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Abstract. For a simply laced and hyperbolic Kac–Moody group G = G(R) over a commutative
ring R with 1, we consider a map from a finite presentation of G(R) obtained by Allcock and Car-
bone to a representation–theoretic construction Gλ(R) corresponding to an integrable representa-
tion V λ with dominant integral weight λ. When R = Z, we prove that this map extends to a group
homomorphism ρλ,Z : G(Z)→ Gλ(Z). We prove that the kernel Kλ of ρλ,Z lies in H(C) and if the

natural group homomorphism ϕ : G(Z)→ G(C) is injective, then Kλ ≤ H(Z) ∼= (Z/2Z)rank(G).

1. Introduction

Here we consider and compare two distinct constructions of a simply laced and hyperbolic Kac–
Moody group G = G(R) over a commutative ring R with 1. One of these groups is Tits’s
construction of G(R), though we work only with a finite presentation of G(R) obtained by Allcock
and Carbone ([AC]). The other is a Kac–Moody group Gλ(R) constructed in [Ca] (following
[CG]) using an integrable representation V λ of the underlying Kac–Moody algebra with dominant
integral weight λ.

We consider a natural map between generators of G(R) and Gλ(R). When R = Z, we prove
that this map extends to a group homomorphism ρλ,Z : G(Z)→ Gλ(Z). We prove that the kernel

Kλ of the map ρλ,Z : G(Z) → Gλ(Z) lies in H(C) and if the natural group homomorphism

ϕ : G(Z) → G(C) is injective, then Kλ ≤ H(Z) ∼= (Z/2Z)rank(G). Injectivity of the natural map
ϕ : G(Z) → G(C) is not currently known and depends on functorial properties of Tits’ group
([Ti]).

Our notion of a ‘Kac–Moody group’ is the infinite dimensional analog of an elementary Chevalley
group over the ring R, namely, a group generated by real root group generators. The notion of
Chevalley group over R, that is, the infinite dimensional analog of the Chevalley–Demazure group
scheme, has not yet been fully formulated, though the groundwork for establishing it was given
in [Ti] and discussed further in [A] and [C].

The methods for constructing Kac–Moody groups over fields are numerous, though we will only
refer to constructions of [CG] (following [G]) and [RR]). When R is a field, Garland constructed
affine Kac–Moody groups as central extensions of loop groups and characterized the dependence
of a completion of Gλ(R) on λ in terms of the Steinberg cocycle ([G]).

Over fields, the group constructed in [RR] coincides with the Kac–Moody group G(R) of Tits
([Ti]). Let Kλ(R) = Ker(ρλ : G(R) → Gλ(R)). There are a number of known results which
determine the natural extension of Kλ to completions of G(R) and Gλ(R) when R is a field.

For symmetrizable Kac–Moody groups over fields, [BR] showed that Kλ is contained in the
center of a completion of G(R). Recent work of Rousseau ([Rou]) shows that over fields of
characteristic zero, completions G(R) (as in [RR]) and Gλ(R) (as in [CG]) are isomorphic as
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topological groups (see also [Mar]). The complete Kac–Moody group of [CG] is constructed with
respect to a choice of dominant integral weight λ. Thus Rousseau’s work also shows that over
fields of characteristic zero, the complete Kac–Moody groups of [CG] are independent of the choice
of λ up to isomorphism, as topological groups.

Here our interest lies in minimal or incomplete Kac–Moody groups over rings, where the methods
for determining Kλ are less transparent. Thus we work only over R = Z and study the kernel of
ρλ,Z when G is simply laced and hyperbolic. We hope to eventually have the techniques to extend
these results to a wider class of Kac–Moody groups over more general commutative rings.

The authors wish to thank Daniel Allcock for his comments which helped to clarify the results in
the last section.

2. Tits’ Kac–Moody group

Let g be a Kac–Moody algebra with Cartan subalgebra h and root space decomposition:

g = g+ ⊕ h ⊕ g−

The roots ∆ ⊂ h∗ are the eigenvalues of the simultaneous adjoint action of h on g, and g± =
⊕α∈∆±gα where the root spaces

gα = {x ∈ g | [h, x] = α(h)x, h ∈ h}
are the corresponding eigenspaces. When g is infinite dimensional, |∆| = ∞. In this case, g has
2 types of roots: real roots with positive norm and imaginary roots with negative or zero norm.
The imaginary roots will not play a role in what follows, as we will work with Tits’ presentation
for Kac–Moody groups, which uses only the real root groups as generators.

