], (7.5)). Let Γ be a group acting on a tree X and let l(Γ) be the
hyperbolic length function of the action. If l(Γ) �= 0 then there is a unique minimal Γ-
invariant subtree XΓ of X. We have

XΓ =
⋃

γ∈Γ, l(γ)>0

Xγ ,

where Xγ is the axis of translation of the hyperbolic element γ ∈ Γ.

If we consider subgroups of Aut(X) rather than general group actions, we obtain the
following criterion of Bass and Lubotzky for the existence of a unique minimal invariant
subtree of X.

(4.2) Proposition ([BL], (9.7)). Let X be a tree and let G = Aut(X). If X is uniform
then l(G) �= 0 and there is a unique minimal G-invariant subtree X0 ⊂ X.

Our aim is to obtain analogous results to Propositions (4.1) and (4.2) in terms of edge-
indexed quotient graphs.

Let (T, i) be an edge-indexed graph. As in [BL] and [R] we say that (T, i) is a dominant
edge-indexed tree if T is a tree, |V T | > 1 and there is a vertex a ∈ V T such that for all
e ∈ ET

d(∂0e, a) > d(∂1e, a) implies i(e) = 1.

We call such a vertex a ∈ V T a dominant root of (T, i) and we write (T, i, a) when (T, i) is
a dominant edge-indexed tree, rooted at a ∈ V T .

If (T, i, a) is a dominant rooted edge-indexed tree then it is clear from the definition that
(T, i, a) contains a terminal vertex.

Let (A, i) be any finite edge-indexed graph. We may view (A, i) as the edge-indexed
quotient of a tree action Γ x X −→ X, with X = (̃A, i) I(Γ\\X) = (A, i), that is in
general non-minimal. The following theorem establishes the existence of a minimal subgraph
(A0, i0) ⊂ (A, i). The edge-indexed graph (A0, i0) will then coincide (up to isomorphism)
with the edge-indexed quotient graph of any action Γ0 x X0 −→ X0 on the minimal subtree
X0 ⊂ X. Our assumption that (A, i) is finite guarantees that X = (Ã, i) is uniform and
hence by Proposition (4.2) there is a unique minimal subtree X0 ⊂ X.

Moreover, we will show that the minimal subgraph (A0, i0) is essesntially unique. That is,
(A0, i0) is unique unless (A, i) is a tree, in which case (A0, i0) is unique up to isomorphism
(Theorem (4.5) below).
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(4.3) Theorem. Let (A, i) be a finite edge-indexed graph. Then
(1) There is a connected subgraph (A0, i0) of (A, i), maximal with respect to the property

of having no terminal vertices, such that (A0, i0) contains the union of all closed paths in
(A, i) and (A, i) \ (A0, i0) is a disjoint union of edge-indexed trees.

(2) Let (A0, i0) be the subgraph of (A, i) as in (1). Then (A, i) is a union of (A0, i0) and
dominant rooted edge-indexed trees with roots in (A0, i0). That is,

(A, i) = (A0, i0) �
∐

aj∈∆

(Tj , ij , aj),

where ∆ = {a1, . . . , an} is a subset of V A0, (Tj , ij , aj) are finite dominant-rooted edge-
indexed trees with root vertices aj ∈ V A0, j = 1 . . . n.

Proof: (1) If (A, i) has no terminal vertices, then (A, i) is minimal and we take (A0, i0) =
(A, i). Now suppose (A, i) has terminal vertices. In order to obtain (A0, i0) we will use a
minimalization procedure which we now describe.

Suppose (A, i) has terminal vertices v11, . . . , v1n1 , where n1 is some positive integer. Then
for each v1j there is a unique edge e1j with ∂0e1j = v1j , j = 1 . . . n1. Since v1j is terminal,
e1j cannot belong to a closed path in (A, i). Let (A2, i2) be the subgraph of (A1, i1) = (A, i)
obtained by removing v1j and e1j but not ∂1e1j , j = 1, . . . n1. If (A2, i2) has no terminal
vertices then set (A0, i0) = (A2, i2) and we are done. Note that removing v1j and e1j may
give rise to terminal vertices in (A2, i2). Suppose that (A2, i2) has terminal vertices. Let
(A3, i3) be the subgraph of (A2, i2) obtained by removing the terminal vertices of (A2, i2)
and their unique incident edges.

