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Abstract. We give a general structure theory for reconstructing non-trivial group actions on

sets without any further assumptions on the group, the action, or the set on which the group

acts. Using certain ‘local data’ D from the action we build a group G(D) of the data and a space
X (D) with an action of G(D) on X (D) that arise naturally from the data D. We use these to

obtain an approximation to the original group G, the original space X and the original action

G×X −→ X. The data D is distinguished by the property that it may be chosen from the action
locally.

For a large enough set of local data D, our definition of G(D) in terms of generators and

relations allows us to obtain a presentation for the group G. We demonstrate this on several
examples. When the local data D is chosen from a graph of groups, the group G(D) is the

fundamental group of the graph of groups and the space X (D) is the universal covering tree of
groups.

For general non properly discontinuous group actions our local data allows us to imitate a

fundamental domain, quotient space and universal covering for the quotient. We exhibit this on
a non properly discontinuous free action on R. For a certain class of non properly discontinuous

group actions on the upper half plane, we use our local data to build a space on which the group

acts discretely and cocompactly.
Our combinatorial approach to reconstructing abstract group actions on sets is a generalization

of the Bass-Serre theory for reconstructing group actions on trees. Our results also provide a
generalization of the notion of developable complexes of groups by Haefliger.
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Section 0.
INTRODUCTION TO RECONSTRUCTING GROUP ACTIONS

Let G be a group and X a set with an action G ×X −→ X . The fundamental question
we consider is the following:

(0.1) Question. Can we extract ‘data’ D from this setting in order to reconstruct G, X and
the action G×X −→ X? Can we use this to obtain a structure theorem for G?

In this work we give a detailed answer to this question. Consider first a non-trivial action
of a group Γ on a simplicial tree X without inversions and without fixed points. We may
reconstruct Γ, X and the action Γ×X −→ X , choosing the data D to be

D = {A = Γ\X},

the quotient graph of X modulo Γ. Then the group Γ is isomorphic to the fundamental group
Π = π1(A) of the quotient graph A, a free group. The tree X is isomorphic to the universal

covering Y = Ã of A, and the action of Π on Y by covering transformations commutes with
the action of Γ on X .

Our task here is to give an analogous structure theory for reconstructing group actions on
sets without any assumptions on the group, the action or the structure of the space where
the group is acting.

To describe the known results which address Question (0.1) we will use the following
terminology.

A subset Z ⊆ X (respectively a point x ∈ X) is called a set of fixed points (respectively a
fixed point) if there exists 1 6= g ∈ G such that gz = z for each z ∈ Z (respectively gx = x).
We say that G acts freely on X if there are no fixed points. The pointwise stabilizer of Z ⊆ X
(respectively x ∈ X) is

GZ := {g ∈ G | gz = z for every z ∈ Z},
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(respectively Gx := {g ∈ G | gx = x}.)
If G acts freely on X then Gx = {1} for every x ∈ X . The G-orbit of x ∈ X is the set

G · x := {gx | g ∈ G}.

The quotient of X modulo G is the set of all G-orbits, denoted G\X .
Now we take X to be a topological space, and we assume that G acts on X as homeomor-

phisms. We say that G acts strongly properly discontinuously on X if for each x ∈ X there is
a neighborhood U containing x such that

gU ∩ U = ∅

for each 1 6= g ∈ G. Since the non-trivial translates of U are all disjoint, a strongly properly
discontinuous action is fixed point free. The following gives an answer to Question (0.1) for
strongly properly discontinuous group actions on topological spaces.

(2) Reconstruction theorem I ([Mas]). Let X be a topological space. Suppose that X is
path connected and locally path connected. Let G be a group acting on X as homeomorphisms.
Then the action of G on X is strongly properly discontinuous if and only if the quotient map
π : X −→ G\X is a covering map. In this case

G = Deck(X, π) := {g ∈ Homeom(X) | π ◦ g = π}

which is the group of covering transformations of π : X −→ G\X.

Example 1. A strongly properly discontinuous group action.

Let X = R, G = Z. Then G acts on X by translation σn : x −→ x + n, for n ∈ Z,
x ∈ R, with quotient Z\R ∼= S1. Then G is a strongly properly discontinuous group of

homeomorphisms of R since for any x ∈ R, and Ux = (x − 1

3
, x +

1

3
) ⊂ R, the translates

σn(Ux) are pairwise disjoint. By Theorem (0.2), p : R −→ Z\R is a covering space, and

Z = Deck(R, p) ∼= π1(Z\R, x0) ∼= π1(S
1),

for x0 ∈ X , and Z is the group of deck transformations of the covering.
For free and strongly properly discontinuous actions the notion of reconstructing a group

action and obtaining a group presentation from a fundamental domain is due to Poincaré in
the early 1900’s. For example, the ‘Poincaré Fundamental Polyhedron Theorem’ for groups
acting discontinously on hyperbolic spaces provides a method to obtain a presentation of
a Kleinian group from a collection of combinatorial conditions on a polyhedron which is a
fundamental domain for the action ([Mask]).

This idea was further exploited by Borel and Harish-Chandra who obtained fundamental
domains for arithmetic subgroups of algebraic groups (in some cases in the presence of fixed
points) and showed ([BH]) that these arithmetic subgroups are finitely generated. A descrip-
tion for the defining relations for arithmetic subgroups of algebraic groups was given in [PR].
Their proof is sufficiently general that it holds for an arbitrary group of transformations of a
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topological space that is connected, locally connected and simply connected provided there is
a fundamental domain for the action.

In [Br], Brown gives a graph of group type presentation for groups of homeomorphisms of
CW-complexes where there is a fundamental domain and the action permutes the cells. This
improves on an earlier work of Soulé ([So]). Other examples of group presentations obtained
from a fundamental domain have been given by Abels ([Ab]), Behr ([Be]), Gerstenhaber ([Ge])
and Macbeath ([Mac]).

Many group actions are not fixed point free or strongly properly discontinuous. We say
that a group G acts properly discontinuously on a topological space X if for each x, y ∈ X
there are neighborhoods U containing x, V containing y such that

{g ∈ G | gU ∩ V 6= ∅}

is a finite set.

All finite group actions are automatically properly discontinuous. If we take x = y in the
above, we see that {g ∈ G | gU ∩ U 6= ∅} is a finite set. Hence properly discontinuous group
actions may have fixed points. It is easy to see that for properly discontinuous group actions
on topological spaces X , the point stabilizers Gx for x ∈ X are finite groups. However, there
are fixed point free actions that are not properly discontinuous (the action of Z× Z on R by
translations as in Section (5.3)).

The following proposition is easy to see.

(3) Proposition. Let X be a Hausdorff topological space. Let G be a group acting on X as
homeomorphisms. If G acts freely on X, then the following conditions are equivalent.

(1) The action of G on X is strongly properly discontinuous.

(2) The action of G on X is properly discontinuous.

Example 2. An action that is properly discontinuous but not strongly properly discontinuous.

Let X = D2 = {(x, y) ∈ R2 | x2 + y2 < 1} be the open unit disk in the plane. Then
G = Z/nZ acts on X by rotation of 2π/n fixing the origin. We have

StabG(x) =

{
Z/nZ, x = (0, 0)

{1}, x ∈ D2{(0, 0)},

so the action of G is properly discontinuous but not strongly properly discontinuous.

Supose now that X is a manifold and that a group G acts properly discontinuously on X
as homeomorphisms. If S is the set of fixed points for the action then the projection G\S
to the quotient G\X is the ‘singular locus’ of the quotient ‘orbifold’ O. In the orbifold the
singular points are labelled with a finite group, the stabilizer of a lifting of the point to X ,
which is determined up to conjugacy. In Example 2, the quotient orbifold O for G = Z/nZ
on X = D2 is a cone:
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O =

Z/nZ

In this case, the quotient orbifold plays the role of a fundamental domain for the action. The
following theorem gives an answer to Question (0.1) for properly discontinuous group actions
on (smooth) manifolds.

(4) Reconstruction theorem II ([Sc]). Let X be a smooth manifold and suppose that a
group G acts on X as diffeomorphisms. If G acts properly discontinuously on X with quotient
orbifold O then the quotient map π : X −→ O is an orbifold covering map. If X is simply
connected then

G = DeckOrb(X, π) := π1(O).

In Example 2 the quotient projection π : D2 −→ O locally is the quotient map modulo the
action of the point stabilizers. Hence π1(O) = Z/nZ.

Our work primarily concerns the problem of finding generators and relations and approx-
imating a fundamental domain for a group whose action is not properly discontinuous, par-
ticularly when there is no fundamental domain for the action. Some examples are:

(1) Group actions on simplicial trees without inversions and with infinite vertex stabilizers.
(2) Group actions on negatively curved simply connected simplicial complexes with infi-

nite vertex stabilizers.
(3) Group actions on R-trees with ‘non discrete component’ (see Example 2 in Section

(5.3)).
(4) Non discrete subgroups of PSL2(R) acting on the upper half plane (see Section (7)).

The Bass-Serre theory for reconstructing group actions on simplicial trees ([B], [S]) and
Haefliger’s theory of developable complexes of groups ([H]) give complete answers to Question
(0.1) in cases (1) and (2) respectively. Our combinatorial approach to reconstructing abstract
group actions on sets may be viewed as a generalization of the Bass-Serre theory. Our work
also provides a generalization of Haefliger’s complexes of groups. A knowledge of the basics
of the Bass-Serre theory is assumed here and can be found in [B] and [S].

In order to give a general structure theory for reconstructing group actions on sets we choose
certain ‘local data’ D arising from a group action G × X −→ X that encodes information
about a natural pseudogroup induced by the action, pointwise stabilizers from the action
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with natural inclusions and isomorphisms between them, and fixed points for the induced
pseudogroup.

By a pseudogroup we mean a collection of bijective mappings on subsets of X , containing
the identity map, where compositions may be taken wherever they are defined. The notion
of a pseudogroup originally grew out of the early theory of Sophus Lie and was developed
by Élie Cartan in the early 1900’s ([C]). Lie’s original concept of what we now call a Lie
group consisted of local pseudogroups of functions defined in a neighbourhood of the origin.
More recently diffeomorphism pseudogroups have arisen naturally in differential geometry as
transition functions of an atlas for a manifold. Our notion of pseudogroup is a combinatorial
analog of the notion of a geometric pseudogroup.

Using our local data as a model, we build abstract machinery for reconstructing group
actions that are not necessarily free or properly discontinuous. In particular we build a group
G(D) of the data and a space X (D) with an action of G(D) on X (D) that arise naturally from
the data D. We use these to obtain an approximation to the original group, the original space
and the original action.

Our data mimics the notion of a presheaf of sets, though we do not assume a basis for the
topology of the underlying space. Rather, we work only with local pseudogroups of sets and
maps between them that satisfy axioms analogous to presheaf axioms.

Our main theorem is the following.

(5) Reconstruction theorem III (Section (5.1)). Let G be a group acting non-trivially
on a set X. Let D be any choice of local data for the action of G on X (in the sense of
Section (1.5)). There is a canonical homomorphism µ : G(D) −→ G and canonical set map
ν : X (D) −→ X such that the following diagram commutes:

G(D) × X (D) −→ X (D)
↓µ ↓ν ↓ν
G × X −→ X

That is, ν(σ ·y) = µ(σ) ·ν(y), for σ ∈ G(D), y ∈ X (D). If further D is ‘complete’ in the sense
of Section 3, then the map µ is a group isomorphism, and ν is a set bijection. Moreover a
complete set of local data D always exists for the action of G on X.

The data D is distinguished by the property that it may be chosen from the action locally.
For a complete set of data D, our definition of G(D) in terms of generators and relations
allows us to obtain a presentation for the group G. In Section 5.3, we demonstrate this on
several examples. In Section (5.3) we show how to reconstruct Fuchsian groups acting either
discretely or non discretely on the Poincaré disk by choosing data from a fundamental polygon
in the Poincaré disk.

Our Reconstruction theorem III is particularly useful for obtaining a presentation for a
finitely presented group G that acts on a set when the action of the generators is known
explicitly on a large enough finite subset. A local pseudogroup describing the restriction of
the whole action to the action of the generators on a finite subset gives rise to the ‘monodromy
groupoid’M(D) we describe in Section 2.3. If the finite subset is sufficiently large, π1(M(D))
is isomorphic to G (Section 5.1).

When the local data D is chosen from a graph of groups, the group G(D) is isomorphic to
the fundamental group of the graph of groups and the space X (D) coincides with the universal
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covering tree of groups (Section 6). Thus when our local data is chosen from a graph of groups,
we recover the Bass-Serre correspondence between actions (without inversions) on trees and
quotient graphs of groups.

For non properly discontinuous group actions our local data allows us to imitate a funda-
mental domain, quotient space and universal covering for the quotient. For a certain class of
non properly discontinuous group actions on the upper half plane, we may use our local data
to build a space on which the group acts discretely and cocompactly (Section 7). We exhibit
this construction explicitly for a free action on R with ‘non discrete component’ (Example 2
of Section 5.3) and on the non discrete subgroup

G = 〈x, y | yxy−1 = x2〉

of PSL2(R) which acts on the upper half plane H2 by translation σx : z 7→ z+1 and homothety
σy : z 7→ 2z (Section 7).

Another application of our general structure theory is the following. We may choose local
data D from a free action of a finitely presented group on an R-tree in order to deduce the
following theorem, conjectured by Morgan and Shalen ([MS1]-[MS4]).

Rips’ Theorem. If G is finitely presented and acts freely on an R-tree by isometries, then
G is the free product of free abelian groups and surface groups.

Let G be a finitely presented group acting freely on an R-tree T by isometries. We choose
a sufficiently large finite subtree K of T . This subtree K should be subject to the condition
that it is large enough to ‘capture’ the defining relations of G with respect to the action of
the generators of G.

The local data D is obtained by taking the partial maps K −→ K corresponding to the
restrictions of the action of the generators of G on K. The multiplicity structure is trivial
since G acts freely, hence all monodromy elements are also trivial.

Given this local data D, we build the group G(D). Since K is large enough, we obtain an
isomorphism G ∼= G(D). We then build the space X (D) of D on which G(D) acts.

One can prove that X (D) is also an R-tree and that it is Hausdorff. However, X (D) may
not be G-equivariantly isometric to T . Our reconstruction theorem gives a G-equivariant map
from X (D) to T but this map is not necessarily an isometry. The tree X (D) is essentially
equivalent to the ‘resolution tree’ of [BF] and the notion of ‘geometric action’ of [LP], since
X (D) converges to T as K gets larger and larger.

Any pseudogroup of isometries of R can be put into normal form, decomposing it into
a union of components on which the orbits are either finite or dense. This corresponds to
the decomposition of G(D) as a free product. The action of G(D) on X (D), viewed as an
approximation of the original action, is then analyzed via the ‘Rips machine’. This is a
sequence of processes, called Process I and Process II that were inspired by the Makanin-
Ravborov elimination process for solutions of equations in free groups ([Ma], [Ra1], [Ra2]).
The Rips machine is used for further analysis of the factors with dense orbits and reveals
pseudogroups of various types: axial, interval exchange types and Levitt types. We then
deduce that G(D) is a free product of free abelian groups, surface groups and free groups,
with the axial type giving rise to free abelian groups, the interval exchange type giving rise
to surface groups and the Levitt type corresponding to free groups.
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Our general structure theory has allowed us to reduce the problem of obtaining a presen-
tation of a finitely presented group acting freely on an R-tree to consideration of only local
data and not the whole action.

