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ABSTRACT. Let ∆ be a rank 2 hyperbolic root system. Then ∆ has generalized Cartan matrix H(a, b) =(
2 −b
−a 2

)
indexed by a, b ∈ Z with ab ≥ 5. If a 6= b, then ∆ is non-symmetric and is generated by one

long simple root and one short simple root, whereas if a = b, ∆ is symmetric and is generated by two long
simple roots. We prove that if a 6= b, then ∆ contains an infinite family of symmetric rank 2 hyperbolic
root subsystems H(k, k) for certain k ≥ 3, generated by either two short or two long simple roots. We also
prove that ∆ contains non-symmetric rank 2 hyperbolic root subsystems H(a′, b′), for certain a′, b′ ∈ Z with
a′b′ ≥ 5.

1. INTRODUCTION

Let ∆ be the root system of a rank 2 Kac–Moody algebra g. Then ∆ has generalized Cartan matrix
H(a, b) :=

(
2 −b
−a 2

)
for some a, b ∈ Z with ab ≥ 1. Let S = {α1, α2} denote a basis of simple roots of

∆. If a 6= b, then ∆ is non-symmetric and its base consists of a long simple root and a short simple root,
whereas if a = b, ∆ is symmetric and its base consists of two long simple roots.

We are primarily concerned with the case that ab ≥ 5. In this case, ∆ is a rank 2 hyperbolic root system.
The real roots of ∆ are of the form wαi for some w ∈ W , where W is the Weyl group of the root system.
In this case, W ∼= D∞, is the infinite dihedral group. The additional ‘imaginary roots’ will not play a
role in this work. The real roots are supported on the branches of a hyperbola in R(1,1), with a pair of
branches for each root length (Figures 3–6).

Motivated by the work of Morita ([Mor], [Mor2]) we wish to determine which pairs of real roots are
such that their sum is a real root. This question was answered in arbitrary Kac–Moody root systems by
Billig and Pianzola ([BP]). Here we consider only rank 2 Kac–Moody algebras and we adopt a different
approach which will allow us, in a future project, to determine the non-trivial commutators and their
structure constants in both the Kac–Moody algebra and Kac–Moody group associated to H(a, b).

We obtain proofs of the results stated by Morita [Mor] that if a and b are both > 1, then no sum of real
roots can be a real root. It follows that the prounipotent subgroup corresponding to the positive real
roots on a single branch of the hyperbola is commutative. When a or b = 1 we prove, as stated in [Mor],
that the prounipotent subgroup generated by all the positive real short root groups is metabelian and the
prounipotent subgroup generated by all the positive real long root groups is commutative. Our results
in Sections 3 and 4 also cover the affine cases H(2, 2) and H(4, 1).

In order to make our results precise, we use two different concepts of a subsystem generated by a subset
Γ of real roots: namely a subsystem Φ(Γ), corresponding to a reflection subgroup of the Weyl group
and consisting entirely of real roots; and ∆(Γ), a subsystem whose set of roots are all those that can be
written as an integral linear combination of elements of Γ. Such a ∆(Γ) subsystem corresponds to a
certain subalgebra of the Kac–Moody algebra.

This research made extensive use of the Magma computer algebra system.
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We have completely classified both kinds of subsystem inside a rank 2 hyperbolic root system, and
found that the two concepts of subsystem are equivalent in almost all cases:

Theorem 1.1. Let ∆ is a hyperbolic rank 2 root system and let Γ be a subset of real roots in ∆. If a or b = 1 and
Φ(Γ) is the set of all short real roots in ∆, then ∆(Γ) = ∆. In all other cases, the set of real roots in ∆(Γ) is Φ(Γ).

Our classification also gives us the following result, which holds for either concept of subsystem:

Theorem 1.2. If ∆ is a rank 2 hyperbolic root system, then ∆ contains symmetric rank 2 hyperbolic root sub-
systems of type H(k, k) for infinitely many distinct k ≥ 3. If ∆ is non-symmetric of type H(a, b), then it also
contains non-symmetric rank 2 hyperbolic root subsystems of type H(a`, b`) for infinitely many distinct ` ≥ 2.

We also classify the rank 2 Φ-subsystems as finite, affine or hyperbolic systems:

Theorem 1.3. Let ∆ be a rank 2 root system and let Γ be a nonempty set of real roots in ∆.

(i) If ∆ is finite, then Φ(Γ) is finite.
(ii) If ∆ is affine of type Ã1, then Φ(Γ) has finite type A1 or affine type Ã1.

(iii) If ∆ is affine of type Ã(2)
2 , then Φ(Γ) has finite type A1, or affine type Ã1 or Ã(2)

2 .
(iv) If ∆ is hyperbolic, then Φ(Γ) has finite type A1 or hyperbolic type.

We mention the following related works: This work was inspired by the papers [Mor] and [Mor2]
where the results of interest were stated without proof. Feingold and Nicolai ([FN], Theorem 3.1) gave
a method for generating a subalgebra corresponding to a ∆(Γ)–type root subsystem for a certain choice
of real roots in any Kac–Moody algebra.

Tumarkin [T] gave a classification the sublattices of hyperbolic root lattices of the same rank. However,
he requires conditions on the possible angles between roots that exclude all but a finite number of rank
2 hyperbolic root systems. In contrast, for our intended application to Kac-Moody groups, we require
the explicit construction of the embedding of the simple roots of a subsystems into the ambient system,
rather than just describing its root lattice.

The authors are very grateful to Chuck Weibel for his careful reading of the MSc thesis ([Sr]) of the third
author. This research was greatly facilitated by experiments carried out in the computational algebra
systems Magma [BCFS] and Maple [M].