If at some stage of the procedure, the subgraph (An, in) consists of exactly two vertices
connected by an edge, we can remove either of the two vertices and obtain a subgraph
consisting of only one vertex.

Since (A, i) is finite, the successive ‘pruning’ of terminal vertices eventually produces a
non-empty, connected subgraph (A0, i0) of (A, i) that is maximal with respect to the property
of having no terminal vertices. Moreover, (A0, i0) contains the union of all closed paths in
(A, i).

We remark that this minimalization procedure is not unique. For example, one can ‘prune
a branch at a time’. That is, we can successively remove all vertices on a path from a given
terminal vertex that are not terminal in (A, i) but become terminal at some stage of the
procedure.

(2) Let (A0, i0) be the minimal subgraph of (A, i) as in (1), obtained by a minimalization
procedure. We claim that (A, i) is a union of (A0, i0) and a finite number of dominant
rooted trees (Tj , ij), j = 1 . . . n, rooted at aj ∈ V A0, j = 1 . . . n. From (1) we have that
(A, i) \ (A0, i0) is a disjoint union of edge-indexed trees, say (Tj , ij), j = 1 . . . n. It remains
to show that each (Tj , ij) is a dominant rooted edge-indexed tree with root vertices in V A0.

Let e ∈ EA \ EA0 be such that d(∂0e, A0) = 1 and e points ‘towards’ (A0, i0) where for
a ∈ V A

d(a, A0) = min
x∈V A

d(a, x),
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and d : V A −→ Z>0 is the edge-path distance. Then we must have i(e) = 1, otherwise
(A0, i0) ∪ {e} is minimal, contradicting the fact that (A0, i0) is maximal with respect to
having no terminal vertices. Let

S(A0, r) = {e ∈ EA \ EA0 | d(∂0e, A0) = r and e points towards A0}

be the sphere of radius r in (A, i) about (A0, i0). Let m be the maximum radius of any
sphere in (A, i) about (A0, i0). For each k = 1 . . . m, let (Ak, ik) = (A0, i0) ∪ S(A0, k). Then
for each e ∈ (Ak, ik) \ (A0, i0) we must have i(e) = 1. Otherwise

(A0, i0) ∪ γ ∪ {e}

is minimal, where γ is the unique path from ∂1e to (A0, i0), contradicting the maximality of
(A0, i0). Now let (Tj , ij) denote the connected components of (A, i) \ (A0, i0), j = 1 . . . n.
For each j = 1 . . . n, let aj ∈ V A0 be such that aj = ∂1e for some e ∈ S(A0, 1). Then for
each e ∈ ETj we have shown that d(∂0e, aj) > d(∂1e, aj) implies i(e) = 1. That is, (Tj , ij) is
a dominant rooted tree, rooted at aj ∈ V A0. In general

(A, i) = (A0, i0) �
∐

aj∈∆

(Tj , ij , aj),

where ∆ = {a1, . . . , an} is a subset of V A0. �
The proof of Theorem (4.3) shows that any dominant rooted edge-indexed tree (T, i, a) in

(A, i) is removed during minimalizatiation, while the root a remains in (A0, i0). We obtain
the following corollary.

(4.4) Corollary. Let (A, i) be a finite edge-indexed graph. Let (A0, i0) be as in Theorem
(4.3). If v ∈ V A is the root of a dominant rooted edge-indexed tree in (A, i), v is a vertex of
(A0, i0). �

(4.5) Theorem. Let (A, i) be a finite edge-indexed graph. Let (A0, i0) be a connected sub-
graph, maximal with respect to having no terminal vertices, as in (1) of Theorem (4.4). If
(A, i) is a tree then (A0, i0) may not be unique, but is unique up to isomorphism. Otherwise
(A0, i0) is unique.

Proof: Suppose that |VA0 | = 1. Then either (A, i) is a tree in which case A0 consists of a
single vertex and is unique up to isomorphism, or (A, i) is not a tree in which case (A0, i0)
is a bouquet of loops attached at a single vertex, and is unique. This completes the proof
when |VA0 | = 1.