Tits showed how Kac–Moody groups can be presented by generators and relations, generalizing
the Steinberg presentation for finite dimensional Lie groups ([Ti]).

In the finite dimensional case, there is a Chevalley type commutation relation of the form

[χα(u), χβ(v)] =
∏
m,n

χmα+nβ(Cmnαβu
mvn)

between every pair of root groups Uα, Uβ. Here u, v ∈ R, Cmnαβ are integers (structure constants)
and the χα are viewed as formal symbols in

Uα = {χα(u) | α ∈ ∆, u ∈ R} ∼= (R,+).

However, in the infinite dimensional case, Tits’ presentation of Kac–Moody groups has infinitely
many Chevalley commutation relations. To describe these, we give the following definition.

Let (α, β) be a pair of real roots and let W be the Weyl group. Then (α, β) is called a prenilpotent
pair, if there exist w, w′ ∈W such that

wα, wβ ∈ ∆re
+ and w′α, w′β ∈ ∆re

− .

A pair of roots {α, β} is prenilpotent if and only if α 6= −β and

(Z>0α+ Z>0β) ∩∆re
+

is a finite set. For every prenilpotent pair of roots {α, β}, Tits defined the Chevalley commutation
relation

[χα(u), χβ(v)] =
∏

mα+nβ∈(Z>0α+Z>0β)∩∆re
+

χmα+nβ(Cmnαβu
mvn)

where u, v ∈ R and Cmnαβ are integers (structure constants).
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3. Tits’ presentation

Tits defined the Steinberg group

St(R) = ∗α∈∆re Uα/Chev. comm. relns. on prenilpotent pairs

Tits’ Kac–Moody group G(R) is a quotient of the Steinberg group St(R) by some additional
relations which are easy to describe.

Tits’ Kac–Moody group has an infinite set of generators and an infinite set of defining relations.
The sets of generators and relations are redundant and can be reduced significantly, as shown in
[A] and [AC].

In [A], Allcock defined a new functor, the pre–Steinberg group PSt(R) and showed that in many
cases PSt(R) ∼= St(R). The presentation of PSt(R) is defined in terms of the Dynkin diagram
rather than the full infinite root system.

4. Simply laced hyperbolic type

Carbone and Allcock obtained a further simplification of the isomorphism PSt(R) ∼= St(R) for
root systems that are simply laced and hyperbolic ([AC]).

A Dynkin diagram is simply laced if it consists only of single bonds between nodes.

It is hyperbolic if it is neither of affine nor or finite dimensional type, but every proper connected
subdiadram is either of affine or finite dimensional type.

rank 10

rank 9

rank 8

rank 7

rank 6

rank 5

rank 4

Table 1. The simply-laced hyperbolic Dynkin diagrams. The rank equals the
number of nodes.
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5. Finitely many defining relations parametrized over R

The Kac–Moody group G(R) is generated by elements Xi(t), t ∈ R, Si, i ∈ {1, . . . , `}. The

elements h̃i(a) in the first column of Table 1 are

h̃i(a) := s̃i(a)s̃i(−1),

s̃i(a) := Xi(a)SiXi(a
−1)S−1

i Xi(a).

Any i, all a, b ∈ R× Each i, t, u ∈ R i 6= j not adjacent i 6= j adjacent
t, u ∈ R t, u ∈ R

h̃i(a)h̃i(b) = h̃i(ab) Xi(t)Xi(u) = Xi(t + u) SiSj = SjSi SiSjSi = SjSiSj

S2
i SjS

−2
i = S−1

j

[S2
i , Xi(t)] = 1 [Si, Xj(t)] = 1 Xi(t)SjSi = SjSiXj(t)

S2
i Xj(t)S

−2
i = Xj(t)

−1

Si = Xi(1)SiXi(1)S
−1
i Xi(1) [Xi(t), Xj(u)] = 1 [Xi(t), Xj(u)] = SiXj(tu)S

−1
i

[Xi(t), SiXj(u)S
−1
i ] = 1

Table 2. The defining relations for G(R), G simply laced and hyperbolic, R a
commutative ring with 1

Over R = Z, the generators Xi(u) are obtained from Xi = Xi(1) via Xi(u) = Xu
i .