The 1991 lectures of the second author at the Isle of Thorns inspired Bestvina and Feighn to
generalize Rips’ Theorem to stable actions of finitely generated groups on R-trees ([BF]) using
geometric methods in place of combinatorial arguments. Gaboriau, Levitt and Paulin also
proved Rips’ Theorem for finitely generated groups acting freely on R-trees ([GLP2]) using the
methods of dynamical systems and measured foliations. In [LP] the authors refined the notion
of a geometric action on an R-tree to give a definition in terms of measured foliations and they
showed, using a geometric interpretation of the second author’s method for approximating
actions on R-trees, that every finitely supported action of a finitely generated group G on an
R-tree T is a strong limit of geometric actions.

We shall not say more about the Rips machine or the classification of free actions on R-
trees in this work, but we refer the interested reader to [BF] and [GLP2] (see also [GLP1] ,
[LP] and [L]).

The lectures of the second author inspired several other applications. Actions of finitely
generated groups on R-trees are also a main ingredient in Sela’s approach to acylindrical
accessibility ([Se]) and the JSJ-decomposition of finitely presented groups ([RS]). Sela’s ap-
proach to classifying free actions of finitely generated groups on R-trees was generalized by
Guirardel under some stability hypotheses ([G1]). Guirardel’s work has also found applica-
tions by Drutu and Sapir ([DS]). The problem of classifying finitely presented and finitely
generated groups acting freely on Λ-trees is an active area of current research ([AB], [B],
[G2], [KMS1], [KMS2], [KMRS]). In particular, Kharlampovich, Miasnikov and Serbin have
developed a non-standard version of the Rips machine which gives an elimination process for
arbitrary non-Archimedean actions such as free actions on Λ-trees ([KMS1]).

This work was completed in ongoing discussions with Ilya Kapovich. We are indebted
to Ilya for his substantial input and for the time he spent considering the ideas and con-
structions in this work. Many of his ideas are contained within. We take great pleasure in
thanking him. We are extremely grateful to the editor and the referee for their careful and
persistent attention to the details of this work and for several corrections. We thank Hyman
Bass, Mladen Bestvina, Mark Feighn, Gilbert Levitt, Olga Kharlampovich, Alexei Miasnikov,
Frédéric Paulin and Mark Sapir for helpful discussions, encouragement and suggestions. We
are grateful to Diego Penta for assistance with preparing the diagrams.
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Section I.
GENERAL STRUCTURE THEORY FOR RECONSTRUCTING

GROUP ACTIONS

1. LOCAL DATA.

Let (Xα)α∈V be a family of sets, and let X denote the disjoint union
⊔

α∈V Xα of the sets
Xα. We describe natural data associated with X , satisfying certain axioms. Let P(X) denote
the power set of X, and let Φ ⊆ P(X).

1.1 Local pseudogroup data.

(1) Let ∆ = (V,E, o, t,−) be an oriented graph with vertex set V , edge set E, initial and
terminal functions, o and t respectively, which pick out the origin and terminus of an edge,
and an involution, −, on the edge set which is fixed point free and is a reversal of orientation.
We do not assume that ∆ is finite or locally finite.
(2) A pair ((Xα)α∈V , (φβ)β∈E) is a Φ-pseudogroup presentation on X if (φβ)β∈E is a family

of mappings between subsets Yβ and Ỹβ of X such that:

(1) for any β ∈ E, φβ : Yβ −→ Ỹβ is a bijection, where Yβ ⊆ Xt(β) and Ỹβ ⊆ Xo(β),

(2) for any β ∈ E, Ỹβ = Yβ and φ−1
β = φβ ,

(3) the partial mappings (φβ)β∈E preserve Φ-subsets of X ; that is if U ⊆ Yβ then U ∈ Φ
if and only if φβ(U) ∈ Φ.

X
X 

1

Y!

X t(!)

~
Y!

"

 
3

 
1

 
2

!

t(!)

o(!)

#!
X 

2

X 
3

X o(!)

(3) The local Φ-pseudogroup, Γ, defined by a Φ- pseudogroup presentation, ((Xα)α∈V , (φβ)β∈E),
is the collection of all maps

φγ,Z : Z −→ Z̃,

where Z ∈ Φ, Z ⊆ Yβk
, Z̃ ⊆ Yβ1

, γ = β1β2 . . . βk is a path in ∆ such that the composition
(φβ1

◦ · · · ◦ φβk
)(z) is defined for each z ∈ Z,

φγ,Z : z 7−→ (φβ1
· . . . · φβk

)(z)
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for any z ∈ Z, and Z̃ = φγ,Z(Z).

Y 
3

~Y 
3

X t ( 
3
)

!
 
3

Xo( 
3
) " Xt ( 

2
)

!
 
2

Y 
2

Y 
3

!##(z)
 
3

!
 
2

!##(z)
 
3

~Y 
2Xo( 

2
) " Xt ( 

1
)

!
 
1

!
 
2

!##(z)
 
3

!
 
1

~Y 
1

Xo( 
3
)

z

(4) We say that the maps φβ are distinguished generators of the local Φ-pseudogroup, Γ.
Notice that Γ has the following properties:

(a) If Z ∈ Φ and Z ⊆ Yβ for some β ∈ E, then φβ · φβ |Z= IdZ and so φββ,Z = IdZ
belongs to Γ.

(b) If φγ,Z : Z −→ Z̃ belongs to Γ and Z ′ ∈ Φ with Z ′ ⊆ Z then the restriction of φγ,Z
to Z ′

φγ,Z′ = φγ,Z |Z′

belongs to Γ.
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(c) If γ = β1β2 . . . βk is a path in ∆ and φγ,Z : Z −→ Z̃ belongs to Γ, then φγ,Z is

a bijection, Z̃ ∈ Φ and the inverse of φγ,Z belongs to Γ and equals φ
γ−1,Z̃

where

γ−1 = βkβk−1 . . . β1.

1.2 Multiplicity structure.

(1) A multiplicity structure on X consists of

(1) a family of groups (GU )U∈Φ called multiplicity groups
(2) a family of homomorphisms ρVU : GV −→ GU for all U, V ∈ Φ, with U ⊆ V called

restriction mappings
(3) a family of group isomorphisms λβ,U : GU −→ Gφβ(U) where β ∈ E, and U ∈ Φ with

U ⊆ Yβ
satisfying the following axioms:

(2) Multiplicity axioms.

Axiom 1 (Identity).

For any U ∈ Φ,

ρUU = IdGU

Axiom 2 (Transitivity).

If U, V,W ∈ Φ, U ⊆ V ⊆W , then

ρVU · ρWV = ρWU

Axiom 3 (Compatibility with Restrictions).

If U1 ⊆ U2 ⊆ Yβ , for β ∈ E and U1, U2 ∈ Φ then the following diagram commutes:

GU2

ρ
U2
U1−−−−→ GU1

λβ,U2

y
yλβ,U1

Gφβ(U2)

ρ
φβ(U2)

φβ(U1)

−−−−−→ Gφβ(U1)

1.3 Monodromy data.

Let ((Xα)α∈V , (φβ)β∈E) be a local Φ-pseudogroup presentation on X with associated pseu-
dogroup, Γ, and let

((GU )U∈Φ, (ρ
V
U | U, V ∈ Φ, U ⊆ V ), (λβ,U | U ∈ Φ, U ⊆ Yβ , β ∈ E))

be a multiplicity structure on X .
Monodromy data for X is a choice of gγ,Z ∈ GZ , the monodromy element, for each pair (γ,

Z) such that φγ,Z ∈ Γ, φγ,Z |Z= IdZ and the following axioms are satisfied:
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(1) Monodromy axioms.

Axiom 1 (Inner Automorphism).

Let Z ∈ Φ and let γ = β1β2 . . . βk be a closed path in ∆ such that φγ,Z ∈ Γ, with φγ,Z |Z=
φβ1
· . . . · φβk

|Z= IdZ .
Set

Zk = Z

Zk−1 = φβk
(Zk)

Zk−2 = φβk−1
(Zk−1) = φβk−1

φβk
(Zk)

. . .

Z1 = φβ2
(Z2) = φβ2

φβ3
. . . φβk

(Zk)

Z0 = φβ1
(Z1) = φβ1

. . . φβk
(Zk) = φγ,Zk

(Zk) = Zk = Z

 
!
1

 
!
k

 
!
k–1

"
!
1

"
!
k

"
!
k–1

Z
1

Z
0 

= Z = Z
k

Z
k–1

Z
k–2

Z
k

G Z
k–1

G

Z
k–2

G
Z
1

G

….

….

Consider the following sequence of maps:

GZ = GZk

λβk,Zk−−−−→ GZk−1

λβk−1,Zk−1−−−−−−−→ . . . −−−−→ GZ1

λβ1,Z1−−−−→ GZ0
= GZk

= GZ .

Put λγ,Z = λβ1,Z
. . . λβk−1,Z

λβk,Z
: GZ −→ GZ . Then

λγ,Z = ad(gγ,Z)

where ad(gγ,Z)(g) = gγ,Z · g · g−1
γ,Z for each g ∈ GZ .

12



Axiom 2 (Compatibility with Restrictions).

If Z ′ ⊆ Z, then restriction mappings take the monodromy element of (γ, Z) to the monodromy
element of (γ, Z ′):

ρZZ′ : GZ −→ GZ′ , with gγ,Z 7−→ gγ,Z′

Axiom 3 (Multiplication).

Suppose that φγ,Z , φδ,Z ∈ Γ, with φγ,Z |Z= IdZ , φδ,Z |Z= IdZ , and so

φγδ,Z = φγ,Z · φδ,Z ∈ Γ

with φγδ,Z |Z= IdZ . Then the monodromy element gγδ,Z of (γδ, Z) is the product in GZ

gγδ,Z = gγ,Z · gδ,Z

Axiom 4 (Covariance).

Let Z ⊆ Yβ for some β ∈ E and let φγ,Z ∈ Γ, with φγ,Z |Z= IdZ . Set W = φβ(Z) and
observe that

φβγβ−1,W = φβ · φγ,Z · φ−1
β |W= IdW .

 !!!!" Id
Z#, Z

 
$

Z

~
Y$

W "! $(Z)

Y$

Then we have
λβ,Z(gγ,Z) = gβγβ−1,W .

1.4 Local data on X.

We say that X is a set with local data D, where

D = ((Xα)α∈V , (φβ)β∈E, (GU )U∈Φ, (ρ
V
U ), (λβ,U), (gγ,Z))

if

(1) ((Xα)α∈V , (φβ)β∈E) is a Φ-pseudogroup presentation onX defining a local Φ-pseudogroup,
Γ,
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(2) ((GU )U∈Φ, (ρ
V
U | U, V ∈ Φ, U ⊆ V ), (λβ,U | U ∈ Φ, U ⊆ Yβ , β ∈ E)) is a multiplicity

structure on X ,
(3) (gγ,Z) is monodromy data for X , where the monodromy element gγ,Z ∈ GZ is given

for each pair (γ, Z) such that φγ,Z ∈ Γ and φγ,Z |Z= IdZ .

A set X with local data D will sometimes be denoted (X,D).
1.5 Data from a group action on a set.

(1) Suppose that a group G acts on a set X . If G fixes any element x ∈ X , we say that the
action of G on X is trivial. We will assume that the action of G on X is non-trivial.

Let (Xα)α∈V be a family of subsets of X . Let (gk)k∈K be a family of elements of G.
We construct a local pseudogroup that imitates the action of G on X as follows:

(2) Set
E+ = {β = (α′, k, α) | α, α′ ∈ V, k ∈ K and Xα′ ∩ g−1

k Xα 6= ∅}

For each β = (α′, k, α) ∈ E+ put

Yβ = Xα′ ∩ g−1
k Xα ⊆ Xα′ ,

Ỹβ = gkXα′ ∩Xα ⊆ Xα,

and φβ = gk |Yβ
: Yβ −→ Ỹβ. Then φβ is a bijection. We set E = E+

⊔
E+ where E+ =

{β : β ∈ E+}. For each β ∈ E+ we define φβ = φ−1
β : Ỹβ −→ Yβ and Yβ = Ỹβ, Ỹβ = Yβ ,

β = β. For every β = (α′, k, α) ∈ E+, we set o(β) = α = t(β), t(β) = α′ = o(β). Then
∆ = (V,E, o, t,−) is a graph with corresponding pseudogroup presentation

((Xα)α∈V , (φβ)β∈E).

(3) Let Φ be a family of subsets of X , invariant under the φβ , β ∈ E. For each Φ-subset
Z ⊆ Xα we define the multiplicity group GZ to be the pointwise stabilizer of Z

GZ = {g ∈ G | g(z) = z for every z ∈ Z}.

Then if Z ⊆ Z ′, we have GZ′ ⊆ GZ , and we define the restriction mappings

ρZ
′

Z : GZ′ −→ GZ

to be the inclusions GZ′ →֒ GZ .
(4) Moreover, if β = (α′, k, α) ∈ E+, gk ∈ G, Z ⊆ Yβ and φβ(Z) = gk · Z, then h ∈ GZ if

and only if gk ·h ·g−1
k ∈ Gφβ(Z). Therefore, we set λβ,Z : GZ −→ Gφβ(Z) to be the conjugation

λβ,Z = ad(gk) : h 7→ gk · h · g−1
k . It follows that the isomorphisms λβ,Z : GZ −→ Gφβ(Z)

commute with the restriction mappings ρZ
′

Z : GZ′ −→ GZ .
(5) Suppose that for some Z ∈ Φ, there is a composition of partial mappings

φγ = φβ1
◦ · · · ◦ φβt

14



that acts identically on Z: that is; φβ1
◦ · · · ◦ φβt

|Z= IdZ , where

βt = (αt, kt, αt−1)

βt−1 = (αt−1, kt−1, αt−2)

...

β1 = (α1, k1, α0 = αt)

and

Zt = Z

Zt−1 = φβt
(Zt) = gkt

Zt

...

Z1 = φβ2
(Z2) = φβ2

φβ3
. . . φβt

(Zt) = gk2
gk3

. . . gkt
Zt

Z = Z0 = φβ1
(Z1) = φβ1

. . . φβt
(Zt) = gk1

. . . gkt
Zt = gk1

. . . gkt
Z

(6) Observe that

λβ1,Z1
◦ λβ2,Z2

◦ · · · ◦ λβt,Zt
= ad(g1 . . . gt) : GZ −→ GZ

and that the product g1 . . . gt stabilizes Z pointwise.
(7) We set the monodromy element gγ,Z to be the product g1 . . . gt ∈ GZ . It is easy to see
that the monodromy axioms are satisfied for this choice of gγ,Z . We conclude that when a
group G acts on a set X ,

((Xα)α∈V , (φβ)β∈E , (GZ)Z∈Φ, (ρ
Z′

Z ), (λβ,Z), (gγ,Z))

is local data on
⊔

α∈V

Xα in the sense of 1.4.
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2. COVERING THEORY FOR A SET WITH LOCAL DATA.

2.1 The graph of groups for a set with local data.

(1) Let (X,D) be a set with local data, where

D = ((Xα)α∈V , (φβ)β∈E, (GU )U∈Φ, (ρ
V
U ), (λβ,U), (gγ,Z))

as in 1.4, and let ∆ = (V,E, o, t,−) be the corresponding graph. In this section, we construct
a graph of groups G(V,E) naturally associated with D.
(2) We define G(V,E) as follows: the underlying graph is the oriented graph ∆ = (V,E, o, t,−).
For each α ∈ V , we define the vertex group G(α) to be the direct limit of the multiplicity
groups and restriction mappings:

G(α) = lim−→
Z⊆Xα

(GZ , ρ
Z′

Z ).