2. REAL ROOTS

Let A = H(a, b)1 be the 2× 2 generalized Cartan matrix

A = H(a, b) = (aij)i,j=1,2 =

(
2 −b
−a 2

)
for positive integers a, b, with Kac-Moody algebra g = g(A), root system ∆ = ∆(A), and Weyl group
W = W (A). When ab < 4, A is positive definite and so ∆ is finite. When ab = 4, A is positive semi-
definite but not positive definite and so ∆ is affine. When ab > 4, A is indefinite but every proper
generalized Cartan submatrix is positive definite, and so A is hyperbolic. Without loss of generality, we
assume that a ≥ b.
Let S = {α1, α2} denote a basis of simple roots of ∆. We have the simple root reflections

wj(αi) = αi − aijαj

1This is the transpose of the generalized Cartan matrix A in [ACP].
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for i = 1, 2 with matrices with respect to S

[w1]S =

(
−1 b

0 1

)
, [w2]S =

(
1 0
a −1

)
.

The Weyl group W = W (A) = 〈w1, w2〉.
Let

B = B(a, b) =

(
2a/b −a
−a 2

)
be a symmetrization of A. This defines the symmetric bilinear form (u, v) = [u]TSB[v]S and quadratic
form ||u||2 = (u, u), which are preserved under the action of W . So the set of real roots is

∆re = Wα1 ∪Wα2.

Since ∆ is finite, affine, or hyperbolic, the set of imaginary roots is

∆im = {α ∈ Zα1 + Zα2 | α 6= 0 and ||α||2 ≤ 0}.

The finite root systems are given in Figure 1 and the affine roots systems are given in Figure 2. Examples
of hyperbolic roots systems are given in Figures 3–6. These diagrams were created using Maple [M].
As usual we define the positive roots ∆+ to be all roots with positive coefficients in terms of the simple
roots, ∆− := −∆+, ∆re

± := ∆re
±, and ∆im

± := ∆im
± .

Now ||α1||2 = 2a/b and ||α2||2 = 2. So all real roots xα1 + yα2 in the orbit Wα1 satisfy

ax2 − abxy + by2 = b,

and all real roots xα1 + yα2 in the orbit Wα2 satisfy

ax2 − abxy + by2 = a.

These curves are displayed in Figures 1–6 as blue (resp. red) dotted lines. These curves are elliptical for
finite systems, straight lines for affine systems, and hyperbolas for hyperbolic systems. If ∆ is nonsym-
metric (a > b) the roots in Wα1 are called long and the roots in Wα2 are called short. If ∆ is symmetric
(a = b) then all roots are considered to be long. Note that (with the exception of A2), the real roots fall
into two distinct orbits under the action of W . With have used red for the orbit of α1, blue for the orbit
of α2, and black for the imaginary roots. The horizontal lines indicate the action of w1 while the vertical
lines indicate the action of w2.

In case a = b, we may designate one simple root to be long and the other simple root to be short. For
example, in A2, all roots lie in the same orbit under the action of the associated Weyl group ([CCFP],
[Hu1]) so all roots are of equal squared length 2, and each root can be thought to be long as well as short.

Referring to Figures 3-6, we see that the real roots lie on the branches of the hyperbolae

ax2 − abxy + by2 = b and ax2 − abxy + by2 = a

with two branches above and two below the diagonal. The branches closest to the diagonal support the
short roots and the branches furthest from the diagonal support the long roots. For a real root α, we will
use the notation

αLL, αLU , αSU , αSL

to signify that α is a long root on the lower branch, a long root on the upper branch, a short root on the
upper branch or a short root on the lower branch respectively.

Redefine this notation...we need 2 different fonts for long and lower
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j −1 0 1
αLLj −α1 − aα2 α1 (ab− 1)α1 + aα2

αLUj −α1 α1 + aα2 (ab− 1)α1 + a(ab− 2)α2

αSUj −bα1 − α2 α2 bα1 + (ab− 1)α2

αSLj −α2 bα1 + α2 b(ab− 2)α1 + (ab− 1)α2

TABLE 1. Examples of real roots

FIGURE 1. Root systems of types H(1, 1) = A2, H(2, 1) = B2, and H(3, 1) = G2

j γj ηj
0 0 1
1 1 ab− 1

2 ab− 2 a2b2 − 3ab + 1

3 a2b2 − 4ab + 3 a3b3 − 5a2b2 + 6ab− 1

4 a3b3 − 6a2b2 + 10ab− 4 a4b4 − 7a3b3 + 15a2b2 − 10ab + 1

5 a4b4 − 8a3b3 + 21a2b2 − 20ab + 5 a5b5 − 9a4b4 + 28a3b3 − 35a2b2 + 15ab− 1

6 a5b5 − 10a4b4 + 36a3b3 − 56a2b2 + 35ab− 6 a6b6 − 11a5b5 + 45a4b4 − 84a3b3 + 70a2b2 − 21ab + 1

7 a6b6 − 12a5b5 + 55a4b4 − 120a3b3 + 126a2b2 − 56ab + 7 a7b7 − 13a6b6 + 66a5b5 − 165a4b4 + 210a3b3 − 126a2b2 + 28ab− 1

8 a7b7 − 14a6b6 + 78a5b5 − 220a4b4 + 330a3b3 − 252a2b2 + 84ab− 8 a8b8 − 15a7b7 + 91a6b6 − 286a5b5 + 495a4b4 − 462a3b3 + 210a2b2 − 36ab + 1

TABLE 2. Values of ηj and γj for small j

For j ∈ Z, we define

αLLj := (w1w2)jα1, αLUj := (w2w1)jw2α1

αSUj := (w2w1)jα2, αSLj := (w1w2)jw1α2.

All real roots are given by these four sequences. If ab ≥ 4, then these are all distinct, and a root is positive
if and only if j ≥ 0. The roots for j = −1, 0, 1 are given in Table 1

The following lemma characterizes the real roots in terms of recursive sequences ηj and γj . Values of
these sequences for small j are given in Table 2.

Lemma 2.1. [ACP, Lemmas 3.2 and 3.3] For all integers j,

αLLj = ηjα1 + aγjα2, αLUj = ηjα1 + aγj+1α2,

αSUj = bγjα1 + ηjα2, αSLj = bγj+1α1 + ηjα2,

where
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FIGURE 2. Root systems of types H(2, 2) = Ã1 and H(4, 1) = Ã
(2)
2

FIGURE 3. Root system of type H(5, 1)
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FIGURE 4. Root system of type H(6, 1)

(i) γ0 = 0, γ1 = 1, η0 = 1, η1 = ab− 1;
(ii) ηj = abγj − ηj−1;

(iii) γj = ηj−1 − γj−1;
(iv) both sequences Xj = ηj and γj satisfy the recurrence relation

Xj = (ab− 2)Xj−1 −Xj−2.