Now suppose that |VA0 | ≥ 2, and that (B0, j0) is another minimal subgraph of (A, i).
Suppose that (B0, j0) ∩ (A0, i0) = ∅. This implies that (A, i) is a tree, since by Theorem
(4.3) both (B0, j0) and (A0, i0) contain the union of all closed paths in (A, i). If (A, i) is a
tree, and (B0, j0) ∩ (A0, i0) = ∅, then (B0, j0) and (A0, i0) are joined by a separating path
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γ that is removed during minimalization, since |VA0 | ≥ 2 and |VB0 | ≥ 2. This is impossible
as no vertex of γ is a terminal vertex at any stage of minimalization. Hence we must have
(B0, j0) ∩ (A0, i0) �= ∅. We no longer assume that (A, i) is a tree.

Let x0 ∈ V B0 \V A0. Then x0 belongs to a dominant rooted edge-indexed tree (T, i, a) in
(A, i) removed during a minimalization procedure that produces (A0, i0). In particular x0 is
not the root vertex a, since by Corollary (4.4), (A0, i0) contains all dominant roots of (A, i).
But x0 is the root vertex of the subtree of (T, i, a) consisting of all paths from x0 to terminal
vertices of (A, i). Hence x0 is removed during a minimalization procedure that produces
(B0, j0), which is a contradiction. Hence (B0, j0) = (A0, i0) and the minimal subgraph is
unique. �

We call (A0, i0) in Theorems (4.3) and (4.5) the unique minimal subgraph of (A, i). Let
(A, i) be finite and X = (̃A, i). Suppose we apply the above minimalization procedure to X
and (A, i) simultaneously. That is, when we remove an edge e from A, we remove all edges
in X in the fiber above e. Once we obtain the unique minimal subgraph (A0, i0) we have

also obtained its covering tree ˜(A0, i0). It can be easily shown that ˜(A0, i0) coincides with
the unique minimal subtree X0 ⊂ X. That is,

(A, i) = (A0, i0) �
∐

aj ∈ ∆ ⊆ V A0

(Tj , ij , aj),

and X has the form

(4.6) X = X0 �
∐

xj,k∈p−1(aj), aj∈V A0

(Yj,k, xj,k),

where X0 = ˜(A0, i0), (Yj,k, xj,k) = ˜(Tj , ij , aj), p is the covering map, p(xj,k) = aj , j = 1 . . . n,
k ≥ 1. Since Tj is a dominant rooted edge-indexed tree and X is uniform, for j = 1 . . . n,
k ≥ 1, Yj,k is a finite rooted tree, rooted at xj,k ∈ p−1(aj), aj ∈ V A0. Combining the results
in this section we obtain the following.

(4.7) Corollary. Let X be a uniform tree, let G = Aut(X), and let (A, i) = I(G\\X).
Then there is a unique minimal G-invariant subtree X0 ⊂ X and a unique minimal subgraph
(A0, i0) ⊂ (A, i). Moreover X0 = (Ã0, i0), and (A0, i0) = I(G\\X0). Conversely, for any
finite edge-indexed graph (A, i) and universal covering tree X = (Ã, i), there is a unique
minimal subgraph (A0, i0), of (A, i), unique minimal subtree X0 of X, and X0 = (Ã0, i0). �

5. Structure of deck transformation groups for non-minimal actions.

Let (A, i) be a finite edge-indexed graph, and let (A0, i0) be the unique minimal subgraph

of (A, i). Let X0 = ˜(A0, i0) and X = (̃A, i) with corresponding covering maps p0 : X0 −→
8



(A0, i0) and p : X −→ (A, i). By (4.3) we have

(A, i) = (A0, i0) �
∐

aj ∈ ∆ ⊆ V A0

(Tj , ij , aj),

and by (4.6) the universal covering tree X = (̃A, i) has the form

X = X0 �
∐

xj,k∈p−1(aj), aj∈V A0

(Yj,k, xj,k),

where X0 = ˜(A0, i0), (Yj,k, xj,k) = ˜(Tj , ij , aj), p is the covering map, p(xj,k) = aj , j = 1 . . . n,
k ≥ 1. The subgroups of Aut(X)

(5.1) G(A0,i0) = {g ∈ Aut(X0) | g ◦ p0 = p0}

(5.2) G(A,i) = {g ∈ Aut(X) | g ◦ p = p}

are the groups of deck transformations of (A0, i0), and (A, i) respectively. The following
lemma shows that deck transformations of the minimal subtree X0 extend naturally to deck
transformations of X.