We note that the further condition that Z ⊂ Φ is implied but will not be explicitly stated
throughout the paper.
(3) By a direct limit G(α) of the family of groups GZ and the set of homomorphisms

ρZ
′

Z : GZ′ −→ GZ for Z ⊆ Z ′ we mean the following. For each Z ⊆ Xα, Z ∈ Φ, there

are canonical homomorphisms ρZ : GZ −→ G(α) such that ρZ · ρZ′

Z = ρZ
′

whenever Z ⊆ Z ′;
that is; the following diagram commutes:

GZ′

ρZ′

Z

ւ
ρZ′

ց
GZ

ρZ

−→ G(α)

(4) Moreover, G(α) satisfies the following universal property: if H is any group and there is
a system of homomorphisms

ΨZ : GZ −→ H

for each Z ⊆ Xα such that ΨZ · ρZ′

Z = ΨZ′

whenever Z ⊆ Z ′ ⊆ Xα, then there is a unique
homomorphism Ψ : G(α) −→ H such that for each Z ⊆ Xα the following diagram commutes

GZ

ρZ

ւ
ΨZ

ց
G(α) Ψ−→ H

This is the usual notion of direct limit as in ([S], Sec 1.1).

(5) For g ∈ GZ , let g denote the image ρZ(g) of g in G(α) = lim−→Z⊆Xα
(GZ , ρ

Z′

Z ).

(6) We choose an orientation E+ of E such that E = E+
⊔
E+. For each β ∈ E+ with

o(β) = α, t(β) = α′:
t(β) = α′ ←−−−−−−−−−−−−−−

β
o(β) = α
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Yβ ⊆ Xα′ −−−−−−−−−−−−−−→
φ(β)

Ỹβ ⊆ Xα

(7) We define the edge groups G(β) of G(V,E) as follows:

G(β) = lim−→
Z⊆Yβ

(GZ , ρ
Z′

Z )

where Yβ ⊆ Xα′ = Xt(β).

(8) For β ∈ E+ we set G(β) = G(β). Observe that for an edge β ∈ E+ with o(β) = α and
t(β) = α′ there is a canonical homomorphism

G(β) = lim−→
Z⊆Yβ⊆Xα′

(GZ , ρ
Z′

Z )
µ−→ lim−→

Z⊆Xα′

(GZ , ρ
Z′

Z ) = G(α′).

We therefore define the edge homomorphism

ωβ : G(β) −→ G(α′) = G(t(β))

to be the homomorphism µ.

(9) We recall that for each Z ⊆ Yβ ⊆ Xα′ and φβ(Z) ⊆ Ỹβ ⊆ Xα there are isomorphisms of
multiplicity groups λβ,Z : GZ −→ Gφβ(Z) that commute with restriction mappings.
(10) Therefore, there is a canonical isomorphism of direct limits:

λβ : lim−→
Z⊆Yβ⊆Xα′

(GZ , ρ
Z′

Z ) −→ lim−→
Z⊆Ỹβ⊆Xα

(GZ , ρ
Z′

Z ).

(11) We also have a canonical homomorphism

lim−→
Z⊆Ỹβ⊆Xα

(GZ , ρ
Z′

Z )
µ̃−→ lim−→

Z⊆Xα

(GZ , ρ
Z′

Z )

induced by the inclusion Ỹβ ⊆ Xα.
(12) We define the edge homomorphism:

ωβ : G(β) −→ G(α) = G(o(β))

to be the composition µ̃ · λβ :

G(β) λβ−→ lim−→
Z⊆Ỹβ⊆Xα

(GZ , ρ
Z′

Z )
µ̃−→ G(α) = G(o(β)).

(13) Remark.

In this setting, the edge homomorphisms ωβ and ωβ are not necessarily monomorphisms.
In Section 4 we shall see that under certain conditions on D, these maps are indeed one-to-one.
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(14) Example.

Let A, B and C be groups with A ∩B = C. Let data D be as follows:

Xα = [0, 1] ⊆ R.

For an interval Z = [a, b] ⊆ [0, 1] we set:

GZ = G[a,b] =





A, if [a, b] = {0}
B, if [a, b] = {1}
C, otherwise,

and for Z ⊆ Z ′, the restriction mappings ρZ
′

Z are the natural inclusion mappings.
The graph of groups G(V,E) associated to this data D is described as follows. The under-

lying graph ∆ consists of a single vertex α. The vertex group G(α) = lim−→Z⊆Xα
(GZ′ , ρZ

′

Z ) is
the amalgamated product A ∗C B, which coincides with the fundamental group of an ‘edge
of groups’ with vertex groups A and B and edge group C (see [B] or [S]).

2.2 The groupoid of a graph of groups.

In this section we describe a natural groupoid that can be constructed from a graph of
groups.
(1) We recall that a groupoid is a small category where every morphism is invertible. In this
way, we can view a group as a groupoid with a single object, and elements of the group as
morphisms from this object to itself.
(2) Groups can be given by generators and defining relations. In a similar way, a groupoid
can be described by specifying the set of objects, the set of generating morphisms, and the
set of defining relations between these morphisms.
(3) Let A = (V A,EA, o, t,−) be an oriented graph, and let A be a graph of groups with
underlying graph A, vertex groups Av, v ∈ V A, edge groups Ae, e ∈ EA and boundary
homomorphisms ωe : Ae −→ At(e), ωe : Ae −→ Ao(e), e ∈ EA.
(4) We define the Bass-Serre groupoid of A to be the groupoid with presentation

B(A) = 〈(Av)v∈VA, EA | eωe(g)e
−1 = ωe(g), g ∈ Ae, ee = 1o(e), ee = 1t(e)〉

where the set of objects of B(A) is V A, each g ∈ Av for v ∈ V A is viewed as a morphism
from v to v, and every edge e ∈ EA is viewed as a morphism from o(e) to t(e). We let
MorB(A)(v1, v2) denote the collection of all morphisms from v1, v2 ∈ V A.
(5) Every morphism σ ∈ MorB(A)(v1, v2), v1, v2 ∈ V A can be expressed as a product σ =
g0e1g1e2 . . . gk−1ekgk of generating morphisms, where γ = e1e2 . . . ek is a path in A from v1
to v2, g0 ∈ Ao(e1) and gi ∈ At(ei), i = 1, . . . k.
(6) It follows that for each v ∈ V A

MorB(A)(v, v) ∼= π1(A, v)

where π1(A, v) is the fundamental group of the graph of groups A relative to the basepoint v
(see [B]).
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2.3 The Bass-Serre and monodromy groupoids.

In the previous section we introduced a groupoid associated to a graph of groups. We now
apply this construction to the graph of groups associated to a set with local data.
(1) Let (X,D) be a set with local data

((Xα)α∈V , (φβ)β∈E , (GZ)Z∈Φ, (ρ
Z′

Z ), (λβ,Z), (gγ,Z))

and let ∆ = (V,E, o, t,−) be the corresponding graph.
(2) Recall from 2.1 that G(V,E) is the graph of groups built on ∆ with vertex groups

G(α) = lim−→
Z⊆Xα

(GZ , ρ
Z′

Z ),

edge groups

G(β) = lim−→
Z⊆Yβ

(GZ , ρ
Z′

Z )

where Yβ ⊆ Xt(β), β ∈ E+∆, and boundary homomorphisms

ωβ : G(β) −→ G(t(β))

ωβ : G(β) −→ G(o(β))

as defined in 2.1.
(3) We define the Bass-Serre groupoid B(D) to be the groupoid B(G(V,E)) of the graph of
groups G(V,E). That is,

B(D) = 〈(G(α))α∈V∆, (β)β∈E∆ | β · wβ(g) · β−1 = ωβ(g),

for every g ∈ G(β), ββ = 1o(β), ββ = 1t(β)〉.

(4) We recall that the objects of B(D) are the vertices V∆ of ∆. An element g ∈ G(α),
α ∈ V∆ is viewed as a morphism from α to α and every edge β is viewed as a morphism from
o(β) to t(β).
(5) Therefore, any closed path γ = β1 . . . βk in ∆ with o(β1) = α = t(βk) can be viewed as
a morphism from α to α. In particular, if for some Z ⊆ Yβk

∩ β1 ⊆ Xα, we have

φγ,Z |Z= φβ1
· . . . · φβk

|Z= IdZ ,

then γ and the image gγ,Z of the monodromy element gγ,Z ∈ GZ in G(α) = lim−→Z⊆Xα
(GZ , ρ

Z′

Z )
can both be viewed as morphisms from α to α.
(6) For α ∈ V we define

π1(B(D), α) =MorB(D)(α, α).
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(7) We now introduce the monodromy groupoidM(D) as a quotient of the groupoid B(D)
obtained by identifying the morphisms γ and gγ,Z . That is,M(D) is given by the presentation

M(D) = 〈(G(α))α∈V∆,(β)β∈E∆ | β · wβ(g) · β−1 = ωβ(g) for every g ∈ G(β),
ββ = 1o(β), ββ = 1t(β), γ = gγ,Z for every γ with φγ,Z = IdZ〉.

We set π1(M(D), α) =MorM(D)(α, α), for α ∈ V and we will refer to π1(M(D), α) as G(D).

The group G(D)

In the following special case, we can explicitly give generators and relations for the group

G(D) = π1(M(D), α) =MorM(D)(α, α).

Let D be data on a set X with a local pseudogroup of partial isometries

(Ψ, X) = {φβ : Yβ −→ Ỹβ}

and assume that (Ψ, X) contains

{φ−1
β : Ỹβ −→ Yβ}.

Assume that all multiplicity groups of D are trivial. Assume also that the graph ∆ asso-
ciated to D has a single vertex α and that X = Xα. Let G(D) be the corresponding group.
Then the presentation of G(D) takes the following form:

G(D) = 〈(fβ)β∈I | fγ := f ǫ1
β1
f ǫ2
β2
. . . f ǫk

βk
= 1 whenever φγ(x) := φǫ1β1

φǫ2β2
. . . φǫkβk

(x) = x,

for some x ∈ X, ǫi = ±1〉.

In the examples that follow in the next sections, we try where possible to choose local data
with a single vertex α such that X = Xα.

(8) Remark.

It follows from the definitions of B(D), andM(D), that if g ∈ GZ , and Z ⊆ Yβ , then

β · g · β−1 =
B(D)

λβ,Z(g)

and

β · g · β−1 =
M(D)

λβ,Z(g).
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2.4 Covering spaces.

(1) In this section we build spaces ˜B(D, α0), and M̃(D, α0) from a set X with local data D
on which the groupoids B(D) andM(D) have natural actions.
(2) Recall that ∆ = (V,E, o, t,−) is the graph associated with

D = ((Xα)α∈V , (φβ)β∈E, (GZ)Z∈Φ, (ρ
Z′

Z ), (λβ,Z), (gγ,Z)).

(3) Fix a basepoint α0 ∈ V∆. We form

˜B(D, α0) = (
⊔

α∈V∆

MorB(D)(α0, α)×Xα)
/
≈B

where MorB(D)(α0, α) denotes the set of all morphisms in B(D) from α0 to α and ≈B is the

equivalence relation on
⊔

α∈V∆

MorB(D)(α0, α)×Xα generated by the following relations:

(1)B (σg, x) ≈B (σ, x)

where σ ∈MorB(D)(α0, α), x ∈ Xα, g ∈ Gx, so that (σg, x) and (σ, x) ∈MorB(D)(α0, α)×Xα,

(2)B (σβ, x) ≈B (σ, φβ(x))

where σ ∈ MorB(D)(α0, α
′′), and β ∈ E∆ with o(β) = α′′ and t(β) = α′, so that σβ ∈

MorB(D)(α0, α
′), and x ∈ Yβ ⊆ Xα′ , φβ(x) ∈ Ỹβ ⊆ Xα′′ . (That is, (σβ, x) ∈MorB(D)(α0, α

′)×
Xα′ and (σ, φβ(x)) ∈MorB(D)(α, α

′′)×Xα′′ .)

X ’

Y!

X ’’

~
Y!

"!

 ’  ’’!

(4) Observe that ˜B(D, α0) comes equipped with a natural action of π1(B(D), α0) =MorB(D)(α0, α0).
That is; if σ ∈MorB(D)(α0, α0), σ

′ ∈MorB(D)(α0, α) and x ∈ Xα, then

σ · (σ′, x)≈B
= (σσ′, x)≈B

.
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(5) Remark.

The goal in constructing ˜B(D, α0) is to build a space from the data D on which the groupoid
B(D) has a natural action.

The space ˜B(D, α0) is built from the ‘translates’ of the Xα by the elements of B(D) and is
therefore the quotient:

(
⊔

α∈V∆

MorB(D)(α0, α)×Xα)
/
≈B .

Here, the equivalence class (σ, x)≈B
represents the σ-translate σ · x of x.

(6) We want an element g of the multiplicity group Gx, x ∈ Xα to stabilize the image of x

in ˜B(D, α0), so we impose the relation:

(σg, x) ≈B (σ, x)

in ˜B(D, α0) for σ ∈MorB(D)(α0, α).

(7) The action of the generating morphism β ∈ B(D) on ˜B(D, α0) mimics the partial bijec-

tion φβ : Yβ −→ Ỹβ so we impose the relation:

(σβ, x) ≈B (σ, φβ(x))

in B(D) for σ ∈MorB(D)(α0, o(β)), x ∈ Yβ ⊆ Xt(β).

(8) We analogously define a space M̃(D, α0) with a natural action of the group π1(M(D), α0).
We set

M̃(D, α0) = (
⊔

α∈V∆

MorM(D)(α0, α)×Xα)
/
≈M

where ≈M is the equivalence relation on
⊔

α∈V∆

MorM(D)(α0, α) × Xα generated by the fol-

lowing relations:

(1)M (σg, x) ≈M (σ, x)

where σ ∈MorM(D)(α0, α), x ∈ Xα, g ∈ Gx,

(2)M (σβ, x) ≈M (σ, φβ(x))

where σ ∈ MorM(D)(α0, α
′′), and β ∈ E∆ with o(β) = α′′ and t(β) = α′, x ∈ Yβ ⊆ Xα′ ,

φβ(x) ∈ Ỹβ ⊆ Xα′′ .

(9) The group π1(M(D), α0) =MorM(D)(α0, α0) acts on M̃(D, α0) :

σ · (σ′, x)≈M
= (σσ′, x)≈M

,

where σ ∈MorM(D)(α0, α0), σ
′ ∈MorM(D)(α0, α) and x ∈ Xα.

(10) The space M̃(D, α0) is called the covering space of D with respect to the basepoint α0,
and will be denoted X (D).
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3. VERTEX GROUPS AS GROUPS OF SURFACE TRIPS.

(1) Let (X,D) be a set with local data, where

D = ((Xα)α∈V , (φβ)β∈E, (GU )U∈Φ, (ρ
V
U ), (λβ,U), (gγ,Z)),

and let ∆ = (V,E, o, t,−) be the corresponding graph. Let α ∈ V . For each x, y ∈ Xα such
that {x, y} ∈ Φ, we associate the formal symbol txy.
(2) A surface trip τ in Xα from x0 to xk is a sequence of the form

τ = g0tx0x1
g1tx1x2

. . . gk−1txk−1xk
gk

where x0, x1, . . . , xk ∈ Xα, gi ∈ Gxi
. When k = 0, g0 is also viewed as a surface trip from x0

to x0. We set
τ = g−1

k txkxk−1
g−1
k−1 . . . tx2x1

g−1
1 tx1x0

g−1
0

so that τ is a surface trip from xk to x0.
(3) We call x0 the origin, o(τ), of τ and xk the terminus, t(τ), of τ .