Thus we can rewrite the presentation without the scalars from the underlying ring and obtain a
finite presentation for G(Z) as in Table 2.

Any i Each i = {1, . . . , `} i 6= j not adjacent i 6= j adjacent

(1) S4
i = 1 (2) [S2

i , Xi] = 1 (4) SiSj = SjSi (7) SiSjSi = SjSiSj

(8) S2
i SjS

−2
i = S−1j

(3) Si = XiSiXiS
−1
i Xi (5) [Si, Xj ] = 1 (9) XiSjSi = SjSiXj

(10) S2
iXjS

−2
i = X−1j

(6) [Xi, Xj ] = 1 (11) [Xi, Xj ] = SiXjS
−1
i

(12) [Xi, SiXjS
−1
i ] = 1

Table 3. The defining relations for G(Z), G simply laced and hyperbolic

6. Representation–theoretic Kac–Moody groups over rings

Here we describe the construction of a representation theoretic Kac–Moody group Gλ(R), over
any commutative ring R with 1, constructed using an integrable highest weight module V λ for any
symmetrizable Kac–Moody algebra and a Z–form UZ of the universal enveloping algebra UR. This
construction was developed in [Ca] following the methods of [CG] and is a natural generalization
of the theory of elementary Chevalley groups over commutative rings (see for example [VP]).

Let g = g(A) be Kac–Moody algebra corresponding to a symmetrizable generalized Cartan matrix
A = (aij)i,j∈I . Let V λ be the unique irreducible highest weight module for g corresponding to
dominant integral weight λ.
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We let Λ ⊆ h∗ be the linear span of the simple roots αi, for i ∈ I, and let Λ∨ ⊆ h be the linear
span of the simple coroots α∨i , for i ∈ I.

Let ei and fi be the Chevalley generators of g. Let UC be the universal enveloping algebra of g.
Let

UZ ⊆ UC be the Z–subalgebra generated by
emi
m!

,
fmi
m!

for i ∈ I and

(
h
m

)
, for h ∈ Λ∨ and m ≥ 0,

U+
Z be the Z-subalgebra generated by

emi
m!

for i ∈ I and m ≥ 0,

U−Z be the Z–subalgebra generated by
fmi
m!

for i ∈ I and m ≥ 0,

U0
Z ⊆ UC(h) be the Z–subalgebra generated by

(
h
m

)
, for h ∈ Λ∨ and m ≥ 0. We set

gZ = gC ∩ UZ,
g±Z = g±C ∩ UZ,
hZ = hC ∩ UZ.

Then gC = gZ ⊗Z C and hZ is generated by

(
h
m

)
, for h ∈ Λ∨ and m ≥ 0.

For R a commutative ring with 1, set gR = gZ ⊗Z R. Then gR is the infinite dimensional analog
of the Chevalley algebra over R. Set hR = hZ ⊗R and for α ∈ ∆, let gαR = gαZ ⊗R. Then

gR = n−R ⊕ hR ⊕ n+
R

is the root space decomposition of gR relative to hR, where

n−R =
⊕
α∈∆−

nαR, n
+
R =

⊕
α∈∆+

nαR.

We now consider the orbit of our highest weight vector vλ ∈ V under UZ. We have

U+
Z vλ = Zvλ

since all elements of U+
Z except for 1 annihilate vλ. Also

U0
Zvλ = Zvλ

since U0
Z acts as scalar multiplication on vλ by a Z–valued scalar.

Thus
UZ · vλ = U−Z · (Zvλ) = U−Z · (vλ).