Note that these are both generalized Fibonacci sequences provided that ab > 4. In particular, γj is the
Lucas sequence with parameters P = ab− 2, Q = 1.

As with all generalized Fibonacci sequences, we can also find closed-form equations:

Lemma 2.2. [ACP, Proposition 4.3] For each j ∈ Z,

ηj =
ψj+1

+

ψ+ − 1
+

ψj+1
−

ψ− − 1
and γj =

ψj+ − ψ
j
−√

ab(ab− 4)
,
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FIGURE 5. Root system of type H(3, 2)

FIGURE 6. Root system of type H(3, 3)
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where ψ± := 1
2

(
(ab− 2)±

√
ab(ab− 4)

)
.

Finally we state a useful and easy to prove lemma giving negatives of roots:

Lemma 2.3. For all j ∈ Z, γ−j = −γj and η−j = −ηj−1. Also

−αLLj = αLU−j−1, −αLUj = αLL−j−1, −αSUj = αSL−j−1, −αSLj = αSU−j−1.

3. SUMS OF REAL ROOTS

Let ∆ be an infinite rank 2 root system of typeH(a, b) with a ≥ b and ab ≥ 4. In this section we determine
all real roots α, β ∈ ∆ for which α+ β is also a real root.

We can write α = wαi for i = 1 or 2, and some w ∈ W . So replacing β by w−1β reduces the question
to determining those β ∈ ∆re for which αi + β ∈ ∆re. Now replacing β by −β if β ∈ ∆re

− reduces the
question to determining those β ∈ ∆re

+ for which αi ± β ∈ ∆re.

Lemma 3.1. If a ≥ b > 1, then

0 = bγ0 < η0 < bγ1 < η1 < bγ2 < · · · ,
0 = aγ0 < η0 < aγ1 < η1 < aγ2 < · · · .

In fact the gaps between sequence elements are nondecreasing, that is, for j ≥ 0,

ηj+1 − bγj+1 ≥ bγj+1 − ηj ≥ ηj − bγj ,
ηj+1 − aγj+1 ≥ aγj+1 − ηj ≥ ηj − aγj .

Proof. To see that the gaps in the sequences are nondecreasing, we apply Lemma 2.1 as follows:

ηj+1 − bγj+1 = (a− 1)bγj+1 − ηj ≥ bγj+1 − ηm = (b− 1)ηj − bγj ≥ ηj − bγj .

The other result is similar. �

The inequalities in Lemma 3.1 show that the real roots have the ”staircase pattern” shown in Figure 7.

Proposition 3.2. If a ≥ b > 1 and α, β ∈ ∆re, then α+ β /∈ ∆re.

Proof. Without loss of generality take α = ±αi and β ∈ ∆re
+. From Figure 7, it is clear that β ± αi ∈ ∆re

could only happen if one of the differences ηj+1 − ηj or γj+1 − γj was equal to 1. But the last lemma
ensures that this never happens. �

The analogue of this result for the case a > b = 1 is considerably more tricky. We need to bound the
parameters in the formulas of Lemma 2.2.

Lemma 3.3. If ab > 4, then ψ+ > 2.61 and 0 < ψ− < 0.39.

Proof. Define real functions Ψ±(x) := 1
2

(
(x− 2)±

√
x(x− 4)

)
for which ψ± = Ψ±(ab). We can now

find

Ψ′±(x) =
1

2

(
1∓ x− 2√

x(x− 4)

)
and so Ψ+ is increasing for x ≥ 5 and Ψ− is positive and decreasing for x ≥ 5. Hence ψ+ ≥ Ψ+(5) > 2.61
and 0 < ψ− ≤ Ψ−(5) < 0.45. �
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FIGURE 7. The positive real roots for H(a, b) with a ≥ b > 1

Define

λ :=
ψ+

ψ+ − 1
, µ :=

1√
ab(ab− 4)

.

We can now show that the sequences ηj and γj are each within a small constant of being exponential:

Lemma 3.4. If ab > 4, then, for j ≥ 0,

λψj+ − 1.62 < ηj < λψj+,

µψj+ − 0.45 < γj < µψj+,

where ψ+ > 2.61, 1 < λ < 1.62, and 0 < µ < 0.45.

Proof. The conditions on ψ+ and λ follow from the previous lemma. Using the similar reasoning we
have 0 < µ < 0.45. Now

λψj+ − ηj = −
ψj+1
−

ψ− − 1
.

As m increases, this quantity decreases since 0 < ψ− < 1. So we have 0 < λψj+ − ηj < 1.62. Also, we
have

µψj+ − γj = µψj−

which implies that 0 < µψj+ − γj < 0.45. �

Lemma 3.5. If ab > 4 and b = 1, then 0 < µ < 0.45, 1 < λ < 1.62, λψ+ − aµ ≥ 2, µψ2
+ − λ > 3.
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Proof. We have from above that 0 < µ < 0.45 and 1 < λ < 1.62. Also, we have:

λψ+ − aµ =
ψ2

+

ψ+ − 1
− a√

a(a− 4)
≥ 2.62− 0.45 > 2

and

µψ2
+ − λ =

ψ2
+√

a(a− 4)
− ψ+

ψ+ − 1
> 0.45ψ2

+ − 0 > 3.

�

Lemma 3.6. If a > 4 and b = 1, then

0 = γ0 < η0 = γ1 < γ2 < η1 < γ3 < η2 < · · · ,
0 = aγ0 < η0 < η1 < aγ1 < η2 < aγ2 < η3 < aγ3 < · · · .