X
 

x0! o(" )

x1

x2
x

k–1

x
k
! t(" )

"

Let
τ = g0tx0x1

g1tx1x2
. . . gk−1txk−1xk

gk

τ ′ = g′0tx′
0x

′
1
g′1tx′

1x
′
2
. . . g′m−1tx′

m−1x
′
m
g′m

be surface trips in Xα.
(4) The juxtaposition of surface trips τ and τ ′ in Xα is defined when

xk = t(τ) = o(τ ′) = x′0.

In this case we set

τ · τ ′ = g0tx0x1
g1 . . . txk−1xk

(gkg
′
0)tx′

0x
′
1
g′1 . . . tx′

m−1x
′
m
g′m
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where (gkg
′
0) is the product of gk and g′0 in Gxk

= Gx′
0
.

For each x ∈ X , we allow an empty surface trip 1x ∈ Gx, where o(1x) = x = t(1x).
Moreover, we can view txy as a surface trip 1xtxy1y from x to y, but we shall usually omit
trivial group elements from our description of surface trips.
(5) Let ‘∼s’ be the equivalence relation on surface trips, τ generated by the following rela-
tions:

(0) Identitity.

txx ∼s 1x

where {x} ∈ Φ.

(I) Transitivity.

txytyz ∼s txz

where {x, y}, {y, z}, {x, z} ∈ Φ, and txy, tyz, txz are viewed as paths from x to y, y to z, and
x to z respectively.

(II) Fundamental Bass-Serre relation.

ρUx (g)txy ∼s txyρ
U
y (g)

where U ∈ Φ, x, y ∈ U , g ∈ GU , and txy is viewed as a path from x to y.
We also require that ∼s is compatible with juxtaposition of surface trips; that is, if τ1, τ2,

τ ′, τ ′′ are surface trips in X , and juxtapositions τ ′ · τ1 · τ ′′ and τ ′ · τ2 · τ ′′ are defined, then
τ1 ∼s τ2 if and only if

τ ′ · τ1 · τ ′′ ∼s τ
′ · τ2 · τ ′′.

If τ is a surface trip in X , then [τ ]∼s
denotes the ∼s - equivalence class of τ .

Choose a basepoint x0 ∈ Xα for α ∈ V , with {x0} ∈ Φ. The group of surface trips in X is
defined to be

Tα(D, x0) = {[τ ]∼s
| τ is a surface trip in Xα from x0 to x0}.

We observe that Tα(D, x0) is a group with multiplication induced by juxtaposition of
surface trips. The multiplication is naturally associative, and the existence of inverses follows
from the fact that

τ · τ ∼s τ · τ ∼s 1x0

and for surface trips τ from x0 to x0 in Xα.
(6) We describe some natural conditions on Φ:

(Φ1) One element subsets.

If U ∈ Φ and x ∈ U , then {x} ∈ Φ.
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(Φ2) Two element subsets.

If U ∈ Φ and x, y ∈ U , then {x, y} ∈ Φ.

(Φ3) Connectivity.

If x, y ∈ Xα, and {x}, {y} ∈ Φ then there exists a sequence of the form

x = x0, x1, x2, . . . xk = y

such that {xi, xi+1} ∈ Φ for i = 0, . . . , k = 1.

(Φ4) Convexity.

Suppose x0, x1, x2, . . . , xk = x0 is a sequence in Xα such that {xi, xi+1} ∈ Φ for
i = 0, . . . , k− 1 and xi 6= xj for 0 ≤ i, j ≤ k− 1, i 6= j. Then {x0, xi} ∈ Φ for i = 1, . . . , k− 1.

x
0

x
1

x
2

x
3

x
k–2

x
k–1

Recall that X has local data

D = ((Xα)α∈V , (φβ)β∈E, (GU )U∈Φ, (ρ
V
U ), (λβ,U), (gγ,Z))

and we have the direct limit of the multiplicity groups and restriction mappings:

G(α) = lim−→
U⊆Xα

(GU , ρ
V
U )

as in 2.1.
For each U ∈ Φ there are canonical homomorphisms ρU : GU −→ G(α) such that ρU ·ρVU =

ρV whenever U ⊆ V ; that is, the following diagram commutes:

GV

ρV
U

ւ
ρV

ց
GU

ρU

−→ G(α)
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(7) Proposition. Let X be a set with local data D. Suppose that Φ satisfies the conditions
Φ1-Φ4 described above. Chose a basepoint x0 ∈ Xα such that {x0} ∈ Φ and let Tα(D, x0) be
the group of surface trips. Then there is a canonical isomorphism:

G(α) = lim−→
U⊆Xα

(GU , ρ
V
U )
∼= Tα(D, x0).

Proof. To define Ψ : G(α) −→ Tα(D, x0) we construct homomorphisms

ΨU : GU −→ Tα(D, x0)

for each U ∈ Φ such that whenever U ⊆ V , U, V ∈ Φ, the following diagram commutes:

GV

ρV
U

ւ
ΨV

ց
GU

ΨU

−→ Tα(D, x0)

The universal property of direct limits will then imply the existence of a unique homomor-
phism

Ψ : G(α) −→ Tα(D, x0)
such that for each U ∈ Φ, the following diagram commutes:

GU

ρU

ւ
ΨU

ց
G(α)

Ψ−→ Tα(D, x0)

To construct the maps ΨU , suppose U ∈ Φ and g ∈ GU . Let x ∈ U . Then {x} ∈ Φ by
condition (Φ1) and therefore ρUx (g) ∈ Gx.

Then by conditions (Φ1) (one element subsets) and (Φ3) (connectivity) , there is a surface
trip from the basepoint x0 to x of the form

τ = tx0x1
tx1x2

. . . txk−2xk−1
txk−1x.

We set
ΨU (g) = [tx0x1

. . . txk−1x ρ
U
x (g) txxk−1

. . . tx1x0
]
∽s
.

To show that ΨU (g) is well defined, we need the following:

(8) Lemma. Suppose the conditions of Proposition 3.7 are satisfied. Suppose

τ = tz0z1tz1z2 . . . tzm−1z0

is a surface trip in Xα from z0 to z0. Then

tz0z1tz1z2 . . . tzm−1z0 ∽s 1z0 .
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Proof. We use induction on m. For m = 1,

tz0z0 ∽s 1z0

by the identity axiom on paths.
For m = 2,

tz0z1tz1z0 ∽s tz0z0 ∽s 1z0

by the transitivity and identity axioms on paths.
Assume now that m > 2 and that for any n < m

tz′
0z

′
1
tz′

1z
′
2
. . . tz′

n−1z
′
0
∽s 1z′

0
.

Let τ = tz0z1tz1z2 . . . tzm−1z0 . There are two cases to consider. For the first case, assume
that zi 6= zj for 0 ≤ i, j ≤ m− 1, i 6= j.

Then by condition (Φ4) (convexity) we have {z0, z2} ∈ Φ. By the transitivity axiom on
paths we have tz0z1tz1z2 ∽s tz0z2 . Therefore,

τ = tz0z1tz1z2 . . . tzm−1z0

∽s tz0z2tz2z3 . . . tzm−1z0

∽s 1z0 by the inductive hypothesis.

For the second case, suppose that zi = zj for some 0 ≤ i < j ≤ m− 1. Then

tzizi+1
. . . tzj−1zj ∽s 1zi

by the inductive hypothesis. So

τ = tz0z1 . . . tzi−1zitzizi+1
. . . tzj−1zj tzjzj+1

. . . tzm−1z0

∽s tz0z1 . . . tzi−1zi1zitzizj+1
. . . tzm−1z0

∽s 1z0 by the inductive hypothesis.

This completes the proof of Lemma 3.8.�

We continue the proof of Proposition 3.7. To show that ΨU (g) is well defined, we need to
check that the definition is independent of the choice of surface trip

tx0x1
tx1x2

. . . txk−2xk−1
txk−1x

from the basepoint x0 to x.
Let tx0y1

ty1y2
. . . tym−1x be another surface trip from x0 to x. We need to check that

[tx0x1
. . . txk−1x ρ

U
x (g) txxk−1

. . . tx1x0
]
∽s

= [tx0y1
. . . tym−1x ρ

U
x (g) txym−1

. . . ty1x0
]
∽s
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or that

(9) [txym−1
. . . ty1x0

tx0x1
. . . txk−1x ρ

U
x (g) txxk−1

. . . tx1x0
tx0y1

. . . tym−1x]∽s
= [ρUx (g)]∽s

.

By Lemma 3.8,

txym−1
. . . ty1x0

tx0x1
. . . txk−1x ∽s 1x,

txxk−1
. . . tx1x0

tx0y1
. . . tym−1x ∽s 1x,

which implies equation (9).
We also need to check that the definition of ΨU (g) is independent of the choice of x ∈ U .

Let y ∈ U . Then by condition (Φ2) (two element subsets) on Φ, we have {x, y} ∈ Φ. Therefore
tx0x1

. . . txk−1xtxy is a surface trip from the basepoint x0 to y.
Moreover

[tx0x1
. . . txk−1xtxy ρ

U
y (g) tyxtxxk−1

. . . tx1x0
]
∽s

= [tx0x1
. . . txk−1x ρ

U
x (g) txytyxtxxk−1

. . . tx1x0
]
∽s

by the fundamental Bass-Serre relation

= [tx0x1
. . . txk−1x ρ

U
x (g) txxk−1

. . . tx1x0
]
∽s
,

since txytyx ∽s txx ∽s 1x.
So we have verified that ΨU (g) is well defined. Thus we define

ΨU : GU −→ Tα(D, x0)

by

g 7−→ ΨU (g).

It is easy to see that ΨU is a homomorphism of groups.
We verify that the maps ΨU are compatible with restriction maps; that is, if U ⊆ V ,

U, V ∈ Φ, then the following diagram commutes:

GV

ρV
U

ւ
ΨV

ց
GU

ΨU

−→ Tα(D, x0)

Let g ∈ GV and x ∈ U so that x ∈ V . There is a surface trip

tx0x1
tx1x2

. . . txk−2xk−1
txk−1x

from x0 to x. We have

ΨV (g) = [tx0x1
. . . txk−1x ρ

V
x (g) txxk−1

. . . tx1x0
]
∽s
.
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Moreover for g′ = ρVU (g) ∈ GU , we have

ΨU (g′) =[tx0x1
. . . txk−1x ρ

U
x (g

′) txxk−1
. . . tx1x0

]
∽s

[tx0x1
. . . txk−1x ρ

U
x (ρ

V
U (g)) txxk−1

. . . tx1x0
]
∽s
.

By transitivity of restriction mappings, we have

ρUx (ρ
V
U (g)) = ρVx (g)

and therefore
ΨV (g) = ΨU (ρVU (g))

for all g ∈ GV .
Thus we have a collection of maps

(ΨU : GU −→ Tα(D, x0))U∈Φ

that are compatible with restriction mappings. By the universal property of direct limits,
there is a unique homomorphism

Ψ : G(α) = lim−→(GU , ρ
V
U ) −→ Tα(D, x0)

making the following diagram commute:

GU

ρU

ւ
ΨU

ց
G(α) Ψ−→ Tα(D, x0)

We define
η : Tα(D, x0) −→ G(α)

by
η([g0tx0x1

g1 . . . gk−1txk−1x0
gk]∽s

) = ρx0(g0)ρ
x1(g1) . . . ρ

xk−1(gk−1)ρ
x0(gk)

for a surface trip g0tx0x1
g1 . . . gk−1txk−1x0

gk from x0 to x0.
It is easy to see that η is well-defined; if τ1 and τ2 are surface trip that are ∽s-equivalent,

then we can get from τ1 to τ2 by a finite sequence of the form

τ ′ρyzy (g)tyzτ
′′
∽s τ

′tyzρ
yz
z (g)τ ′′

where g ∈ Gy,z.
We observe that

ρy(ρyzy (g)) = ρyz(g) = ρz(ρyzz (g)) ∈ G(α),
and therefore

η([τ1]∽s
) = η([τ2]∽s

).

It is also easy to see that η : Tα(D, x0) −→ G(α) is a homomorphism of groups.
We now verify that

(i) Ψ ◦ η = IdTα(D,x0)

(ii) η ◦Ψ = IdG(α)
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For (i), let τ = g0tx0x1
g1 . . . gk−1txk−1xk

gk be a surface trip from x0 to xk = x0, with
gi ∈ Gxi

for i = 0, . . . , k. We observe that tx0x1
tx1x2

. . . txi−1xi
is a surface trip from x0 to xi

for i = 0, . . . , k.
Therefore, by definition of Ψ;

(10) Ψ(ρxi(gi)) = [tx0x1
. . . txi−1xi

gitxixi−1
. . . tx1x0

]
∽s
.

We also note that

(11) txkxk−1
txk−1xk−2

. . . tx2x1
tx1x0

∽s 1x0

by Lemma 3.8, since x0 = xk.
We have

[τ ]
∽s

= [g0tx0x1
g1 . . . gk−1txk−1xk

gk]∽s

↓η

ρx0(g0)ρ
x1(g1) . . . ρ

xk−1(gk−1)ρ
x0(gk)

↓Ψ by (10)

[g0]∽s
[tx0x1

g1tx1x0
]
∽s

[tx0x1
tx1x2

g2tx2x1
tx1x0

]
∽s
. . . [tx0x1

. . . txk−1xk
gktxkxk−1

. . . tx1x0
]
∽s

q

[g0tx0x1
g1 . . . gk−1txk−1xk

gktxkxk−1
. . . tx2x1

tx1x0
]
∽s

q by (11)

[g0tx0x1
g1 . . . gk−1txk−1xk

gk1xk
]
∽s

q

[g0tx0x1
g1 . . . gk−1txk−1xk

gk]∽s
= [τ ]

∽s
,

thus we have verified that Ψ ◦ η = IdTα(D,x0).
For (ii), we observe that G(α) is generated by

⋃
{x}∈Φ

ρx(Gx) and so it suffices to verify that

η ◦Ψ |ρx(Gx)= Idρx(Gx)

for each {x} ∈ Φ.
Let {x} ∈ Φ, g ∈ Gx and let tx0x1

. . . txk−1x be a surface trip from the basepoint x0 to x.
Then

Ψ(ρx(g)) = [tx0x1
. . . txk−1xρ

x
x(g)txxk−1

. . . tx1x0
]
∽s

= [tx0x1
. . . txk−1xgtxxk−1

. . . tx1x0
]
∽s
.

Thus η(Ψ(ρx(g))) = ρx(g) and so we have verified (ii), and this completes the proof of
Proposition 3.7.�
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4. EMBEDDING THEOREMS.

As we have seen, an action of a group on a set naturally gives rise to a local pseudogroup
of partial isometries. In this section, we consider the following question:

(1) Question. Given a local pseudogroup of partial isometries (Ψ, Y ) consisting of a family of

isometries φβ between subsets Yβ and Ỹβ of Y , when does it arise from an action H×Z −→ Z
of a group H on a set Z?

Let H × Z −→ Z be an action of a group H on a set Z. We recall that the action is free
if no 1 6= h ∈ H has a fixed point.