Define U(g)R = U(g)Z⊗R. This is the infinite dimensional analog of a hyperalgebra as in [C] (see
also [Hu]). We set

V λ
Z = UZ · vλ = U−Z · (vλ)

Then V λ
Z is a lattice in V λ

R = R ⊗Z V
λ
Z and a UZ–module. For each weight µ of V , let V λ

µ be the
corresponding weight space. Set

V λ
R = R⊗Z V

λ
Z .

and
V λ
µ,R = R⊗Z V

λ
µ,Z

so that
V λ
R = ⊕µV λ

µ,R.
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Here, VR = VZ ⊗Z R free R–module with basis vλ ⊗ 1 and a module over gR called the Weyl
module. For s, t ∈ R and i ∈ I, set

χαi(t) = exp(ρ(sei)),

χ−αi(t) = exp(ρ(tfi)),

where ρ is the defining representation for V , and we set

w̃αi = χαi(t)χ−αi(−t−1)χαi(t),

hαi(t) = w̃αi(t)w̃αi(1)−1.

Then these are elements of Aut(V λR), thanks to the local nilpotence of ei, fi.

The group W̃ is known as the extended Weyl group. We will use a presentation of W̃ given in
[KP]. Let Hλ ≤ Gλ be the subgroup generated by the elements hαi(t), t ∈ R×, i ∈ I.

We let Gλ(R) ≤ Aut(V λ
R ) be the group:

Gλ(R) = 〈χαi(s), χ−αi(t) | i ∈ I, s, t ∈ R〉.

We may refer to Gλ(R) as a ‘representation–theoretic Kac–Moody group’. We summarize the
construction in the following.

Theorem 6.1. Let g be a symmetrizable Kac–Moody algebra over a commutative ring R with 1.
Let αi, i ∈ I, be the simple roots and ei, fi the Chevalley generators of g. Let V λ

R be an R–form

of an integrable highest weight module V λ for g, corresponding to dominant integral weight λ and
defining representation ρ : g→ End(V λ

R ). Then

Gλ(R) = 〈χαi(s) = exp(ρ(sei)), χ−αi(t) = exp(ρ(tfi)) | s, t ∈ R〉 ≤ Aut(V λ
R )

is a representation–theoretic Kac–Moody group associated to g.

A similar construction for Gλ over arbitrary fields was used in [CG] to construct Kac–Moody
groups over finite fields.

When R = C (or R = Q), we define the integral subgroup Gλ(Z) to be the group

Gλ(Z) = 〈χαi(s), χ−αi(t) | s, t ∈ Z, i ∈ I〉.

It is non–trivial to prove that this group coincides with the ‘Chevalley group’ over Z, namely the
subgroup of Gλ(C) preserving V λ(Z). This is proven in [Ca]. The following was also proven in
[Ca].

Theorem 6.2. ([Ca]) As a subgroup of Gλ(C) (or Gλ(Q)) the group Gλ(Z) has the following
generating sets:

(1) χαi(1) and χ−αi(1),

and

(2) χαi(1) and w̃αi(1) = χαi(1)χ−αi(−1)χαi(1).

We now take λ to be a regular weight, and we define the weight topology on Gλ(R) by taking
stabilizers of elements of V λ

R as a sub–base of neighborhoods of the identity. The completion of

Gλ(R) in this topology will be referred to as the Carbone–Garland completion and denoted by

Ĝλ(A). Since Gλ(R) is a homomorphic image of G(R), we can think of Ĝλ(R) as a completion of
G(R) rather than Gλ(R).
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7. Uniqueness of representation–theoretic Kac–Moody groups over Z

For G simply laced and hyperbolic, we consider a map from the finite presentation of G(R) of
[AC] to the representation–theoretic group Gλ(R), over a commutative ring R with 1.

We define the map ρλ:

G(R)
ρλ−−−−→ Gλ(R)

from generators of G(R) to generators of Gλ(R):

Xi(t) 7→ χαi(t)

Si 7→ w̃αi

h̃i(u) 7→ hαi(u)

for t ∈ R, u ∈ R×, i ∈ {1, . . . , `}.

Theorem 7.1. When R = Z, this map extends to a group homomorphism

ρλ,Z : G(Z)→ Gλ(Z).