(5.3) Lemma. Let g0 ∈ G(A0,i0). Then g0 extends to g ∈ G(A,i).

Proof: Let a0 ∈ V A0 and let (Ta0 , i, a0) be a dominant rooted edge-indexed tree attached at
a0. Let x0 ∈ p−1

0 (a0) ∈ V X0, and let g0 ∈ G(A0,i0). Let y0 = g0(x0). Then

p0(y0) = p0(g0(x0)) = p0(x0) = a0.

Thus y0 ∈ p−1
0 (a0). Let (Yx0 , x0) = ˜(Ta0 , i, a0). Then Yx0 is a finite rooted tree, rooted at

x0. Moreover since y0 ∈ p−1
0 (a0), there is a finite rooted tree, Yy0 , rooted at y0, such that

(Yy0 , y0) = ˜(Ta0 , i, a0) ∼= (Yx0 , x0).

That is, we can extend g0 ∈ G(A0,i0) to g ∈ G(A,i) in such a way that g |X0= g0, and g carries
Yx0 isomorphically to Yg(x0) = Yy0 . �

(5.4) Corollary. We have
G(A,i) |X0= G(A0,i0).

Proof: Let g ∈ G(A,i) |X0 . Then g(X0) = X0 and p(g(X0)) = A0. So g |X0∈ G(A0,i0).
Conversely, let g0 ∈ G(A0,i0). By Lemma (5.3) g0 extends to g ∈ G(A,i) in such a way that
g |X0= g0. �

Let GX0 = StabG(X0) = {g ∈ G | gx = x, x ∈ V X0}, and set

StabG(A,i)(X0) = G(A,i) ∩ GX0 .
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A = 

.... ....
X =

(5.5) Theorem. There is a split short exact sequence
(5.6) 1 −→ StabG(A,i)(X0) −→ G(A,i) −→ G(A,i) |X0−→ 1 .

Proof: Since X0 is G(A,i)-invariant, by ([BL], (6.6) (6)) there is an exact sequence
1 −→ StabG(A,i)(X0) −→ G(A,i) −→ G(A,i) |X0−→ 1.

By Lemma (5.3), given g0 ∈ G(A,i) |X0= G(A0,i0), g0 extends to g ∈ G(A,i) in such a way
that g |X0= g0. Hence there is a map µ : G(A,i) |X0−→ G(A,i) such that µ ◦ φ = 1, where φ
is the restriction map φ : G(A,i) −→ G(A,i) |X0 Thus (5.6) is a split exact sequence. �
An immediate consequence of Theorem (5.5) is the following.

(5.7) Corollary. Using the notation in this section, we have
G(A,i)

∼= StabG(A,i)(X0) � G(A0,i0). �
Using ([BL], (6.6)) we obtain the following description of GX0 = StabG(X0) as the product
of automorphism groups of rooted trees attached at the vertices of X0.

(5.8) Corollary. Using the notation in this section, by ([BL], (6.6) (3)) we have

GX0 = StabG(X0) ∼=
∏

xj,k∈p−1(aj), aj∈V A0

Aut(Yj,k, xj,k),

where j = 1 . . . n, k ≥ 1, and since each Yj,k is a finite tree, Aut(Yj,k, xj,k) is a finite group.
Furthermore, for j = 1 . . . n, k ≥ 1 we have

StabG(A,i)(X0) ∼=
∏

xj,k∈p−1(aj), aj∈V A0

Aut(Yj,k, xj,k) ∩ G(A,i).

We illustrate the results of this section with the following example.
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A0 = 

Let Γ = Aut(X). The action of Γ on X leaves the central axis invariant. In the edge-indexed
quotient (A, i) we have i(e) = 1 for every e ∈ EA. The unique minimal subgraph is:

We have G(A,i) = Aut(X) and X0 is (isomorphic to) the integer line Z. Applying Corollary
(5.7) and Corollary (5.8) we obtain:

StabG(A,i)(X0) = (Z/2Z)Z and G(A0,i0) = D∞,

G(A,i)
∼= (Z/2Z)Z

� D∞,

where D∞ denotes the infinite dihedral group, which acts as deck transformations on the
central axis, and StabG(A,i)(X0) = (Z/2Z)Z acts as flips (of order 2) about the central axis.
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