(2) Definition. Give a local pseudogroup (Ψ, Y ) of partial isometries, we say that (Ψ, Y )
embeds in a free action if there is a free action H × Z −→ Z of a group H on a set Z and
mappings (λ, µ) such that the diagram

Ψ × Y −→ Y
↓λ ↓µ ↓µ
H × Z −→ Z

commutes, and µ is injective.

We shall give necessary and sufficient conditions for embedding a local pseudogroup (Ψ, Y )
of partial isometries in a free action.
(3) In general, we seek H × Z −→ Z and (λ, µ) such that the map λ takes a composition
φ1 · φ2 · . . . · φk of partial mappings in Ψ to a group product λ(φ1) · λ(φ2) · . . . · λ(φk) in H.
Moreover, the map µ should have the property that for each φγ = φ1 · φ2 · . . . · φk ∈ Ψ, and
for every y ∈ Y , we have:

λ((φ1 · φ2 · . . . · φk))(µ(y)) = µ((φ1 · φ2 · . . . · φk)(y)).

The following example indicates that for a general free action, we cannot always embed a
local pseudogroup of partial isometries.

 !  "  !  "

x
1

y
1

y
2

x y
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(4) Example.

Let (Ψ, Y ) be the following local pseudogroup with y1 6= y2:
Assume that we have a free actionH×Z −→ Z and mappings (λ, µ) such that the following

diagram commutes:
Ψ × Y −→ Y
↓λ ↓µ ↓µ
H × Z −→ Z

For any mappings (λ, µ) we have:

λ(φ1)(µ(x)) = µ(φ1(x)) = µ(x1),

λ(φ2)(µ(x)) = µ(φ2(x)) = µ(x1)

and since H × Z −→ Z is free, we must have:

λ(φ1) = λ(φ2).

Therefore

λ(φ1)(µ(y)) = µ(φ1(y)) = µ(y1),

λ(φ2)(µ(y)) = µ(φ2(y)) = µ(y2)

implies

µ(y1) = µ(y2),

and so µ is not injective. �

Example 6.4 suggests the following necessary condition for embedding a local pseudogroup
(Ψ, Y ) in a free action H × Z −→ Z:

(5) Condition (C1). Let

φ1 · φ2 · . . . · φk ∈ Ψ.

If

φ1 · φ2 · . . . · φk(x) = x, for some x ∈ Y ,

and φ1 · φ2 · . . . · φk(y) is defined for y ∈ Y , then

φ1 · φ2 · . . . · φk(y) = y.

Condition C1 states that if a composition φ1 · φ2 · . . . · φk of partial mappings has a fixed
point, then φ1 · φ2 · . . . · φk should act as the identity on its domain of definition.

The following example demonstrates that while C1 is necessary, it is not sufficient for
embedding a local pseudogroup (Ψ, Y ) in a free action H × Z −→ Z:
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(6) Example.

Let (Ψ, Y ) be the following local pseudogroup with z1 6= z2:

 
1

 
3
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2

z

z
1

z
2

Then condition C1 is automatically satisfied. Suppose that we have an embedding

Ψ × Y −→ Y
↓λ ↓µ ↓µ
H × Z −→ Z

of (Ψ, Y ) into a free action H ×Z −→ Z. Since H ×Z −→ Z is free, for any mappings (λ, µ)
we have:

λ(φ1) = λ(φ2) = λ(φ3).

Thus

λ(φ1)(µ(z)) = µ((z1)),

λ(φ2)(µ(z)) = µ((z2))

implies
µ(z1) = µ(z2),

and so µ is not injective. �
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(6) We modify condition (C1) to give a condition that is both necessary and sufficient. Let
D be data on a set X with a local pseudogroup of partial isometries

(Ψ, X) = {φβ : Yβ −→ Ỹβ}

and assume that (Ψ, X) contains

{φ−1
β : Ỹβ −→ Yβ}.

Assume that all multiplicity groups of D are trivial. Then D essentially consists of (Ψ, X)
alone. Assume also that the graph ∆ associated to D has a single vertex α and that X = Xα.
Let G(D) be the corresponding group. Then the presentation of G(D) takes the following
form:

G(D) = 〈(fβ)β∈I | fγ := f ǫ1
β1
f ǫ2
β2
. . . f ǫk

βk
= 1 whenever φγ(x) := φǫ1β1

φǫ2β2
. . . φǫkβk

(x) = x,

for some x ∈ X, ǫi = ±1〉.

(7) Condition (C2). We say that D satisfies condition (C2) if for any fγ := f ǫ1
β1
f ǫ2
β2
. . . f ǫℓ

βℓ

such that fγ =G(D) 1, φγ(x) := φǫ1β1
φǫ2β2

. . . φǫℓβℓ
(x) defined at x ∈ X implies that φγ(x) = x.

(8) Lemma. Let D be data on a set X with a local pseudogroup of partial isometries (Ψ, X)
and trivial multiplicity groups. Assume that the graph associated with D has a single vertex
denoted α and that X = Xα. Let G(D) be the group and X (D) the space corresponding to D.
Let

ρ : X −→ X (D)
x 7→ (1G(D), x)≈M

be the canoncial map. If condition (C2) is satisfied for D then the map ρ is injective.

Proof. Suppose that ρ(x) = ρ(y) for some x, y ∈ X , that is

(1G(D), x)≈M
= (1G(D), y)≈M

.

By the definition of X (D) and since all multiplicity groups of D are trivial, only axiom (2)M
of Section (2.4) generates ≈M. Hence there exists a composition φγ = φǫ1β1

φǫ2β2
. . . φǫkβk

∈ Ψ

such that φγ(x) = y and the element fγ corresponding to φγ equals 1 in G(D):

fγ := f ǫ1
β1
f ǫ2
β2
. . . f ǫk

βk
=G(D) 1.

Since condition (C2) is satisfied, it follows that φγ is the identity on its domain of definition.
Hence x = y. �

Suppose now that we are in the setting of Lemma (4.8) above. For n = 1, 2, . . . , let Bn

denote the ball of radius n in G(D):
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Bn := {fγ := f ǫ1
β1
f ǫ2
β2
. . . f ǫk

βk
∈ G(D) | k ≤ n}.

Then Bn is a finite subset of G(D) since ∆ is locally finite. Let Xn ⊆ X (D) be defined as
follows:

Xn =
⋃

g∈Bn,x∈X

(g, x)≈.

Then (1, X)≈ ⊆ Xn. Moreover, by Lemma (4.8) we can identify (1, X)≈ with itself. The ball
Bn has a partial action on Xn.
(9) We define data Dn on Xn. For fixed n, we define all the multiplicity groups of Dn to be
trivial. We define the graph ∆n associated to Dn to have a single vertex denoted αn, and we
set Xn = Xαn

. We define a local pseudogroup ψn of Dn as follows:

ψn := {φβ,n : Yβ,n −→ Ỹβ,n} ∪ {φ−1
β,n : Ỹβ,n −→ Yβ,n},

where
Ỹβ,n := Xn ∩ fβXn ⊆ Xn

Yβ,n := (f−1
β )Ỹβ,n ⊆ Xn

and fβ ∈ G(D) acts on X (D). Then
φβ,n := fβ |Yβ,n

.

Let G(Dn) be the group and X (Dn) the space corresponding to the data Dn.

(10) Lemma. For each n = 1, 2, . . . we have

(1) Condition (C2) is satisfied for Dn.
(2) We have group isomorphisms

µ : G(D) −→ G(Dn)

given by
fβ 7→ fβ,n

where (fβ)β∈I generates G(D) and (fβ,n)β∈I generates G(Dn).
(3) We have canonical bijections

ν : X (D) −→ X (Dn)

given by
(g, x)≈ 7→ (µ(g), x)≈

where g ∈ G(D), x ∈ X ⊆ Xn and µ(g) ∈ G(Dn).
(4) The following diagram commutes:

G(D) × X (D) −→ X (D)
↓µ ↓ν ↓ν
G(Dn) × X (Dn) −→ X (Dn)

We remark that when n = 1, D1 = D by Lemma (4.8) above.
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(11) Theorem. Let D be data on a set X with a local pseudogroup of partial isometries
(Ψ, X) and trivial multiplicity groups. Assume that the graph associated with D has a single
vertex denoted α and that X = Xα. Then there exists an embedding of (Ψ, X) in a free action
H × Z −→ Z if and only if condition (C2) is satisfied for D.
Proof. It is easy to see that condition (C2) is necessary for embedding(Ψ, X) in a free action.
To see that condition (C2) is sufficient, assume that (C2) is satisfied for D. Let G(D) be the
group and X (D) the space corresponding to D. By Lemma (4.8) above we have an embedding

X →֒ X (D).

It suffices to show that the action of G(D) on X (D) is free. Suppose conversely that the
action is not free. Then there exists x ∈ X such that (1, x)≈ has non-trivial stabilizers in
G(D). Hence there exists

fγ := f ǫ1
β1
f ǫ2
β2
. . . f

ǫn0

βn0
∈ G(D)

such that fγ 6=G(D) 1 and

(12) fγ · (1, x)≈ = (1, x)≈.

Then

(13) fγ · (1, x)≈ = (fγ , x)≈ = (1, x)≈.

It follows that in D the composition

(14) φγ := φǫ1β1
φǫ2β2

. . . φ
ǫn0

βn0

has non-trivial domain of definition containing x ∈ (1, X)≈. Then

(15) (1, x)≈ = (fγ, x)≈ = (fγ,n, x)≈ = (1, φγ,n(x))≈,

where fγ,n ∈ G(Dn) and φγ,n ∈ X (Dn). By Lemma (4.10) (C2) is satisfied for Dn and

Xn →֒ X (Dn)

is injective, and hence

X →֒ X (Dn)

x 7→ (1, x)≈

is injective. Hence (1, φγ,n(x))≈ = (1, x)≈ implies that x = φγ,n(x). Hence φγ,n admits
monodromy at the point x ∈ X ⊆ Xn and hence by definition of G(Dn) ∼= G(D) we have

(16) fγ,n =G(Dn) 1,

and hence

(17) fγ =G(D) 1

which is a contradiction. �
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Section II.
APPLICATIONS OF THE STRUCTURE THEOREMS

5. RECONSTRUCTING GROUP ACTIONS.

5.1 Approximating group actions.

We recall the setting of 1.5 where a group G acts non-trivially on a set X .
(1) Given a family (Xα)α∈V of subsets of X , and a family (gk)k∈K of elements of G, we
described a natural local data

D = ((Xα)α∈V , (φβ)β∈E, (GZ)Z∈Φ, (ρ
Z′

Z ), (λβ,Z), (gγ,Z))

on
⊔

α∈V

Xα arising from this group action. If we fix a basepoint α0 ∈ V , we can construct the

monodromy groupoidM(D) and corresponding covering space M̃(D, α0) with natural action

π1(M(D), α0)× M̃(D, α0) −→ M̃(D, α0)

as in 2.3 and 2.4. In this section, we show that this action approximates the original action
of G on X .

(2) Theorem. Let G be a group acting non-trivially on a set X. Let D be any choice of
local data for the action of G on X (in the sense of Section (1.5)). There is a canonical
homomorphism

µ : π1(M(D), α0) −→ G

and canonical set map

ν : M̃(D, α0) −→ X

such that the following diagram commutes:

π1(M(D), α0) × M̃(D, α0) −→ M̃(D, α0)
↓µ ↓ν ↓ν
G × X −→ X

that is;
ν(σ · y) = µ(σ) · ν(y)

for σ ∈MorM(α0, α0), y ∈ M̃(D, α0).

Proof. We will define a homomorphism:

µ∗ :M(D, α0) −→ G

and then take µ to be the restriction of µ∗ to π1(M(D), α0).
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(3) Define µ∗ on generators of

M(D) = 〈(G(α))α∈V∆,(β)β∈E∆ | β · wβ(g) · β−1 = ωβ(g) for every g ∈ G(β),
ββ = 1o(β), ββ = 1t(β), γ = gγ,Z for every γ with φγ,Z = IdZ〉

as follows. For each α ∈ V∆, we have

G(α) = lim−→
Z⊆Xα

(GZ , ρ
Z′

Z ).

Moreover, for each Z ⊆ Xα, we have GZ ≤ G, and whenever Z ⊆ Z ′ ⊆ Xα, there is a
natural inclusion

GZ′ ≤ GZ ≤ G.
(4) Therefore, there exists a canonical homomorphism:

Ψ : G(α) = lim−→
Z⊆Xα

(GZ , ρ
Z′

Z ) −→ G

such that for every g ∈ GZ and for every Z ⊆ Xα, the homomorphism Ψ takes the image g
of g in G(α) to g; that is, Ψ(g) = g.
(5) We define µ∗ on the generators G(α) ofM(D) by:

µ∗ |G(α)= Ψ.

For each β = (α, k, α′) ∈ E+∆, we set:

µ∗(β) = gk and µ∗(β) = g−1
k .

(6) We check that µ∗ preserves the relations ofM(D). For β = (α, k, α′) ∈ E+∆, Z ⊆ Yβ ⊆
Xα and g ∈ GZ , we have the the following equality inM(D):

β · g · β−1 = λβ,Z(g) = gk · g · g−1
k .

(7) Therefore

µ∗(β · g · β−1) = µ∗(gk)µ
∗(g)µ∗(g−1

k )

= gk · g · g−1
k

= µ∗(gk · g · g−1
k ).

It is also clear that for β ∈ E+∆, the relations ββ = 1o(β), ββ = 1t(β) of M(D) are
preserved by µ∗.
(8) Suppose now that for some Z, there is a composition of partial mappings:

φγ = φβ1
◦ · · · ◦ φβt
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that acts identically on Z: that is; φβ1
◦ · · · ◦ φβt

|Z= IdZ , where βi = (αi, ki, αi−1), i =
1, . . . , t with α0 = αt. In this situation, the monodromy element gγ,Z ∈ GZ is the product
g1 . . . gt ∈ GZ .
(9) InM(D), we have the following monodromy relation:

β1 . . . βt = g1 . . . gt.

We have to verify that µ∗ preserves this relation. We have:

µ∗(β1 . . . βt) = g1 . . . gt = µ∗(g1 . . . gt).

Thus, we have verified that µ∗ :M(D, α0) −→ G is a homomorphism.
(10) We set µ : π1(M(D), α0) −→ G to be µ∗ |π1(M(D),α0).

We define the map

ν : M̃(D, α0) −→ X

as follows:
ν : (σ, x)≈M

7→ µ(σ) · x
where σ ∈MorM(D)(α0, α) and x ∈ Xα.
(11) To check that ν is well-defined, we need to verify that ν is independent of the choice of
(σ, x) in (σ, x)≈M

; that is, we need to verify

(1) µ(σ) · x = µ(σ · g) · x, for g ∈ Gx

(2) µ(σβ) · x = µ(σ) · φβ(x), for β = (α, k, α′) ∈ E+∆.

(12) We have that

µ(σ · g) · x = µ(σ) · µ(g) · x
= µ(σ) · g · x
= µ(σ) · x

and

µ(σ · β) · x = µ(σ) · µ(β) · x
= µ(σ) · gk · x
= µ(σ) · φβ(x),

so we have verified (1) and (2).

(13) Finally, we observe that for σ′ ∈ π1(M(D), α0) and (σ, x)≈M
∈ M̃(D, α0):

ν(σ′ · (σ, x)≈M
) = ν((σ′ · σ, x)≈M

)

= µ(σ′ · σ) · x
= µ(σ′)µ(σ) · x
= µ(σ′) · ν((σ, x)≈M

),

that is; the diagram

π1(M(D), α0) × M̃(D, α0) −→ M̃(D, α0)
↓µ ↓ν ↓ν
G × X −→ X

commutes. �
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(14) Remarks.