Remark. The existence of an abstract group homomorphism from Tits’ group G(Q)→ Gλ(Q) and
its restriction G(Z) → Gλ(Z) can be deduced from [Ti] and [CER]. However, we are interested
only in this homomorphism from the finite presentation of G(Z) in [AC] and in determining the
generators of its kernel. Thus we prove that the relations in the finite presentation of G(Z) are
satisfied in Gλ(Z).

Proof. The presentation in [AC] for G(Z) does not make signs of structure constants explicit,
but rather holds formally for any choice of sign of the structure constants. The known relations
in Gλ(Z) also hold up to a sign in the structure constants. Hence we verify that ρλ,Z is a
homomorphism up to a sign in the structure constants. From now on, we will write ρλ to denote
ρλ,Z if the context allows.

We show that the relations in G(Z) are satisfied by their images in Gλ(Z) under ρλ. We refer to
the labelling of the relations in Table 2.

(1) Consider the image of S4
i = 1 under ρλ. For any i we have:

ρλ(S4
i ) = w̃4

αi .

Since the w̃αi generate the extended Weyl group W̃ and w̃4
αi = 1 in W̃ , it follows that

ρλ(S4
i ) = w̃4

αi = 1.

Thus, the image of the relation S4
i = 1 is satisfied in Gλ(Z).

(2) In Gλ(Z), we have
w̃αiχαj w̃

−1
αi = χwαi (αj)

for any pair i, j. For each i we have wαi(αi) = −αi. Hence

w̃αiχαiw̃
−1
αi = χ−αi .

Consider now the image of [S2
i , Xi] in Gλ(Z):

ρλ([S2
i , Xi]) = ρλ(SiSiXiS

−1
i S−1

i X−1
i ) = w̃αiw̃αiχαiw̃

−1
αi w̃

−1
αi χ

−1
αi .
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This reduces to

ρλ([S2
i , Xi]) = w̃αi(w̃αiχαiw̃

−1
αi )w̃−1

αi χ
−1
αi = w̃αiχ−αiw̃

−1
αi χ

−1
αi = χαiχ

−1
αi = 1.

Thus the image of the relation [S2
i , Xi] = 1 is satisfied in Gλ(Z).

(3) Similarly, consider the image of XiSiXiS
−1
i Xi. Applying ρλ, we have

ρλ(XiSiXiS
−1
i Xi) = χαiw̃αiχαiw̃

−1
αi χαi = χαiχ−αiχαi .

This last term equals w̃αi , so that

ρλ(XiSiXiS
−1
i Xi) = w̃αi = ρλ(Si).

Thus, the image of the relation Si = XiSiXiS
−1
i Xi is satisfied in Gλ(Z).

(4) Suppose now that i 6= j are not adjacent on the Dynkin diagram. Using the presentation of

W̃ in [KP], we have

w̃αiw̃αj w̃
−1
αi w̃

−1
αj = 1.

Hence, w̃αiw̃αj = w̃αj w̃αi , so that ρλ(SiSj) = ρλ(SjSi). Thus the image of the relation SiSj = SjSi
for i 6= j, i, j not adjacent on the Dynkin diagram, is satisfied in Gλ(Z).

(5) Consider the image of [Si, Xj ] under ρλ:

ρλ([Si, Xj ]) = ρλ(SiXjS
−1
i X−1

j ) = w̃αiχαj w̃
−1
αi χ

−1
αj = χwαi (αj)χ

−1
αj .

In this last term, we evaluate wαi(αj):

wαi(αj) = αj − αj(α∨i )αi = αj − (aij)αi.

However, for i 6= j, i, j not adjacent on the Dynkin diagram, we have aij = 0, so that

wαi(αj) = αj − (aij)αi = αj .

If i 6= j are not adjacent, then

ρλ([Si, Xj ]) = χαjχ
−1
αj = 1.

Thus, the image of [Si, Xj ] = 1 for i 6= j, i, j not adjacent on the Dynkin diagram is satisfied in

Gλ(Z).

(6) For i 6= j, and i, j not adjacent, we may compute in the rank 2 root subsystem of type A1×A1.
We have [χαi , χαj ] = 1, so that ρλ([Xi, Xj ]) = 1. Thus the image of the relation [Xi, Xj ] = 1 for

i 6= j not adjacent, is satisfied in Gλ(Z).