Proof. For j ≥ 1 we have γj+1 = ηj−γj < ηj . Similarly for j ≥ 0 we have ηj+1 = aγj+1−ηj < aγj . Now

ηj − aγj−1 > λψj+ − 1.62− aµψj−1
+

= (λψ+ − aµ)ψj−1 − 1.62

≥ 2ψj−1 − 1.62 > 0

and so aγj < ηj+1. And

γj+1 − ηj−1 > µψj+1
+ − 0.45− λψj−1

+

= ψj−1
+ (µψ2

+ − λ)− 0.45

≥ 3ψj−1
+ − 0.45 > 0

and so γj+1 > ηj−1. �

This lemma shows that the roots have the ”staircase pattern” shown in Figure 8.

Proposition 3.7. If a > 4, b = 1, and α, β, α+ β ∈ ∆re, then, for some j ∈ Z,

(i) {α, β} = {αLLj , αSU−j } and α+ β = αSLj ;
(ii) {α, β} = {αLUj , αSL−j } and α+ β = αSUj ;

(iii) {α, β} = {αSUj , αSUj+1} and α+ β = αLUj ; or
(iv) {α, β} = {αSLj , αSLj+1} and α+ β = αLLj .

Proof. Suppose {α, β} contains a long root αLLj (resp. αLUj ). Then this root can be written wα1 for w =

(w1w2)j (resp. w = (w2w1)jw2). From Figure 8 and Lemma 3.6, the only real roots that give another real
root when α1 is added are α2 and −α1 − α2. The first case can be written αLL0 + αSU0 = αSL0 . Multiply
this by w = (w1w2)j to get (i); multiply this by w = (w2w1)jw2 to get (ii). The second case can be written
αLU0 + αSL−1 = αSU−1 , which gives nothing new when multiplied to w.

Now suppose {α, β} contains only short roots, one of which is αSUj (resp. αSLj ). Then this root can be
written wα2 for w = (w2w1)j (resp. w = (w1w2)jw1). From Figure 8 and Lemma 3.6, the only real roots
that give another short real root when α2 is added are α1 + (a− 1)α2 and −α1 − aα2. The first case can
be written αSU0 + αSU1 = αLU0 . Multiply this by w = (w2w1)j to get (iii); multiply this by w = (w1w2)jw1

to get (iv). Again the second case gives nothing new. �

Note that Proposition 3.2 includes the affine typeH(2, 2), but Proposition 3.7 does not apply to the affine
type H(4, 1).
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FIGURE 8. The positive real roots for H(a, 1) with a > 4

Proposition 3.8. If a = 4, b = 1, and α, β, α+ β ∈ ∆re, then, for some j, k ∈ Z,

(i) {α, β} = {αLLj , αSUk } and α+ β = αSL2j−k;
(ii) {α, β} = {αLUj , αSLk } and α+ β = αSU2j−k;

(iii) {α, β} = {αSUj , αSUj+2k+1} and α+ β = αLUj+k; or
(iv) {α, β} = {αSLj , αSLj+2k+1} and α+ β = αLLj+k.

Proof. The recursion formulas in Lemma 2.1 imply that γj = j and ηj = 2j+ 1. Referring to Figure 2, the
result now follows by a similar argument to Proposition 3.7. �

Now considering lengths of sums, we find the following by checking the cases of Propositions 3.2, 3.7,
and 3.8:

Theorem 3.9. Let ∆ be an infinite rank 2 root system.

(i) If α, β, α+ β ∈ ∆re with α and β short, then α+ β is long.
(ii) If α, β, α+ β ∈ ∆re with α short and β long, then α+ β is short.

(iii) If α, β ∈ ∆re with α and β long, then α+ β /∈ ∆re.

We note that (i) and (iii) are not true in finite root systems of type A2 or G2. However there is a slightly
weaker result that holds in any symmetrizable system:

Theorem 3.10. Let ∆ be a symmetrizable root system and suppose α, β, α+ β ∈ ∆re.
11



(i) If ||α||2 = ||β||2, then ||α+ β||2 = a||α||2 for some positive integer a.
(ii) If ||α||2 6= ||β||2, then ||α+ β||2 = min(||α||2, ||β||2).

Proof. We only need to consider the rank 2 subsystem Z{α, β} ∩∆. These results are easily shown to be
true if the subsystem has finite type A2, B2, or G2, and they follow from the previous proposition if the
subsystem is infinite. �

4. SUBSYSTEMS

Root systems can be used to describe three different structures: Coxeter groups, Kac-Moody algebras
and Kac-Moody groups. These three structures lead to two different concepts of subsystem, since the
Lie correspondence ensures that Kac-Moody algebras and groups give the same subsystems. In this
section, we describe these two types of subsystem, and classify all subsystems of infinite rank 2 root
systems. We will see that the two concepts usually coincide, but not always.

Suppose ∆ is a symmetrizable root system. For a Coxeter groups W = W (∆), only the real roots ∆re

need to be considered. The appropriate substructure is a reflection subgroup, that is a subgroup generated
by a set of reflections. Each reflection corresponds to a real root. For Γ ⊆ ∆re, the reflection subgroup is

WΓ = 〈wα : α ∈ Γ〉.

Then WΓ is also a Coxeter group and its real root system is

Φ(Γ) = WΓΓ,

that is, the closure of Γ under the action of WΓ. We call this a Φ-subsystem. Note that a Φ-subsystem
consists entirely of real roots.

Let g = g(∆) be the Kac-Moody algebra of ∆, and recall that the root elements xα and x−α generate a
subalgebra isomorphic to sl2 for all real roots α. We call this subalgebra sl2(α). The correct substructure
is a fundamental Kac-Moody subalgebra, which is a Kac-Moody subalgebra generated by the Cartan sub-
algebra h and the sl2(α) subalgebras for some collection of real roots α. For Γ ⊆ ∆re, the fundamental
Kac-Moody subalgebra is

gΓ = 〈h, sl2(α) : α ∈ Γ〉.
Then gΓ is a Kac-Moody algebra and its root system is

∆(Γ) = ZΓ ∩∆,

that is the set of all roots in ∆ that can be written as an integer linear combination of elements of Γ. We
call this a ∆(Γ)-subsystem. The Kac–Moody subalgebra of [FN], Theorem 3.1 is of this type. We also
define ∆re(Γ) = ZΓ ∩∆re.