(1) If further D in Theorem (5.1.2) is ‘complete’ in the sense of Subsection (5.2), then the
map µ is a group isomorphism, and ν is a set bijection. Moreover a complete set of
local data D always exists for the action of G on X (Subsection (5.2)).

(2) If D is local data from a non-trivial action of a group G on a set X , then there are
canonical maps

Xα −→ X (D)
x 7→ (1, x)≈

GZ −→ G(D)

which are embeddings.

5.2 Existence and uniqueness of data from a group action.

(1) Let G be a group acting non-trivially on a set X . Let D be local data for the action of
G on X (in the sense of Section (1.5)). Let G(D) be the group and X (D) the space for D
respectively as in Section 4. We say that D is complete for G×X −→ X if

(i) the map µ : G(D) −→ G is a group isomorphism,
(ii) the map ν : X (D) −→ X is a set bijection, and
(iii) the following diagram commutes:

G(D) × X (D) −→ X (D)
↓µ ↓ν ↓ν
G × X −→ X

Let D be a complete set of data for an action G×X −→ X . Then

G ·W = X

where
W =

⊔

α∈V

Xα.

In this way, we can view a complete set of data as containing an approximation to a funda-
mental domain for a group action G×X −→ X .
(2) Let D′ be another set of local data on G ×X −→ X . We say that D′ is equivalent to
D if

(i) there is a group isomorphism µ : G(D) −→ G(D′),
(ii) there is a set bijection ν : X (D) −→ X (D′), and
(iii) the following diagram commutes:

G(D) × X (D) −→ X (D)
↓µ ↓ν ↓ν
G(D′) × X (D′) −→ X (D′)
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(3) Let D be local data from a group action, where

D = ((Xα)α∈V , (φβ)β∈E, (GZ)Z∈Φ, (ρ
Z′

Z ), (λβ,Z), (gγ,Z))

Assume that the index sets V and E are finite. (This occurs in particular if G is finitely
generated and if the local pseudogroup generators φβ imitate the action of the generators of
G). We say that

D′ = ((X ′
α′)α′∈V ′ , (φ′β′)β′∈E′ , (G′

Z′)Z′∈Φ′ , (ρ′Z′

Z′′

), (λ′β′,Z′), (g′γ′,Z′))

is an enlargement of D if D′ is obtained from D by a sequence of moves of the following type:
E1) Let (φγ)γ∈Ω be a family of elements of the local pseudogroup Ψ, where γ = β1β2 . . . βk
is a path in the graph ∆ and the corresponding map φγ has non-empty domain. We set

E′ = E ∪ Ω.

We take V ′ = V , Φ′ = Φ, G′
Z′ = GZ , ρ

′
Z′

Z′′

= ρZ
′

Z . (Since Φ′ = Φ this reduces to G′
Z = GZ ,

ρ′Z
Z′

= ρZ
′

Z .) We define λ′β′,Z′ and g′γ′,Z′ as follows. Suppose that γ′ = β′
1β

′
2 . . . β

′
k is a path

in ∆′ such that
φγ′ |Z = IdZ .

We rewrite γ′ as follows. If β′
j ∈ E then we make no change to γ′. If β′

j ∈ Ω then we replace
β′
j by its corresponding path in ∆. Then γ′ also corresponds to a path γ in ∆, and

φγ |Z = IdZ .

We take g′γ′,Z′ = gγ,Z . Suppose now that β′ ∈ E′. If β′ ∈ E then λ′β′,Z′ = λβ′,Z . If β′ ∈ Ω

then β′ = β1β2 . . . βk is a path in ∆ and

λ′β′ = λβ1
· λβ2

· . . . · λβk
.

E2) Let β ∈ E and gβ ∈ G be such that φβ = gβ |Yβ
, where

φβ : Yβ ⊆ Xt(β) −→ Ỹβ ⊆ Xo(β).

Set X ′
o(β) = Xo(β) ∪ gβ(Wβ) where

Yβ ⊆ Wβ ⊆ Xt(β).

This is an enlargement of the domain of definition of β. Otherwise choose D as in (1.5).

(5.2.1) Proposition. Let G be a group acting non-trivially on a set X. Let D be local data
for the action of G on X. If D′ is an enlargement of D then D′ is equivalent to D.
Proof. Let G(D) and G(D′) be the groups associated to D and D′ respectively. We can assume
that D′ is obtained from D by a single move of type (E1) or of type (E2). Since D′ is an
enlargement of D (D ⊆ D′), we have a commutative diagram
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G(D) × X (D) −→ X (D)
↓µ ↓ν ↓ν
G(D′) × X (D′) −→ X (D′)

with µ : G(D) −→ G(D′) a group homomorphism and ν : X (D) −→ X (D′) a set map.
It is easy to see from the definitions of G(D) and G(D′) and the fact that D and D′ arise

from an action of a group on a set that µ is an isomorphism of groups corresponding to Tietze
transformations of the presentation of G(D). Similarly one can check that ν is a set bijection.
�

(5.2.2) Corollary. Let G be a group acting non-trivially on a set X. Let D be local data for
the action of G on X. Let D′ be an enlargement of D. Then D′ is complete if and only if D
is complete. �

The following proposition establishes the existence of a complete set of data for any non-
trivial action of a group G on a set X . We use the notation and setting of Section 1.5.

(5.2.3) Proposition. Let G × X −→ X be a non-trivial action of a group G on a set X.
Then there exists local data D that is complete for G × X −→ X. If further G is finitely
generated, then there exists complete local data D with a locally finite graph ∆.

Proof. Using the notation of Section 1.5, if G is not finitely generated, we set X = Xα and
take the graph ∆ to have a single vertex V∆ = X = Xα. The edges E∆ are then maps

βg : X −→ gX, g ∈ G

which reflect the action of g on X . Thus we also have Yβg
= X for each g ∈ G. Note that ∆

is locally infinite. The vertex group of the graph of groups G(V,E) is

G(X) = lim−→
Z⊆X

(GZ , ρ
Z′

Z ),

and we have canonical isomorphisms of direct limits λg : GX −→ GgX , where

GX = {g ∈ G | gx = x for every x ∈ X}.

Since the action of G on X is non-trivial, Gx � G for each x ∈ X hence GX � G. We have

G(βg) ∼= G(o(βg))

for all edges βg, that is, the edge group on the edge βg is isomorphic to the vertex group at
o(βg) since Yβg

= X for each g ∈ G. Thus each edge homomorphism

ωβg
: G(βg) −→ G(t(βg))

is an isomorphism.
The vertex group G(X) occurs in the generating set of G(D), as do elements gβ for each

edge β and hence for each g ∈ G. So G(D) −→ G is a group isomorphism since every
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generator of G and every defining relation of G is automatically represented in G(D). The
map X (D) −→ X is automatically a set bijection

Xα,x −→ X (D)
x ↔ (1, x)≈

and the action G(D)× X (D) −→ X (D) commutes with the action G×X −→ X . Hence this
choice of local data is complete.

If G is finitely generated, let S = 〈s1, s2, . . . , sk〉 be any generating set for G. Set X = Xα

with a single α and
φβi

= action of si on X , i = 1, . . . , k.

Set Yβi
= Xα for each i. Thus

φβi
: Yβi

= X −→ Ỹβi
= siX.

The graph of groups G(V,E) has a single vertex V = X the edges are maps

βi : X −→ siX, i = 1, . . . , k.

The vertex group is

G(X) = lim−→
Z⊆X

(GZ , ρ
Z′

Z ),

and we have isomorphisms of direct limits λi : GX −→ GsiX , where

GX = {g ∈ G | gx = x for every x ∈ X}.

Since the action of G on X is non-trivial, Gx � G for each x ∈ X hence GX � G. Since
Yβi

= Xα for each i,
G(βi) ∼= G(o(βi))

for all edges βi, that is vertex and edge groups are isomorphic, and so each edge homomorphism

ωβi
: GX −→ GsiX

is an isomorphism. If the action of G is fixed point free, then GX and GsiX are trivial, the
vertex group G(X) is trivial, and λi, ωi are isomorphisms of trivial groups.

The relation
βwβi

(g)β−1 = wβi
(g)

says that GsiX is conjugate to Gs−1
i

X by the group element βi corresponding to the edge

X −→ siX .
Thus G(V,E) has a single vertex and finitely many edges emanating from each vertex,

indexed over the generators of G, so G(V,E) is finite.
We can enlarge this data by moves of type (E1) to give data D′ with φβ = gβ for each

group element gβ ∈ G. Since by the above argument, the enlargement D′ is complete, by
Corollary (5.2.2) D is complete for G×X −→ X . �
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We note that there is significant redundancy in this choice of complete data, particularly
when G is not finitely generated and each group element appears as a generator in the pre-
sentation of G(D).
We now give some examples of group actions with complete data.

Example - An infinitely but countably generated free group G = 〈s1, s2, . . . 〉 acting on itself
by left multiplication. We set X = Xα = G and take the graph ∆ to have a single vertex
V∆ = X = Xα. The edges E∆ are then maps

βi : X −→ siX, i = 1, 2, . . .

Note that ∆ is locally infinite. Since the action of G is fixed point free, the multiplicity groups
Gx and Gsix are trivial for all x ∈ G, λβ and ωβ are isomorphisms of trivial groups and there
is no monodromy. As in 2.3 (5), any closed path in ∆ can be viewed as a morphism from
α to α. There is thus a morphism βi corresponding to every generator si. Hence the group
G(D) is generated by a set indexed over the generators si and has no relations. Thus G(D) is
isomorphic to G.

Example - G = Z/2Z acting on itself by left multiplication. Let G = 〈a | a2 = 1〉 = {1, a}.
We take X = Xα = G = {1, a}. The graph ∆ has a single vertex V∆ = X = Xα and the
edges are maps βa : g −→ ag for g ∈ G. We have

β1 : {1, a} −→ {1, a},

βa : {1, a} −→ {a, 1}.

All multiplicity groups are trivial. As in 2.3 (5) any closed path in ∆ with can be viewed
as a morphism from α to α. In particular, the closed path β2

a : g −→ ag −→ a2g = g is a
morphism from α to α, so β2

a = 1 is a monodromy relation in G(D). The group G(D) thus
has presentation

G(D) = 〈βa | β2
a = 1〉 ∼= G.

Example - A finitely generated free group G acting on itself by left multiplication. Let S =
〈s1, s2, . . . , sk〉 be any generating set for G. Set X = Xα and

φβi
= action of si on X , i = 1, . . . , k.

The graph ∆ has a single vertex V = X = Xα and the edges are maps

βi : X −→ siX, i = 1, . . . , k.

We have Yβi
= Xα for each i. Since the action of G is fixed point free, the multiplicity groups

GX and GsiX are trivial, the vertex group G(X) is trivial, λi and ωi are isomorphisms of
trivial groups for each i and there is no monodromy. Hence the group G(D) is generated by a
set indexed over the edge set βi for i = 1, . . . , k and has no relations. Thus G(D) is isomorphic
to G.
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(4) Let D and D’ be two complete sets of data for an action G×X −→ X . We say that D
and D’ are compatible if there exist finite subsets F1 and F2 of G such that

W ⊆ F1 ·W ′

W ′ ⊆ F2 ·W,
where

W =
⊔

α∈V

Xα, W ′ =
⊔

α′∈V ′

Xα′ .

For example if X is a proper metric space and if G acts on X by isometries properly
discontinuously and cocompactly, then any D and D’ with compactW andW ′ are compatible.

Proposition (5.2.4). Let G be a finitely generated group acting non-trivially on a set X.
Let D and D’ be two complete compatible sets of data for G ×X −→ X. If D and D’ have
finite graphs ∆ and ∆′, then D and D’ have a common enlargement D′′ also with a finite
graph ∆′′.

5.3 Examples.

In this section, we give some examples to demonstrate how our machinery may be used to
reconstruct group actions; that is, given an action G×X −→ X of a group on a set, we shall
use (appropriately chosen) local data

D = ((Xα)α∈V , (φβ)β∈E, (GZ)Z∈Φ, (ρ
Z′

Z ), (λβ,Z), (gγ,Z))

arising from this group action (as in 1.5) to build a group G(D) and a space X (D) such that
G(D) acts on X (D), and the diagram

(1)

G(D) × X (D) −→ X (D)
↓µ ↓ν ↓ν
G × X −→ X

commutes (cf 3.1).
The group G(D) will be the fundamental group π1(M(D, α0)) of the monodromy groupoid

M(D, α0). The space X (D) will be the covering space M̃(D, α0) as in 2.4. In many of the
following examples, the maps µ and ν in (1) will be isomorphisms.

Example 1. A free action on R2 by translations.

The group G = Z× Z = 〈a, b | ab = ba〉 acts on the plane X = R2 by translations:

G× R2 −→ R2

a : (x, y) 7→ (x+ 1, y)

b : (x, y) 7→ (x, y + 1)
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The subset Y ⊆ X , where Y is a unit square in the plane, is a fundamental domain for the
action of G on X .

1

0 1

The local pseudogroup structure on X is generated by partial isometries (in the usual

metric on R2) φβ1
: Yβ1

−→ Ỹβ1
and φβ2

: Yβ2
−→ Ỹβ2

, where Yβ1
is the closed interval on the

y-axis from y = 0 to y = 1, Ỹβ1
is the closed interval on the line x = 1 from y = 0 to y = 1,

Yβ2
is the closed interval on the line y = 1 from x = 0 to x = 1 and Ỹβ2

is the closed interval
on the x-axis from x = 0 to x = 1:

~
Y 1

Y 1

! 1

~
Y 2

Y 2

! 2

The multiplicity structure on X is trivial since G acts freely. There is monodromy in the
corners of the unit square; consider the orbit of the point (0, 0) under the sequence of partial
isometries φ−1

β2
φ−1
β1
φβ2

φβ1
:
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 !
1

 !
2

 !
2

–1 !
1

–1

The monodromy element corresponding to this fixed point of the local pseudogroup is
the trivial element since all multiplicity groups are trivial. This gives rise to a monodromy
relation:

β2
−1β1

−1β2β1 = 1.

All other monodromy relations are a consequence of this relation.
The graph ∆ corresponding to D is the graph:

 !!"

#

$
1

$
2

The group G(D) = π1(M(D, α)) has the presentation

G(D) = 〈β1, β2 | β−1
2 β−1

1 β2β1 = 1〉

which is isomorphic to G = Z× Z = 〈a, b | ab = ba〉.
The space X (D) = M̃(D, α) is obtained in the following way: let

~
Y 1

Y 1
X! "

Then (1, Xα) ⊆ M̃(D, α). Similarly, (φβ1
, Xα) ⊆ M̃(D, α). By the relation (2)M in 2.4,

we identify points (1 · β1, x) ≈M (1, φβ1
(x)), where x ∈ Yβ1

. That is; we glue copies of Xα as
follows:
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~
Y 1

Y 1

(1, X!)

~
Y 1

Y 1

( 1, X!)

(1, " (x))
1

( 1, x)

resulting in:

In a similar way, we glue together all other translates of Xα by elements of G(D) = Z× Z
to obtain the space X (D) as the plane R2 tessellated by unit squares, where we give X (D)
the metric induced by giving Yβ1

, Ỹβ1
, Yβ2

, Ỹβ2
length 1. We observe also that G(D) acts on

X (D) by translations.
In this example, we have reconstructed the group G up to isomorphism, the space X up

to isometry, and the action G×X −→ X up to equivariant isometry.