(7) We now suppose that i 6= j are adjacent on the Dynkin diagram. Using the presentation of

W̃ in [KP], we have

w̃αiw̃αj w̃αiw̃
−1
αj w̃

−1
αi w̃

−1
αj = 1.

Hence, w̃αiw̃αj w̃αi = w̃αj w̃αiw̃αj , so that

ρλ(SiSjSi) = w̃αiw̃αj w̃αi = w̃αj w̃αiw̃αj = ρλ(SjSiSj).

Thus the image of the relation SiSjSi = SjSiSj for i 6= j, i, j adjacent is satisfied in Gλ(Z).

(8) We have the relation w̃αj w̃
2
αiw̃

−1
αj = w̃2

αi(w̃αj )
−2aij in Gλ(Z) (see [CER]). If i 6= j are adjacent,

then aij = −1. Hence

w̃αj w̃
2
αiw̃

−1
αj = w̃2

αiw̃
2
αj .
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Multiplying by w̃αj on both sides yields w̃αj w̃
2
αi = w̃2

αiw̃
3
αj . Since w̃4

αi = 1 for all i in Gλ(Z), we

can rewrite the right hand side as w̃2
αiw̃

−1
αj . We have w̃2

αi = w̃−2
αi for all i, so w̃αj w̃

−2
αi = w̃−2

αi w̃
−1
αj .

Finally, multiplying by w̃2
αi on both sides gives

ρλ(S2
i SjS

−2
i ) = w̃2

αiw̃αj w̃
−2
αi = w̃−1

αj = ρλ(S−1
j ).

Thus, the image of the relation S2
i SjS

−2
i = S−1

j for i, j adjacent is satisfied in Gλ(Z).

(9) Now consider the words w̃αiχαj w̃
−1
αi and w̃−1

αj χαiw̃αj in Gλ(Z). As before, we have

w̃αiχαj w̃
−1
αi = χwαi (αj)

for any i, j. Using the relation w̃4
αi = 1 for all i, we may rewrite the second word above as

w̃−1
αj χαiw̃αj = w̃3

αjχαiw̃
−3
αj .

For i, j adjacent on the Dynkin diagram, aij = −1, so

wαj (αi) = αi − αi(α∨j )αj = αi − (aij)αj = αi + αj .

Thus

w̃αjχαiw̃
−1
αj = χwαj (αi) = χαi+αj .

Similarly,

wαi(αj) = αj − αj(α∨i )αi = αj − (aji)αi = αj + αi = αi + αj .

We may simplify the first word:

w̃αiχαj w̃
−1
αi = χαi+αj

and the second word:

w̃−1
αj χαiw̃αj = w̃3

αjχαiw̃
−3
αj = w̃2

αj (w̃αjχαiw̃αj )w̃
−2
αj = w̃2

αjχαi+αj w̃
−2
αj .

This yields

w̃−1
αj χαiw̃αj = w̃2

αjχαi+αj w̃
−2
αj = w̃αj (w̃αjχαi+αj w̃

−1
αj )w̃−1

αj = w̃αjχwαj (αi+αj)w̃
−1
αj .

We have

wαj (αi + αj) = wαj (αi) + wαj (αj).

Since wαj (αi) = αi + αj and wαj (αj) = −aj , we have

wαj (αi + αj) = ai.

Hence

w̃−1
αj χαiw̃αj = w̃αjχwαj (αi+αj)w̃

−1
αj = w̃αjχαiw̃

−1
αj

which yields

w̃−1
αj χαiw̃αj = w̃αjχαiw̃

−1
αj = χwαj (αi) = χαi+αj .

Hence

w̃αjχαiw̃
−1
αj = χαi+αj = w̃−1

αj χαiw̃αj

Multiplying by w̃αi and then w̃αj on both sides gives the equality w̃αj w̃αiχαj = χαiw̃αj w̃αi , which
is the image of XiSjSi = SjSiXj under ρλ. Thus, the image of the relation XiSjSi = SjSiXj is

satisfied in Gλ(Z).