We now classify the Φ-subsystems in an infinite rank 2 root system ∆ of type H(a, b) for a ≥ b and
ab ≥ 4. Let Γ ⊆ ∆re be nonempty. First we note that Φ(Γ) is closed under negation, since wαα = −α. So,
using the formulas of Lemma 2.3,

Φ(Γ) = {αLLj , αLU−j−1, α
SU
k , αSL−k−1 | j ∈ IL, k ∈ IS},

for some index sets IL, IS ⊆ Z. Every real root has the form α = wαi for i = 1, 2 and w ∈ W , so the
reflection in α is wα = wwiw

−1. We obtain the following formulas for the reflections corresponding to
each real root:

wLLj = wLU−j−1 = (w1w2)2jw1, wSUj = wSL−j−1 = (w2w1)2jw2.

We can use this to easily prove formulas for the action of a reflection on a real root:
12



Lemma 4.1. For all j, k ∈ Z,

wLLk αLLj = −αLL2k−j , wSUk αSUj = −αSU2k−j ,

wLLk αSUj = −αSU−2k−j−1, wSUk αLLj = −αLL−2k−j−1.

Lemma 4.2. Given integers j and k:

(i) If j, k ∈ IL, then j + (k − i)Z ⊆ IL.
(ii) If j, k ∈ IS , then j + (k − j)Z ⊆ IS .

(iii) If j ∈ IL, k ∈ IS , then j + (2j + 2k + 1)Z ⊆ IL and k + (2j + 2k + 1)Z ⊆ IS .

Proof. Suppose IS contains ` := j + (n − 1)(k − j) and m := j + n(k − j). Then Lemma 4.1 shows that
j+(n+1)(k−j) = 2`−m ∈ IS and j+(n−2)(k−j) = 2m−` ∈ IS . Part (i) now follows by bidirectional
induction. Part (ii) is similar.

Let d := 2j+2k+1. Now suppose j, j+nd ∈ IL and k, k+nd ∈ IS . Then j−(n+1)d = −2k−(j+nd)−1 ∈
IL and so j + (n + 1)d = 2j − (j − (n + 1)d) ∈ IS . Similar arguments show that j + (n − 1)d ∈ IS and
k + (n± 1)d ∈ IL. Part (iii) now follows by bidirectional induction. �

We can now classify the Φ-subsystems in terms of their index sets:

Proposition 4.3.

(i) If IS is empty, then IL = r + dZ for some r, d ∈ Z with d ≥ 0 and 0 ≤ r < d.
(ii) If IL is empty, then IS = r + dZ for some r, d ∈ Z with d ≥ 0 and 0 ≤ r < d.

(iii) Otherwise, IL = r + (2d+ 1)Z and IS = d− r + (2d+ 1)Z for some d ≥ 0 and d ≤ r ≤ d.

Proof. (i) Suppose IS empty and let J = {j ∈ Z | αLLj ∈ Γ or αLU−j−1 ∈ Γ}, so Φ(Γ) = Φ({αLLj | j ∈ J}).
If J contains a single element, then take r to be that element and d = 0. Otherwise, let d be the greatest
common divisor of all the integers j − k for j, k ∈ J with j 6= k. Let r be the remainder of j ∈ J
divided by d, which is the same for all j ∈ J . Then standard properties of integer lattices together with
Lemma 4.2(i) show that

J ⊆ r + dZ ⊆ IL.
It now suffices to show that {αLLj , αLU−j−1 | j ∈ r + dZ} is a Φ-subsystem, but this follows immediately
from Lemmas 2.3 and 4.1. The proof of (ii) is similar to (i).

(iii) The orbits ofW on ∆re areWα1 andWα2, so Φ(Γ)∩Wα1 = {αLLj , αLU−j−1 | i ∈ IL} and Φ(Γ)∩Wα2 =

{αSUj , αSL−j−1 | j ∈ IS} are both Φ-subsystems in their own rights. By (i) and (ii), IL = r1 + d1Z and
IS = r2 + d2Z for some di ≥ 0, 0 ≤ ri < di, for i = 1, 2. For every m ∈ Z, we have r1 ∈ IL and
r2 +md2 ∈ IS , so Lemma 4.2(iii) implies that r1 + (2r1 + 2r2 + 2md2 + 1)mZ ⊆ r1 + d1Z. Hence

d1 | (2r1 + 2r2 + 1) + 2md2, for all m ∈ Z.
So d1 | 2r1 + 2r2 + 1 and hence d1 is odd, say d1 = 2d+ 1. Also d1 | 2d2 and hence d1 | d2. Reversing the
roles of IL and IS we also get d2 | d1, so d1 = d2 = 2d+1. We can choose r such that r ≡ r1 (mod 2d+1)
and −d ≤ r ≤ d, so that IL = r + (2d+ 1)Z. Finally 2r + 2r2 + 1 ≡ 0 (mod 2d+ 1), so

r2 ≡ r2 + 2dr + 2dr2 + d ≡ r2 − r − r2 + d ≡ d− r (mod 2d+ 1),

and hence IS = d− r + (2d+ 1)Z. �

Theorem 4.4. Let ∆ be an infinite rank 2 root system of type H(a, b) with a ≥ b and ab ≥ 4. Every nonempty
Φ-subsystem of ∆ has simple roots, Cartan matrix, and inner product matrix given by one of the rows in Table 3
where δd := ηd − ηd−1 and εd := γd+1 − γd. In particular all Φ-subsystems of ∆ have rank at most 2.
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Type Integer conditions Simple roots Cartan Matrix Inner product matrix
IL r arbitrary αLLr A1

a
bA1

IS r arbitrary αSUr A1 A1

IIL d > 0, 0 ≤ r < d αLLr , αLUd−r−1 H(δd, δd)
a
bH(δd, δd)

IIS d > 0, 0 ≤ r < d αSUr , αSLd−r−1 H(δd, δd) H(δd, δd)
IILS d ≥ 0, −d ≤ r ≤ d αLLr , αSUd−r H(aεd, bεd) B(aεd, bεd)