Example 2. A non discrete free action on R.

The group G = 〈a, b | ab = ba〉 acts freely on X = R by translations:

a : x 7→ x+ 1, b : x 7→ x+
√
2.

The orbits for this action are dense and the action is not properly discontinuous. There is
no fundamental domain for this action in the usual sense, but our machinery permits us to
reconstruct the original action by using the local data to imitate a fundamental domain.

We take Φ to be the closed subsets of R and we take

Xα = [0, 1 +
√
2] ⊂ R

Yβ1
= [0,

√
2]

Ỹβ1
= [1, 1 +

√
2]

Yβ2
= [0, 1]

Ỹβ2
= [
√
2, 1 +

√
2]
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and we have partial mappings

φβ1
: Yβ1

−→ Ỹβ1

x 7→ x+ 1

and

φβ2
: Yβ2

−→ Ỹβ2

x 7→ x+
√
2

which are restrictions of the action of the generators a and b to Xα:

~
Y 2

Y 1

! 1

! 2

Y 2

x0 x1 x3 x2

0 1 "2 2 1+ "2

translation by "2

translation by 1 ~
Y 1

X#

The local pseudogroup structure on X is generated by the partial mappings φ1 and φ2; the
multiplicity structure is trivial since the action is free.

The local pseudogroup admits monodromy; all elements of the pseudogroup which have
fixed points are consequences of the following composition of partial mappings:

x0
φβ1−−−−→ x1

φβ2−−−−→ x2
φ
−1
β1−−−−→ x3

φ
−1
β2−−−−→ x0

where x0 = 0, x1 = 1, x2 = 1+
√
2, x3 =

√
2, therefore we have a single monodromy relation:

β−1
2 β−1

1 β2β1 = 1.

This local pseudogroup and its monodromy (with trivial multiplicity structure) defines
local data D on X . We can therefore construct a group G(D) and a space X (D) with an
action G(D)×X (D) −→ X (D) imitating the original action G×X −→ X .
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Since we have a single monodromy relation, and all multiplicity groups are trivial, the
group G(D) is given by the presentation:

G(D) = 〈β1, β2 | β−1
2 β−1

1 β2β1 = 1〉 ∼= G.

We build the space X (D) as follows:

(1, X )

(!1, X )

(!2, X )

(!2!1, X )

(!1!2, X )

0 1 "2 2 1+"2

0 1 "2 2 1+"2

0 1 "2 2 1+"2

0 1 "2 2 1+"2

0 1 "2 2 1+"2

#!1

#!2

#!1

#!2

Schematically, this picture can be represented:
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We give X (D) the metric induced by giving Yβ1
, Ỹβ1

length 1 and Yβ2
, Ỹβ2

length
√
2.

We have the equality β2β1 = β1β2 in G(D), therefore, in X (D), we identify the β2β1-copy
of Xα with the β1β2-copy of Xα:

0 1+ 2

yielding:

0 1+ 2 2+ 2

By iterating such gluings, we construct the space X (D) which is isometric to R. We have
reconstructed the group G up to isomorphism, the space X up to isometry, and the action
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G ×X −→ X up to equivariant isometry, even though the action of G on X is not properly
discontinuous.

Example 3. A free action of a surface group on the Poincaré disk.

Let X = H2 in the Poincaré disk model. We construct a Fuchsian group Γ acting discretely
on X by isometries in the following way. Choose a regular octagon D in H2 with all angles
equal to π/4, with side labels:

D  

b
1

d
2

b
2

d
1

a
2

c
1

a
1

c
2

!/4

There are unique isometries ga, gb, gc and gd in PSL2(R), the group of orientation pre-
serving isometries of H2, such that:

ga(a1) = a2

gb(b1) = b2

gc(c1) = c2

gd(d1) = d2.

It follows that the group Γ = 〈ga, gb, gc, gd〉, generated by ga, gb, gc and gd is a discrete
subgroup of PSL2(R) acting on H2 with fundamental domain D, and presentation:

Γ = 〈ga, gb, gc, gd | [gc, gd][ga, gb] = 1〉,
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where

[ga, gb] = gagbg
−1
a g−1

b

[gc, gd] = gcgdg
−1
c g−1

d .

We now choose local data on Xα = D, induced by the action of Γ on H2 as in 1.5. We
take:

Xα = D ⊆ H2

Ya = a1, Ỹa = a2

Yb = b1, Ỹb = b2

Yc = c1, Ỹc = c2

Yd = d1, Ỹd = d2

We choose orientations of the geodesic segments ai, bi, ci, di, i = 1, 2 as indicated in the
diagram:
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b
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d
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b
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d
1
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c
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a
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c
2

!
b

!
a

!
d

!
c

x
0
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We define maps:

φa : Ya −→ Ỹa

a1 7→ a2

φb : Yb −→ Ỹb

b1 7→ b2

φc : Yc −→ Ỹc

c1 7→ c2

φd : Yd −→ Ỹd

d1 7→ d2

to be orientation preserving isometries from the geodesic segments a1, b1, c1, d1 to a2, b2, c2,
d2 respectively.

Since the action of Γ on H2 is free, we choose all multiplicity groups to be trivial. We have
a single monodromy relation:

x0 = [φc, φd][φa, φb](x0),

Thus G(D) is given by the presentation:

〈φa, φb, φc, φd | [φc, φd][φa, φb] = 1〉 ∼= Γ.

In Example 3 we showed that our local data as in Section (1.5) allows us to reconstruct a
free action of a surface group on the Poincaré disk. In the next example we show that there
is local data from a polygon associated with a two-dimensional orbifold O such that we can
reconstruct the fundamental group of O as the group of the data.

Example 4. Let O be a two-dimensional orbifold whose universal covering Õ is a manifold.

Let G = π1(O) and let p : Õ −→ O be the quotient projection. Then there is local data D for
which G(D) ∼= G.

Proof: We cut O into a P polygon with an even number of sides labelled a1, a2, . . . , ak
with side identifications. We can always arrange so that the interior of P contains cone points
x1, x2, . . . , xn which are labelled with the orders p1, p2, . . . , pn of cyclic groups from O:
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We choose a vertex x of P and make a cut from x to each cone point. Let P ′ denote the
resulting polygon:
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Let Xα = P ′. For each side identification

ai −→ a′i

let φβi
be the bijection

φβi
: ai −→ a′i.

For each cone point xi let
φbi : bi −→ b′i

be a bijection identifying the cuts from x to xi. We introduce multiplicity groups Cpi
at

points xi:
Cpi

= 〈ci | cpi

i = 1〉,

and trivial multiplicity elsewhere. There are 2 types of monodromy relations for this choice
of data. At the points xi,

φbi(xi) = xi

with corresponding monodromy element ci.

(a) Oriented case Suppose that O has genus g and n cone points as above. Then the
number of sides of the polygon P is divisible by 4. At the point x we have

φbn . . . φb2φb1 [φβg
φβg−1

] . . . [φβ4
φβ3

][φβ2
φβ1

](x) = x.
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(b) Non-oriented case Suppose that O has genus g and n cone points as above. At the
point x we have

φbn . . . φb2φb1φ
2
βg
. . . φ2β2

φ2β1
(x) = x.

For this choice of data D, we have

Oriented case

G(D) = 〈β1, . . . , βg, c1, . . . cn | [φβg
φβg−1

] . . . [φβ4
φβ3

][φβ2
φβ1

] = cn . . . c2c1, c
pi

i = 1〉,

which is isomorphic to the fundamental group of O.

Non-oriented case

G(D) = 〈β1, . . . , βg, c1, . . . cn | φ2βg
. . . φ2β3

φ2β2
φ2β1

= cn . . . c2c1, c
pi

i = 1〉,

which is isomorphic to the fundamental group of O.

6. RECOVERING THE BASS-SERRE THEORY.

In this section we show that when we choose local data (as in 1.5) from a graph of groups
A, our results coincide with the classical results of the theory of Bass-Serre for reconstructing
group actions on simplicial trees ([B], [S]). We will prove the following:

(1) Theorem. Let A be a graph of groups with underlying graph A. Let a ∈ V A and let

G = π1(A, a). Let X = (̃A, a) so that G acts on X without inversions. Then there is local data
D from which we construct a group B(D) and a space X (D) with an action of B(D) on X (D),
giving a canonical homomorphism µ : B(D) −→ G and canonical set map ν : X (D) −→ X
that makes the following diagram commute:

B(D) × X (D) −→ X (D)
↓µ ↓ν ↓ν
G × X −→ X

The map µ is an isomorphism of groups. The map ν is a µ-equivariant isomorphism of
covering trees.

(2) This theorem will follow from Theorem 6.28, and 6.33-6.35. This result shows that when
our local data is chosen from a graph of groups, we recover the Bass-Serre correspondence
between actions (without inversions) on trees and quotient graphs of groups.
(3) Let A = (A,A) be a graph of groups with underlying graph A, where A assigns vertex
groups Av for each v ∈ V A and edge groups Ae = Ae for each e ∈ EA. The origin and
terminus of an edge e will be denoted by o(e) and t(e) respectively. For each e ∈ EA we
denote the boundary monomorphism from Ae to Ao(e) by αe.

We choose a maximal tree T ⊆ A and an orientation on EA − ET which we denote by
(EA− ET )+.
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(4) Example.

e
2

e
1

e
3

e
1 

, e
2 

, e
3

in EA–ET 

A  

(5) We define a new graph A′ by ‘opening’ each edge e ∈ (EA−ET )+ at its terminal point.
(6) For each e ∈ (EA−ET )+ we introduce a new vertex denoted ve. Then the graph A′ is
defined as follows:

V A′ = V A ∪ {ve | e ∈ (EA− ET )+},

EA′ = EA,

oA′(e) = oA(e), e ∈ (EA−ET )+,

tA′(e) = ve, e ∈ (EA− ET )+,

oA′(e) = oA(e), e ∈ (ET ),

tA′(e) = tA(e), e ∈ (ET ),

where oA′ , tA′ and oA, tA denote the origin and terminal vertices in A′ and A respectively.
We observe that the graph A′ is in fact a tree.
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(7) Example.

For A as above, we have:

A’  !

e2

e1

v
e
1

2

3

e3

v
e

v
e

(8) We define a new graph of groups A′ with underlying graph A′. For each e ∈ (EA−ET )+
we let ÃtA(e) be an isomorphic copy of AtA(e), where

ρ̃e : AtA(e)

∼=−→ ÃtA(e)

a 7→ ã, a ∈ AtA(e).
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(9) For each e ∈ (EA − ET )+ we set A′
ve

= ÃtA(e). For v ∈ V A = V T , we set A′
v = Av.

For e ∈ ET , we set A′
e = Ae. For e ∈ (EA−ET ), we set A′

e = Ae. For edges of A
′ inside T ,

the boundary monomorphisms are defined as for A.
(10) For e ∈ (EA−ET )+ we define

α′
e : A′

e →֒ A′
oA′(e)

to be
αe : Ae →֒ AoA′(e),

and
α′
e : A′

e →֒ A′
ve

= ÃtA(e)

to be
α′
e = (ρ̃e · αe) : Ae →֒ A′

ve
= ÃtA(e).

(11) From now on, we identify the graph A′ with its geometric realization, which will also
be denoted A′; that is, we view edges of A′ as intervals, isometric to the closed unit interval
[0, 1] ⊂ R. This gives A′ the structure of a metric space.
(12) We now define a local pseudogroup structure on A′. We define Φ to be the set of all
closed intervals of A′, including single point sets.
(13) A single point set {x} ⊆ A′ will be viewed as a degenerate interval [x, x] ⊆ A′.
(14) For each e ∈ (EA− ET )+ we define a map

φe : {tA(e)} −→ {ve}
tA(e) 7→ ve.

The collection of maps {φ}e∈(EA−ET )+ defines a local pseudogroup Γ on A′ with graph ∆

consisting of a single vertex, denoted α, and a loop denoted βe for each e ∈ (EA−ET )+ with
o(βe) = α = t(βe).
(15) We assume hereafter (by an obvious modification of A′) that for each e ∈ EA′, we have
A′

e = A′
oA′ (e)

∩AtA′(e), and that the boundary monomorphisms α′
e and α

′
e are inclusion maps:

α′
e : A′

e →֒ A′
oA′(e)

α′
e : A′

e →֒ A′
tA′(e).

(16) We now define a multiplicity structure on A′. For an interval [a, b] ⊆ A′, the multiplicity
group for [a, b] will be denoted G[a,b].
(17) For a vertex v ∈ V A′ we set:

Gv = A′
v.

Let e ∈ EA′, and let v0 = oA′(e), v1 = tA′(e). For [a, b] ⊆ e with [a, b] 6= {v0} and [a, b] 6= {v1}
we set:

G[a,b] = A′
e.
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(18) For closed subintervals [a, b] ⊆ e we define restriction maps as follows: the map

ρ
[v0,b]
[v0,v0]

: G[v0,b] →֒ G[v0,v0],

for b ∈ [v0, v1] is defined to be:

ρ
[v0,b]
[v0,v0]

= α′
e : A′

e →֒ A′
v0
.

The map

ρ
[a,v1]
[v1,v1]

: G[a,v1] →֒ G[v1,v1],

for a ∈ [v0, v1] is defined to be:

ρ
[a,v1]
[v1,v1]

= α′
e : A′

e →֒ A′
v1
.

(19) Let [a, b] be a closed interval in (the metric tree) A′. Then [a, b] can be described as a
union of intervals:

[a, v1] ∪ [v1, v2] ∪ · · · ∪ [vn−1, vn] ∪ [vn, b],

for vertices v0, v1, v2, . . . , vn+1 ∈ V A′ such that (vi, vi+1) are adjacent vertices, i = 0, . . . , n.
The path with vertex sequence (v0, v1, v2, . . . , vn+1) is then a reduced path, and a ∈ [v0, v1],
b ∈ [vn, vn+1] with [a, b] ⊆ [v0, vn+1].
(20) We define the multiplicity group G[a,b] to be the group:

G[a,v1] ∩G[v1,v2] ∩ · · · ∩G[vn−1,vn] ∩G[vn,b].

(21) Let [c, d] ⊆ [a, b] be a closed subinterval. It is easy to see that G[c,d] ⊆ G[a,b], and we
can therefore define

ρ
[c,d]
[a,b] : G[c,d] −→ G[a,b]

to be the inclusion map G[c,d] →֒ G[a,b].
(22) We recall that {φ}e∈(EA−ET )+ defines a local pseudogroup structure on A′, where

φe : {tA(e)} −→ {ve}
tA(e) 7→ ve,

and for each ve ∈ A′, e ∈ (EA− ET )+, there is a canonical isomorphism:

ρ̃e : AtA(e)

∼=−→ ÃtA(e).

(23) We define isomorphisms of multiplicity groups:

λe,tA′(e) := ρ̃e : GtA′ (e) −→ Gve
,
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where GtA′ (e) = A′
tA′(e)

, Gve
= Ã′

tA′(e). By 5.4, this defines a multiplicity structure on A′,

and the relevant axioms (compatibility with restrictions as in 1.2) are trivially satisfied since
the pseudogroup maps are defined on single point sets.
(24) We observe that the local pseudogroup structure on A′ admits no monodromy.
(25) The local pseudogroup structure and multiplicity structure described above define data
D on A′(= Xα) in the sense of 1.4. We can therefore associate a graph of groups (as in 2.1)
and a Bass-Serre groupoid (as in 2.3) to D.
(26) The graph ∆ = (V,E, o, t,−) associated to D (as in 2.1) consists of a single vertex,
denoted α, and a loop denoted βe for each e ∈ (EA − ET )+, with o(βe) = α = t(βe). Thus
∆ is a bouquet of circles, with a circle for each e ∈ (EA− ET )+.