(10) To determine the image of S2
iXjS

−2
i under ρλ, note that S2

i = h̃i(−1), so that

ρλ(S2
iXjS

−2
i ) = ρλ(h̃i(−1)Xj h̃i(−1)−1) = hi(−1)χαj (1)hi(−1)−1.
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We have the relation hi(u)χα(v)hi(u)−1 = χα(vuaij ) in Gλ(Z) for any i, j ([CER]). Hence, for i, j
adjacent, we see that

ρλ(S2
iXjS

−2
i ) = hi(−1)χαj (1)hi(−1)−1 = χαj (−1) = χ−1

αj = ρλ(Xj)
−1.

Thus, the image of the relation S2
iXjS

−2
i = X−1

j for i, j adjacent is satisfied in Gλ(Z).

(11) For any prenilpotent pair of real roots α and β, by [Ti] and [CG] there is a Chevalley relation
in Gλ of the form

[χα(u), χβ(v)] =
∏

mα+ nβ ∈ ∆re
+

m,n > 0

χmα+nβ(Cmnαβu
mvn)

between root groups Uα and Uβ. Here u, v ∈ R, Cmnαβ are integers (structure constants). We
claim that adjacent simple roots αi and αj form a prenilpotent pair. By Lemma 6 of [AC], in
the simply laced hyperbolic case, a pair of real roots is prenilpotent if (α, β) ≥ −1. But for
adjacent simple roots αi and αj , (αi, αj) = −1. Thus the pair αi, αj is prenilpotent and we have
Cmnαβ ∈ {±1}. We have

(mαi + nαj | mαi + nαj) = m2(αi | αi) + 2mn(αi | αj) + n2(αj | αj) = 2m2 − 2mn+ 2n2.

But (· | ·) = 2 for all elements of ∆re. To determine when mαi +nαj ∈ ∆re for m,n > 0, we seek
non–negative solutions of

2m2 − 2mn+ 2n2 = 2(m2 −mn+ n2) = 2

or
m2 −mn+ n2 = 1.

It is easy to see that the only solution is

m = n = 1.

Thus the right hand side of the Chevalley commutation relation is

χαi+αi = χwαi (αj) = w̃αiχαj w̃
−1
αi

and the image of the relation [Xi, Xj ] = SiXjS
−1
i for i, j adjacent is satisfied in Gλ(Z).

(12) Finally, consider ρλ([Xi, SiXjS
−1
i ]) for i, j adjacent. We have

ρλ([Xi, SiXjS
−1
i ]) = [ρλ(Xi), ρλ(SiXjS

−1
i )] = [χαi , w̃αiχαj w̃

−1
αi ].

We have w̃αiχαj w̃
−1
αi = χwαi (αj). As i and j are adjacent, aij = −1, thus it follows that wαi(αj) =

αi + αj , so that

ρλ([Xi, SiXjS
−1
i ] = [χαi , w̃αiχαj w̃

−1
αi ] = [χαi , χαi+αj ].

We note that [χαi , χαi+αj ] = 1 when 2αi + αj is not a root. We have

(2αi + αj | 2αi + αj) = 4(αi | αi) + 2(αi | αj) + 2(αj | αi) + (αj | αj) = 8− 2− 2 + 2 = 6.

As (· | ·) ≤ 0 for all elements of ∆im and (· | ·) = 2 for all elements of ∆re, it follows that
2αi + αj 6∈ ∆im and 2αi + αj 6∈ ∆re, thus 2αi + αj is not a root. Thus

ρλ([Xi, SiXjS
−1
i ]) = [χαi , χαi+αj ] = 1

and the image of the relation [Xi, SiXjS
−1
i ] = 1 for i, j not adjacent, is satisfied in Gλ(Z).

�
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8. The kernel of ρλ

When R = K is a field, Rémy and Ronan took a completion Ĝ(K) of Tits’ Kac–Moody group
G(K) in the automorphism group of the building of the BN–pair for G ([RR] and [Mar], Sec 6.1).

The following relationship between Ĝλ(K) and Ĝ(K) was established by [BR] and [Mar], (see also
[CER]).

Theorem 8.1. For any regular weight λ, there exists a (canonical) continuous surjective

homomorphism ρλ : Ĝλ(K)→ Ĝ(K). The kernel of ρλ is equal to⋂
g∈Ĝ

gB̂λg−1

and is contained in Center(Ĝλ(K)).