TABLE 3. Φ-subsystems of rank 2 root systems

d δd = ηd − ηd−1 εd = γd+1 − γd
0 1
1 ab− 2 ab− 3

2 a2b2 − 4ab + 2 a2b2 − 5ab + 5

3 a3b3 − 6a2b2 + 9ab− 2 a3b3 − 7a2b2 + 14ab− 7

4 a4b4 − 8a3b3 + 20a2b2 − 16ab + 2 a4b4 − 9a3b3 + 27a2b2 − 30ab + 9

5 a5b5 − 10a4b4 + 35a3b3 − 50a2b2 + 25ab− 2 a5b5 − 11a4b4 + 44a3b3 − 77a2b2 + 55ab− 11

6 a6b6 − 12a5b5 + 54a4b4 − 112a3b3 + 105a2b2 − 36ab + 2 a6b6 − 13a5b5 + 65a4b4 − 156a3b3 + 182a2b2 − 91ab + 13

TABLE 4. Values of δd and εd for small d

Proof. Let Φ′ be a Φ-subsystem of ∆. First suppose that Φ′ ⊆ Wα1. Then Proposition 4.3(i) implies that
Φ′ = {αLLj , αLU−j−1 | j ∈ r + dZ}, for some d ≥ 0 and 0 ≤ r < d. If d = 0, this gives us type IL. Otherwise
it is easily shown that every positive root in Φ′ is a positive linear combination of αLLr and αLUd−r−1, so
this forms a base. The Cartan matrix and inner product matrix can be computed directly from the base.
For example, if the Cartan matrix is (cij) then

c12 =
2(αLLr , αLUd−r−1)

(αLLr , αLLr )
=
b

a
(αLLr , αLUd−r−1) =

b

a

(
(w1w2)rα1, (w1w2)rαLUd−1

)
=
b

a
(α1, α

LU
d−1)

=
b

a

(
1 0

)(2a/b −a
−a 2

)(
ηd−1

aγd

)
=
b

a

(
2
a

b
ηd−1 − a2γd

)
= 2ηd−1 − abγd = ηd−1 − ηd = −δd,

where the second last equality follows from Lemma 2.1(ii). This gives type IIL.

Similarly we get types IS and IIS from Proposition 4.3(ii), and type IILS from Proposition 4.3(iii). �

Values of δd and εd for small d are given in Table 4.

We can also classify of Φ-subsystems as finite, affine or hyperbolic systems:

Theorem 4.5. Let ∆ be a rank 2 root system and let Γ be a nonempty set of real roots in ∆.

(i) If ∆ is finite, then Φ(Γ) is finite.
(ii) If ∆ is affine of type Ã1, then Φ(Γ) has finite type A1 or affine type Ã1.

(iii) If ∆ is affine of type Ã(2)
2 , then Φ(Γ) has finite type A1, or affine type Ã1 or Ã(2)

2 .
(iv) If ∆ is hyperbolic, then Φ(Γ) has finite type A1 or hyperbolic type.

Proof. Part (i) is clear. The finite type A1 occurs exactly when Γ ⊆ {±α}, so we will assume from now
on that this is not the case.

If ∆ is affine, then ab = 4 and it is easy to show from the recursion formulas in Lemma 2.1 that δd =
ηd − ηd−1 = 2 and εd = γd+1 − γd = 1. Parts (ii) and (iii) now follow.

If ∆ hyperbolic, then ab > 4, and so for d > 1

δd = ηd − ηd−1 = (ab− 2)ηd−1 − ηd−2 − ηd−1 > 2ηd−1 − ηd−2 − ηd−1 = ηd−1 − ηd−2 = δd−1.
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By induction we get δd ≥ δ1 = (ab − 1) − 1 = ab − 2 > 2 for all d > 0. It now follows that H(δd, , δd) is
hyperbolic since δd2 > 4.

A similar argument shows that εd > εd−1 for d > 0, and so εd ≥ ε0 = 1 for d ≥ 0. and so H(aεd, bεd) is
hyperbolic. �

As part of the last proof we showed that the sequences δd and εd are strictly increasing when ∆ is
hyperbolic, so Theorem 1.2 is now proved for Φ-subsystems.

We now consider the classification of ∆-subsystems of ∆. Let Γ ⊆ ∆re nonempty and recall that ∆(Γ) =
ZΓ ∩ ∆, ∆re(Γ) = ZΓ ∩ ∆re. Since the imaginary roots of an affine or hyperbolic root system are just
the linear combinations of real roots with nonpositive norm, it will suffice to describe ∆re(Γ). From the
definition of a reflection, we can see that wα∆re(Γ) ⊆ ∆re(Γ) for all α ∈ Γ, and so

Φ(Γ) ⊆ ∆re(Γ).

We also have Φ(∆re(Γ)) = ∆re(Γ), so the real roots of a ∆-subsystem always form a Φ-subsystem, but
possibly for a different set of generators. The classification of ∆ subsystems reduces to divisibility prop-
erties for the sequences ηj and γj .

Lemma 4.6. Let a ≥ b ≥ 1 with ab ≥ 4, and let d ≥ 0, i ∈ Z. Then

γdδj−d = γj − γj−2d,(1)

ηdεj−d−1 = γj − γj−2d−1,(2)

ηdδj−d = ηj − ηj−2d−1,(3)

abγdεj−d = ηj − ηj−2d.(4)

Proof. The equations are easy to prove for d = 0. Note that

δj−1 = ηj−1 − ηj−2 = (abγj − ηj)− (abγj−1 − ηj−1) = abεj−1 − δj , and

εj−1 = γj − γj−1 = (ηj − γj+1)− (ηj−1 − γj) = δj − εj .