We build a graph of groups G(V,E) on ∆ as follows: for the vertex α, we take the vertex
group G(α) to be the direct limit of the multiplicity groups and restriction mappings (as in
2.1.3):

G(α) = lim−→
Z⊆Xα

(GZ , ρ
Z′

Z ).

Since A′ is a tree of groups, it is easy to see that G(α) = π1(A′), the fundamental group of
the graph of groups A′. This gives a natural inclusion A′

v →֒ G(α) for each v ∈ V A′.
(27) For each e ∈ (EA− ET )+ we set:

G(βe) := AtA(e).

We define boundary monomorphisms as in 2.1.9 as follows:

ωβe
: AtA(e) →֒ G(α) = π1(A′),

where ωβe
is the canonical inclusion,

ωβe
: AtA(e) →֒ G(α) = π1(A′)

a 7→ ã,

for each a ∈ AtA(e).

(28) Theorem. With the notations above, there is a canonical isomorphism

π1(A, T ) ∼= B(D),

where B(D) is the Bass-Serre groupoid of D.
Proof. The fundamental group of the graph of groups A with respect to T is given as follows
([B]):

π1(A, T ) =〈(Av)v∈VA, EA
+ | eαe(g)e

−1 = αe(g) ∀g ∈ Ae, e ∈ EA+, e = 1 ∀e ∈ T 〉
〈(Av)v∈VA, E(A− T )+ | eαe(g)e

−1 = αe(g) ∀g ∈ Ae, e ∈ E(A− T )+,
αe(g) = αe(g) ∀g ∈ Ae, e ∈ ET+〉.
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(29) We have G(α) = π1(A′), where

G(α) =〈(Av)v∈VA, (ÃtA(e))e∈E(A−T )+ | αe(g) = αe(g) ∀g ∈ Ae, e ∈ ET+,

αe(g) = α̃e(g) ∀g ∈ Ae, e ∈ E(A− T )+〉.

(30) By 2.3.3 the Bass-Serre groupoid B(D) has the following presentation:

B(D) = 〈G(α), (βe)e∈E(A−T )+ | βeωβe
(g)β−1

e = ωβe
(g), e ∈ E(A− T )+, g ∈ AtA(e)〉

= 〈G(α), (βe)e∈E(A−T )+ | βegβ−1
e = g̃, e ∈ E(A− T )+, g ∈ AtA(e)〉,

by 6.27.
(31) Using the presentation 6.29 for G(α), we obtain:

B(D) = 〈(Av)v∈VA, (ÃtA(e))e∈E(A−T )+ , (βe)e∈E(A−T )+ | αe(g) = αe(g) ∀g ∈ Ae, e ∈ ET+,

αe(g) = α̃e(g) ∀g ∈ Ae, e ∈ E(A− T )+, βegβ−1
e = g̃, e ∈ E(A− T )+, g ∈ AtA(e)〉.

(32) By a Tietze transformation we can modify the presentation for B(D) as follows:

B(D) = 〈(Av)v∈VA, (ÃtA(e))e∈E(A−T )+ , (βe)e∈E(A−T )+ | αe(g) = αe(g), ∀g ∈ Ae, e ∈ ET+,

αe(g) = βeαe(g)β
−1
e ∀g ∈ Ae, e ∈ E(A− T )+,

βegβ
−1
e = g̃, e ∈ E(A− T )+, g ∈ AtA(e)〉

= 〈(Av)v∈VA, (βe)e∈E(A−T )+ | αe(g) = αe(g), ∀g ∈ Ae, e ∈ ET+,

αe(g) = βeαe(g)β
−1
e , ∀g ∈ Ae, e ∈ E(A− T )+〉

= π1(A, T ) by 6.28. �

(33) Our remaining objective in this section is to compare the classical description of the
Bass-Serre covering tree of a graph of groups with the fibered product space X (D) associated
to our data D chosen from a graph of groups as in 6.3-6.24. Let A = (A,A) be a graph of
groups as in 6.3. Following ([B], 1.16) and ([S], 5.3) A has a universal covering tree X which
can be constructed as follows.

(34) Let T be a maximal tree in A and let G = π1(A, T ). Then the vertices of X = (̃A, T )
are:

V X =
∐

v∈V A

π1(A, T )/Av,

the edges of X are:

EX =
∐

e∈EA

π1(A, T )/αeAe,

and for s = gαeAe ∈ EX where g ∈ G, we have:

oX(s) = gAoA(e)

tX(s) = geAtA(e),
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where oX(s) and tX(s) denote the origin and terminus in X of s respectively. We observe
that if e ∈ ET , then e =G 1, and therefore

tX(s) = gAtA(e).

(35) We recall from that the fibered product space

X (D) = B(D)× A′/ ≈,

where B(D) = π1(A, T ) by 6.28, A′ is as in 6.5, and ≈ is an equivalence relation generated
by:

(gh, v) ≈ (g, v),

where h ∈ Av, g ∈ G, v ∈ V A,

(ge, tA(e)) ≈ (g, ve),

where g ∈ G, v ∈ V A, e ∈ E(A− T )+, and

(g, e) ≈ (g′, e′)

if
(g, oA′(e)) ≈ (g′, oA′(e′))

and
(g, tA′(e)) ≈ (g′, tA′(e′)).

The space X (D) naturally has the structure of a combinatorial graph on which B(D) =
π1(A, T ) acts as:

g(g1, v)≈ = (gg1, v)≈

g(g1, e)≈ = (gg1, e)≈,

for g, g1 ∈ π1(A, T ), v ∈ V A′, e ∈ EA′.
It is a routine check to verify that the graph X (D) coincides with the Bass-Serre covering

tree X of A, and that the actions

π1(A, T )×X −→ X

and
π1(A, T )×X (D) −→ X (D)

correspond up to equivariant isomorphism. This together with Theorem 6.28 completes the
proof of Theorem 6.1. �
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7. RECONSTRUCTING NON PROPERLY DISCONTINUOUS GROUP AC-
TIONS ON THE UPPER HALF PLANE.

When a group acts freely and discretely on a space X , significant information about the
action can be determined from the quotient space. When the action is not free and not
discrete, a different approach is needed. In many such cases, the machinery described in
Sections 1-3 can be used to approximate a fundamental domain for the action.

In this section we examine a non discrete free action of a group G on H2 and we show that
we can reconstruct the action of G on H2 by considering only local information.

Let G be the group with presentation

G = 〈x, y | yxy−1 = x2〉.

(1) By the normal form theorem for HNN-extensions, it is easy to see that every element
1 6= g ∈ G, or its inverse, is represented by a word of the form y−mxkyn, m ≥ 0, n ≥ 0, k ∈ Z,
which is conjugate in G to a word of the form xkyℓ, where k ∈ Z, ℓ ∈ Z, and k and ℓ are not
both zero.
(2) The group G acts on the hyperbolic plane H2. In the upper half plane model, this action
can be described as follows. Let σ : G −→ PSL2(R) be defined on generators:

σ : x 7→ σx,

σ : y 7→ σy,

where, for z ∈ H2, σx is the translation:

σx : z 7→ z + 1,

and σy is the homothety:
σy : z 7→ 2z.

(3) We observe that for z ∈ H2:

σy · σx · σ−1
y (z) = σy · σx(z/2)

= σy(1 + z/2)

= 2 + z

= σ2
x(z).

Therefore σ extends to a homomorphism from G to PSL2(R) which will also be denoted
σ. We have the following:

(4) Proposition. The action of G on H2 is faithful, free and non discrete.

Proof. By 5.1.1 every element 1 6= g ∈ G, or its inverse, is represented by a word which is
conjugate in G to a word of the form xkyℓ, where k ∈ Z, ℓ ∈ Z, and k and ℓ are not both
zero. The image of such a word under σ is the following:

σ : xkyℓ 7→ σk,ℓ,
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where σk,ℓ = σk
xσ

ℓ
y, so that

σk,ℓ : z 7→ 2ℓz + k.

If ℓ 6= 0, then 2ℓ 6= 1 and so

σk,ℓ(z) 6= z, for every z ∈ H2.

If ℓ = 0 but k 6= 0, then

σk,ℓ : z 7→ z + k,

so σk,ℓ(z) 6= z for every z ∈ H2. Therefore the action of G on H2 via σ is faithful and free.
To observe that the action of G on H2 via σ is not discrete, consider the image of the word
y−sxys, s ∈ Z under σ:

σ : y−sxys 7→ σs = σ(y−sxys),

where

σs : z
(σy)

s

−→ 2sz
(σx)−→ 2sz + 1

(σy)
−s

−→ z + 1/2s.

By choosing s arbitrarily large, for fixed z ∈ H2 d(z, σs(z)) is arbitrarily small in the
hyperbolic metric. �

We will prove the following:

(5) Theorem. Let G = 〈x, y | yxy−1 = x2〉 with its non discrete action on the upper half
plane H2 by translation σx : z 7→ z + 1 and homothety σy : z 7→ 2z. Then there is local
data D from which we can construct a group G(D) and a space X (D) with a natural action
G(D)×X (D) −→ X (D) that commutes with the action of G on H2:

G(D) × X (D) −→ X (D)
↓µ ↓ν ↓ν
G × X −→ X

The action of G(D) on X (D) is discrete and cocompact. The map µ : G(D) −→ G is an
isomorphism of groups. The map ν : X (D) −→ X is a G(D)-equivariant map from X (D) to
the hyperbolic plane H2.

(6) In order to motivate our choice of local data for Theorem 5.1.5, we build a K(Π, 1) space
(as in ([Ep], pp 154-160)) denoted K, with fundamental group G = 〈x, y | yxy−1 = x2〉 by
taking loops for the generators x and y, and adding a two cell for the relator yxy−1x−2 = 1.

The 1-skeleton Γ of the universal covering K̃ is the Cayley graph of G.

(7) To construct the universal covering K̃, we start with the defining relation yxy−1x−2 = 1
drawn as a filled in rectangle:
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We glue copies of the rectangle along vertical sides to get an infinite horizontal strip:

x

y

x

y

x

x x x x x x

yy

and we observe that every vertex has both incoming and outgoing edges labelled ‘x’. To

complete the universal covering K̃, every vertex must have both incoming and outgoing edges
labelled ‘y’ (drawn without shading):

yy

x

x x

y

x

x x

y

x

x x x x

y

y

x

y

x
x

x
x

x

yyy

We note that K̃ has a ‘sideways’ projection p : K̃ −→ T , where T is the trivalent tree.

Choosing a bi-infinite path γ in T , the inverse image of γ in K̃, denoted Sγ , is homeomorphic
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to R2 and can be mapped to the upper half plane in such a way that the homothety σy : z 7→ 2z
maps each rectangular horizontal strip to the one above it. The following gives the image of
Sγ in the upper half plane, showing a tessellation H2 by horocycles and radial lines:

(8) Proof of Theorem 7.1.5. We begin by choosing local data for the action of
G = 〈x, y | yxy−1 = x2〉 on H2. First we construct a local pseudogroup of partial isome-
tries. Let Xα be the rectangle in the upper half plane with corners i, 2i, 2i+ 2, i+ 2:

i

2i

i+1

2i+1

i+2

2i+2

 y

 x

~
Yy

Yy

Yx
~
Yx
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Let Yx be the square including the corners i, 2i, 2i+1, i+1. Let Ỹx be the square including

the corners i+1, 2i+1, 2i+2, i+2. Let φx be the map sending Yx to Ỹx. Let Yy be the piece

of the horocycle of height i from 0 to i+ 1. Let Ỹy be the piece of the horocycle of height 2i

from 0 to 2i+ 2. Let φy be the map sending Yy to Ỹy.

It is easy to see that the maps φx and φy are restrictions of the action of the generators

σx and σy of G on H2 to the rectangle Xα. Moreover (φx : Yx −→ Ỹx, φy : Yy −→ Ỹy) forms
a local pseudogroup of partial isometries.

By Proposition 7.1.4 the action of G = 〈x, y | yxy−1 = x2〉 on H2 is free and it follows that
the multiplicity groups of our data are trivial. There is non-trivial monodromy at the point
i:

φ−1
y φ−2

x φyφx(i) = φ−1
y φ−2

x φy(i+ 1)

= φ−1
y φ−2

x (2i+ 2)

= φ−1
y (2i)

= i,

and it is easy to see that all other monodromy relations follow from this one. This completes
the description of our local data D. It follows that the group G(D) (as in 2.4.10) is given by
the presentation:

G(D) = 〈βx, βy | βyβxβ−1
y = β2

x〉,

so G(D) ∼= G = 〈x, y | yxy−1 = x2〉.
Our next task is to construct the space X (D) (as in 2.4.10). The space X (D) is formed as

follows:

X (D) = (G(D)×Xα)/ ≈M,

where ≈M is the equivalence relation on G(D)×Xα generated by relations (as in 2.4.10):

(9) (gβx, z) ≈M (g, φx(z))

(10) (gβy, z) ≈M (g, φy(z)),

where g ∈ G(D), z ∈ Xα.

The relation 7.1.10 induces the following identifications:
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( y , z)

(1, ! (z))

( y , X")

(#, X")

( y , X" )

(1, z)

–1( y , ! (z))

–1

which gives:

( y , X!)

(" , X!)

( y , X! )
–1

fig 7.1.11

The relation 7.1.9 induces identifications:
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(1, X )

Y
x

~
Y
x

(1,!
x

(z))

("
x

, z)

("
x

,X )

which gives

(1, X )

(!
x
, X )

Iterating such gluings allows us to fill in each horizontal strip in fig 7.1.11 to complete the
constructon of the space X (D), giving a copy of the upper half plane tessellated by horocycles
and radial lines.

Combining identifications 7.1.9 and 7.1.10 gives rise to additional identifications of the
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form:

( x y ,X!)

( x ,X!)

This in turn gives rise to branchings in the space X (D) of the form:

( x y ,X!)( y ,X!)

( y ,X!)

(",X!)

One can check that (βxβy, Xα) and (βyβx, Xα) are identified in X (D). It follows that X (D)
is the filled in Cayley graph K̃ of the group G = 〈x, y | yxy−1 = x2〉 as in 5.1.6, and the
action of G(D) on X (D) is discrete and cocompact. �

There is an analogous choice of local data that allows us to reconstruct the non discrete
actions of the Baumslag-Solitar groups

B(1, n) = 〈x, y | yxy−1 = xn〉
on H2, for n ≥ 2.
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(12) Remark.

As we have observed, for non properly discontinuous group actions our local data as in
Section (1.5) allows us to imitate a fundamental domain, quotient space and universal covering
for the quotient. For non properly discontinuous action of a group G on proper quasi-geodesic
metric space X by isometries, we may also use our local data and a result of L. Mosher ([Mos])
to build a space on which the group acts properly discontinuously and cocompactly. Let D
be a complete set of data for the action of G on X . If we assume that the orbit map for
G×X −→ X has a quasi-isometric section, then by Lee Mosher’s theorem ([Mos]) the action
ofG onX is ‘laminable’. In this case there exists a ‘transversal’ τ and ‘product data’D×τ such
that we can reconstruct G up to isomorphism, a new space X ′ and a properly discontinuous
and cocompact action G×X ′ −→ X ′.
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