This result was extended further by [Rou] (see also Prop 6.46 of [Mar]).

Theorem 8.2. ([Rou]) If Char(K) = 0 then ελ : Ĝλ(K)→ Ĝ(K) is an isomorphism of topological
groups.

From now on, we will take R = C.

Lemma 8.3. The kernel of the map ρλ : G(C)→ Gλ(C) lies in Center(G(C)).

Proof. Consider the sequence of homomorphisms

G(C)
ρλ−−−−→ Gλ(C)

ι−−−−→ Ĝλ(C)
ελ−−−−→ Ĝ(C)

where ι is the inclusion map. The composition of these three maps is the natural map from G to

Ĝ. By Theorem 8.1, Ker(ελ) ≤ Center(Ĝλ(C)). By ([RR], 1.B),

Ker(ελ ◦ ι ◦ ρλ) = Center(G(C)) ≤ H(C)

where
H(C) = 〈h̃i(a) := s̃i(a)s̃i(−1) | a ∈ C×, h̃i(a) · h̃i(b) = h̃i(ab)〉

for s̃i(a) := Xi(a)SiXi(a
−1)S−1

i Xi(a). But

Ker(ρλ) ≤ Ker(ελ ◦ ι ◦ ρλ).

The result follows. �

Since h̃αi(1) = 1, we define

H(Z) = 〈h̃αi(−1) = s̃i(−1)2 | h̃αi(−1)2 = 1, i ∈ {1, . . . , `}〉.
Then H(Z) ∼= (Z/2Z)rank(G) and the natural map H(Z)→ H(C) is injective.
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Injectivity of the natural map Gλ(Z)→ Gλ(C) follows from the fact that Gλ(Z) is the subgroup
of Gλ(C) preserving VZ, as proven in [Ca]. Injectivity of the natural map

ϕ : G(Z)→ G(C)

is not currently known and depends on functorial properties of Tits’ group ([Ti]).

Lemma 8.4. Consider the group homomorphism ϕ : G(Z)→ G(C). Then

ϕ(Center(G(Z))) ⊆ Center(ϕ(G(Z))) ≤ Center(G(C)).

Proof. Consider ϕ : G(Z)→ G(C). Then

ϕ(Center(G(Z))) ⊆ Center(ϕ(G(Z))).

and
K = ϕ(G(Z)) ∼= G(Z)/Ker(ϕ)

is a subgroup of G(C), so ϕ takes Center(G(Z)) to the center of a subgroup K ≤ G(C). But
Center(G(C)) is abelian so

Center(K) = Center(ϕ(G(Z))) ≤ Center(G(C)). �

�

The following diagram commutes:

G(Z) G�(Z)

G(C) G�(C)

⇢�,Z

' ◆

⇢�

1

That is,
(ι ◦ ρλ,Z)(G(Z)) = (ρλ ◦ ϕ)(G(Z))

so
Ker(ι ◦ ρλ,Z) = Ker(ρλ ◦ ϕ).

We have
Ker(ρλ,Z) ≤ Ker(ι ◦ ρλ,Z) = Ker(ρλ ◦ ϕ).

Thus if ϕ is injective, then we have

Ker(ι ◦ ρλ,Z) = Ker(ρλ ◦ ι)
or

Ker(ρλ,Z) ≤ Ker(ι ◦ ρλ,Z) = Ker(ρλ ◦ ι) ≤ Center(G(C)) ≤ H(C),

using Lemma 8.3. Furthermore, if ϕ is injective, then by Lemma 8.4 we have

Center(G(Z)) ≤ Center(G(C))

Ker(ρλ,Z) ≤ Center(G(Z)) ≤ Center(G(C)) ≤ H(C)

and
Center(G(Z)) = G(Z) ∩ Center(G(C)) ≤ G(Z) ∩H(C) = H(Z).

We have proven the following.

Theorem 8.5. The kernel Kλ of the map ρλ,Z : G(Z) → Gλ(Z) lies in H(C) and if the group

homomorphism ϕ : G(Z)→ G(C) is injective, then Kλ ≤ H(Z) ∼= (Z/2Z)rank(G).
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