Assume all of the equations hold for d ≤ e. First we prove (1) and (4) for d = e+ 1:

γe+1δj−e−1 = (ηe − γe)(abεj−e−1 − δj−e)
= abηeεj−e−1 − abγeεj−e−1 − ηeδj−e + γeδj−e

= ab(γj − γj−2e−1)− (ηj−1 − ηj−2e)− (ηj − ηj−2e−1) + (γj − γj−2e)

= γj + (abγj − ηj−1 − ηj) + (ηj−2e−1 − abγj−2e−1) + (ηj−2e − γj−2e)

= γj + 0− ηj−2e−2 − γj−2e−1 = γj − γj−2e−2,

abγe+1εj−e−1 = ab(ηe − γe)(δj−e − εj−e)
= abηeδj−e − abγeδj−e − abηeεj−e + abγeεj−e

= ab(ηj − ηj−2e−1)− ab(γj − γj−2e)− ab(γj+1 − γj−2e) + (ηj − ηj−2e)

= ηj + ab(ηj − γj − γj+1)− ab(ηj−2e−1 − γj−2e) + (abγj−2e − ηj−2e)

= ηj + 0− abγj−2e−1 + ηj−2e−1 = ηj − ηj−2e−2.
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Now we can prove (2) and (3) for d = e+ 1:

ηe+1εj−e−2 = (abγe+1 − ηe)(δj−e−1 − εj−e−1)

= abγe+1δj−e−1 − ηeδj−e−1 − abγe+1εj−e−1 + ηeεj−e−1

= ab(γj − γj−2e−2)− (ηj−1 − ηj−2e−2)− (ηj − ηj−2e−2) + (γj − γj−2e−1)

= γj + (abγj − ηj−1 − ηj)− (abγj−2e−2 − ηj−2e−2) + (ηj−2e−2 − γj−2e−1)

= γj + 0− ηj−2e−3 + γj−2e−2 = γj − γi−2e−3,

ηe+1δj−e−1 = (abγe+1 − ηe)(abεj−e−1 − δj−e)
= (ab)2γe+1εj−e−1 − abηeεj−e−1 − abγe+1δj−e + ηeδj−e

= ab(ηj − ηj−2e−2)− ab(γj − γj−2e−1)− ab(γj+1 − γj−2e−1) + (ηi − ηj−2e−1)

= ηj + ab(ηj − γj − γj+1)− ab(ηj−2e−2 − γj−2e−1) + (abγj−2e−1 + ηj−2e−1)

= ηj + 0− abγj−2e−2 + ηj−2e−2 = ηj − ηj−2e−3.

By induction, the equations are now proved for d ≥ 0. �

Lemma 4.7. Let a ≥ b ≥ 1 with ab ≥ 4, and let d ≥ 0, j ∈ Z.

(i) gcd(a, ηj) = gcd(b, ηj) = 1.
(ii) γd | γj iff j ∈ dZ.

(iii) ηd | γj iff j ∈ (2d+ 1)Z.
(iv) ηd | ηj iff j ∈ d+ (2d+ 1)Z.
(v) γd | ηj iff d = 1, when ab > 4.

(vi) γd | ηj iff d = 2e+ 1 is odd and j ∈ e+ (2e+ 1)Z, when ab = 4.

Proof. (i) This follows from the fact that ηj ≡ (−1)j (mod ab), which is easily proved by induction.

(ii) Let j = r + 2md for some m, r ∈ Z with −d < r ≤ d. Then repeated application of (1) gives γj ≡ γr
(mod γd). If j ∈ dZ, then r = 0 or d, and so γj ≡ 0 (mod γd). Otherwise we have 0 < r < d, so that
0 < γr < γd; or −d < r < 0, so that −γd < γr < 0 since γr = −γ−r. In either case γj 6≡ 0 (mod γd).

(iii) Let j = r + m(2d + 1) for some m, r ∈ Z with −d ≤ r ≤ d. Then repeated application of (2) gives
γj ≡ γr (mod ηd). If j ∈ (2d+ 1)Z, then r = 0 and so γj ≡ 0 (mod γd). Otherwise we have 0 < r ≤ d, so
that 0 < γr < ηd; or −d < r < 0, so that −ηd < γr < 0. In either case γj 6≡ 0 (mod γd).

(iv) Let j = r + m(2d + 1) for some m, r ∈ Z with −d ≤ r ≤ d. Then repeated application of (3) gives
ηj ≡ ηr (mod ηd). If j ∈ d + (2d + 1)Z, then r = d and so ηj ≡ ηd ≡ 0 (mod ηd). Otherwise we have
0 < r < d, so that 0 < ηr < ηd; or −d ≤ r < 0, so that −ηd < ηr < 0 since ηr = −η−r+1. In either case
ηj 6≡ 0 (mod ηd).

(v) Suppose ab > 4. Let j = r + 2md for some m, r ∈ Z with −d < r ≤ d. If d = 1, then γd = 1
and so γd | ηd. Otherwise repeated application of (4) gives ηj ≡ ηr (mod γd). Now ηr = γr + γr+1 by
Lemma 2.1(iii). Since ab > 4, we have γj+1 ≥ 2γj for all j ≥ 0. If 0 < r < d−1, then 0 < γr +γr+1 ≤ 3

4γd,
so γr + γr+1 6≡ 0 (mod γd). If r = d, then γr + γr+1 ≡ γd+1 6≡ 0 (mod γd) by (ii). If r = d − 1, then
γr + γr+1 ≡ γd−1 6≡ 0 (mod γd). If −d < r < 0, then we can use the fact that γ−j = −γj .
(vi) Since γd = d and ηj = 2j + 1, γd | ηj iff d = 2e + 1 is odd and d | 2j + 1. In this case, 2j + 1 ≡ 0
(mod 2e+ 1) iff j ≡ (−2e)j ≡ 2j(−e) ≡ (−1)(−e) ≡ e (mod 2e+ 1). �

Theorem 4.8. Let ∆ be an infinite rank 2 root system of type H(a, b) with a ≥ b and ab ≥ 4. Let Γ ⊆ ∆re be
nonempty.

(i) If a > 4, b = 1 and Φ(Γ) is the subsystem consisting of all short roots in ∆re, then ∆re(Γ) = ∆re.
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(ii) If a = 4, b = 1 and Φ(Γ) is a subsystem of type IIS with base αSUr , αSLd−r−1 for some odd d = 2e+ 1 and
0 ≤ r < d, then ∆re(Γ) is a subsystem of type IILS with base αLLs , αSUe−s where s ≡ e− r (mod d) and
−e ≤ s ≤ e.

(iii) In all other cases, ∆re(Γ) = Φ(Γ).

Proof. If Φ(Γ) has type IL or IS , then it is clear that Φ(Γ) = ∆re(Γ).

Suppose Φ(Γ) has type IIL. Since Φ(Γ) = (w1w2)rΦ({αLL0 , αLUd−1}), it suffices to consider r = 0. Now
αLL0 = α1 and αLUd−1 = ηd−1α1 + aγdα2, so

∆re(Γ) = Z{αLL0 , αLUd−1} ∩∆re = Z{α1, aγdα2} ∩∆re.

Now αLLj = ηjα1 + aγjα2 is in ∆re(Γ) iff γd | γj iff j ∈ dZ by Lemma 4.7(ii). And αSUj = bγjα1 + ηiα2 is
in ∆re(Γ) iff aγd | ηj which is not possible by Lemma 4.7(i) since a > 1. Hence ∆re(Γ) = Φ(Γ).

Suppose Φ(Γ) has type IILS . Since Φ(Γ) = (w2w1)d−rΦ({αLLd , αSU0 }), it suffices to consider r = d. Now
αLLd = ηdα1 + aηdα2 and αSU0 = α2, so

∆re(Γ) = Z{αLLd , αSU0 } ∩∆re = Z{ηdα1, α2} ∩∆re.

Now αLLj = ηjα1 + aγjα2 is in ∆re(Γ) iff ηd | ηj iff j ∈ d + (2d + 1)Z by Lemma 4.7(iv). And αSUj =
bγjα1 + ηjα2 is in ∆re(Γ) iff ηd | bγi iff j ∈ (2d+ 1)Z by Lemma 4.7(iii). Hence ∆re(Γ) = Φ(Γ).

Finally suppose Φ(A) has type IIS . Since Φ(Γ) = (w2w1)rΦ({αSU0 , αSLd−1}), it suffices to consider r = 0.
Now αSU0 = α2 and αSLd−1 = bγdα1 + ηd−1α2, so

∆re(Γ) = Z{αLL0 , αLUd−1} ∩∆re = Z{bγdα1, α2} ∩∆re.

Now αSUj = bγiα1 +ηjα2 is in ∆re(Γ) iff γd | γj iff j ∈ dZ. And αLLj = ηjα1 +aγjα2 is in ∆re(Γ) iff bγd | ηj .
By Lemma 4.7(i), (v), and (vi), this can only happen if a > 4, b = 1 and d = 1; or a = 4, b = 1 and d odd.
If a > 4, b = 1, and d = 1, then Φ(Γ) is the set of all short real roots, and bγd | ηj for all j so ∆re(Γ) = ∆re.
If a = 4, b = 1, and d = 2e+ 1, then bγd | ηi iff j ∈ e+ (2e+ 1)Z, so IS = (2e+ 1)Z, IL = e+ (2e+ 1)Z,
and hence ∆re(Γ) has type IILS with the given basis. In all other cases ∆re(Γ) = Φ(Γ). �

Theorem 1.1 and Theorem 1.2 for ∆-subsystems now follow.

REFERENCES

[ACP] Andersen, K. K. S., Carbone, L. and Penta, D. Kac–Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic
fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3, 245–278 (2011)

[BP] Billig, Y. and Pianzola, A. Root strings with two consecutive real roots, Tohoku Math. J. (2) Volume 47, Number 3 (1995),
391–403.

[BCFS] W. Bosma, J. J. Cannon, C. Fieker, A. Steel (eds.), Handbook of Magma functions, Edition 2.20 (2013).
http://magma.maths.usyd.edu.au/magma/handbook/

[Bo] Bourbaki, N. Lie Groups and Lie Algebras: Chapters 4-6 (Elements of Mathematics), Springer (2008) ISBN-13: 978-
3540691716

[CCCMNNP] Carbone, L., Chung, S., Cobbs, L., McRae, R., Nandi, D., Naqvi Y. and Penta, D. Classification of hyperbolic Dynkin
diagrams, root lengths and Weyl group orbits, Phys. A: Math. Theor. 43 155209 (2010)

[CCFP] Carbone, L., Conway, A., Freyn, W. and Penta, D. Weyl group orbits on Kac–Moody root systems, J. Phys. A: Math.
Theor. 47 (2015), arXiv:1407.3375

[F] Feingold, A., J. A Hyperbolic GCM Lie Algebra and the Fibonacci Numbers, Proceedings of the American Mathematical
Society, Vol. 80, No. 3, (Nov., 1980), 379-385

[FN] Feingold, A. and Nicolai, H. Subalgebras of hyperbolic Kac-Moody algebras, In ‘Kac-Moody Lie algebras and related
topics’, 97–114, Contemp. Math., 343, Amer. Math. Soc., Providence, RI, (2004).

[Hu1] Humphreys, J. E. Introduction to Lie algebras and representation theory. Second printing, revised. Graduate Texts in
Mathematics, 9. Springer-Verlag, New York-Berlin, (1978). xii+171 pp

17



[Hu2] Humphreys, J. E. Reflection Groups and Coxeter Groups Cambridge University Press; Reprint edition (October 30,
1992)

[KM] Kang, S.-J. and Melville, D, Rank 2 symmetric hyperbolic Kac-Moody algebras, Nagoya Math. J. 140 (1995), 41?75
[Ka] Victor G. Kac, Infinite-dimensional Lie algebras, third ed., Cambridge University Press, Cambridge, 1990.
[LM] Lepowsky, J and R. V. Moody, Hyperbolic Lie Algebras and quasi-regular cusps on Hilbert modular surfaces, Math. Ann.

245 (1979), 63-88
[M] Maple (release 17). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
[Mo] Moody, R. V. Root systems of hyperbolic type, Advances in Mathematics, Volume 33, Issue 2, August 1979, Pages

144–160
[Mor] Morita, J. Root strings with three or four real roots in Kac–Moody root systems, Tohoku Math. J. (2) 40 (1988), no. 4,

645–650.
[Mor2] Morita, J. Commutator relations in Kac-Moody groups, Proc. Japan Acad., Series A 63 (1987) 21–22
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