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Abstract. Let A be a symmetrizable affine or hyperbolic generalized Cartan matrix. Let G be
a locally compact Kac-Moody group associated to A over a finite field Fq. We suppose that G
has type ∞, that is, the Weyl group W of G is a free product of Z/2Z’s. This includes all locally
compact Kac-Moody groups of rank 2 and three possible locally compact rank 3 Kac-Moody
groups of noncompact hyperbolic type. For every prime power q, we give a sufficient condition

for the rank 2 Kac-Moody group G to contain a cocompact lattice Γ ∼= Mq ∗
Mq∩M̃q

M̃q with

quotient a simplex, and we show that this condition is satisfied when q = 2s. If further Mq and

M̃q are abelian, we give a method for constructing an infinite descending chain of cocompact
lattices ...Γ3 ≤ Γ2 ≤ Γ1 ≤ Γ. This allows us to characterize each of the quotient graphs of
groups Γi\\X, the presentations of the Γi and their covolumes, where X is the Tits building of
G, a homogeneous tree. Our approach is to extend coverings of edge-indexed graphs to covering
morphisms of graphs of groups with abelian groupings. This method is not specific to cocompact
lattices in Kac-Moody groups and may be used to produce chains of subgroups acting on trees
in a general setting. It follows that the lattices constructed in the rank 2 Kac-Moody group
have the Haagerup property.

When q=2 and rank(G) = 3 we show that G contains a cocompact lattice Γ′

1 that acts
discretely and cocompactly on a simplicial tree X . The tree X is naturally embedded in the
Tits building X of G, a rank 3 hyperbolic building. Moreover Γ′

1 ≤ Λ′ for a non-discrete
subgroup Λ′ ≤ G whose quotient Λ′\X is equal to G\X. Using the action of Γ′

1 on X we
construct an infinite descending chain of cocompact lattices . . . Γ′

3 ≤ Γ′

2 ≤ Γ′

1 in G. We also
determine the quotient graphs of groups Γ′

i\\X , the presentations of the Γ′

i and their covolumes.

1. Introduction

Let G be a completion of Tits’ Kac-Moody group functor over a finite field Fq. Then G
is locally compact and totally disconnected ([CG], [RR]). Completions of the Tits functor have
been described by Carbone and Garland ([CG]) and Rémy and Ronan ([RR]). Here we construct
cocompact lattices in a certain class of complete Kac-Moody groups, using the Rémy-Ronan
completion. If G is the Kac-Moody group of a generalized Cartan matrix A, then we call G
affine if A is positive semi-definite but not positive definite. If A is neither positive definite
nor positive semi-definite, but every proper indecomposable submatrix is either positive definite
or positive semi-definite, we say that G has hyperbolic type. If every proper indecomposable
submatrix of A is positive definite, we say that G has compact hyperbolic type. Thus if A has a
proper indecomposable affine submatrix, we say that G has noncompact hyperbolic type.

We consider here the following class of Kac-Moody groups G over a finite field Fq. We suppose
that G is either of affine or hyperbolic type, and that G has ‘type ∞’, that is, the Weyl group
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W is a free product of Z/2Z’s. This coincides with the class of affine or hyperbolic Kac-Moody
groups corresponding to generalized Cartan matrices A = (Aij)i,j∈I where all mij equal ∞ for
i 6= j. In particular, this includes all rank 2 Kac-Moody groups, whose generalized Cartan
matrices form the infinite family

A =

(
2 −a
−b 2

)
, ab ∈ Z≥4,

which is of affine type if ab = 4 and of (compact) hyperbolic type if ab > 4. ‘Symmetrizability’ is
an important property of the generalized Cartan matrix of a Kac-Moody algebra, necessary for
the existence of a well-defined symmetric invariant bilinear form (· | ·) on the Kac-Moody algebra
which plays the role of ‘squared length’ of a root. The rank 2 generalized Cartan matrices given
above are automatically symmetrizable.

If A is of affine type then there are two possible generalized Cartan matrices, namely

A
(1)
1 =

(
2 −2
−2 2

)
, A

(2)
2 =

(
2 −1
−4 2

)
.

For type A
(1)
1 , we use a form of the Kac-Moody group such that G ∼= PSL2(Fq((t

−1))) (subsec-
tion 2.3).

If rank(G) = 3, we may apply the classification of symmetrizable hyperbolic Dynkin diagrams
([Sa]) to deduce that G is of noncompact hyperbolic type and that the generalized Cartan matrix
of G is one of the following:

A =




2 −2 −2
−2 2 −2
−2 −2 2


 , A =




2 −4 −2
−1 2 −1
−2 −4 2


 , A =




2 −1 −2
−4 2 −4
−2 −1 2


 .

In each of these cases W ∼= Z/2Z ∗ Z/2Z ∗ Z/2Z and the fundamental chamber for W is an
ideal triangle in the hyperbolic plane. Our interest in the Kac-Moody groups in this class comes
in part from the fact that the corrected automorphic forms of the corresponding generalized
Kac-Moody algebras play an important role in high-energy physics ([GN] and [HM]). If G has
type ∞ and rank(G) > 3 then G no longer has hyperbolic type. We will not say more about
this case here.

Theorem 1. Let A be a rank 2 affine or hyperbolic generalized Cartan matrix. Let G be a locally
compact Kac-Moody group associated to A over a finite field Fq. Let X be the Tits building of
G, the homogeneous tree X = Xq+1.

(1) For every prime power q, there is a finite subgroup Mq(x) acting transitively on the edges in
the star of a vertex x ∈ V X.

(2) Let Mq = Mq(x1) and M̃q = M̃q(x2) denote the groups of (1) corresponding to adjacent
vertices x1 and x2 in the Tits building X for G. If

StabX
Mq

(x2) = Mq ∩ M̃q = StabX
M̃q

(x1)

then Γ ∼= Mq ∗Mq∩M̃q
M̃q is a cocompact lattice in G with quotient a simplex.

(3) If further Mq and M̃q are abelian, there is an infinite descending chain of cocompact lattices
...Γ3 ≤ Γ2 ≤ Γ1 ≤ Γ with distinct quotient graphs Γi\X.
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(4) When q = 2s, the condition in (2) is satisfied, with Mq ∩ M̃q = {1}. When q = 2, the

condition in (3) is also satisfied, as Mq
∼= Z/3Z ∼= M̃q.

The lattices of Theorem 1 are tree lattices for the homogeneous tree X = Xq+1. Thus the
theories of Bass-Serre and Bass-Lubotzky for constructing lattices via their actions on trees are
accessible for the Kac-Moody groups of Theorem 1 ([B], [BL], [L], [S]). While such methods are
known to produce ascending and descending chains of subgroups in automorphism groups of
trees, our results give the first such embedding of descending chains of lattices in Kac-Moody
groups.

We note that the lattice Z/3Z∗Z/3Z obtained in (4) of Theorem 1 (similarly Z/3Z∗Z/3Z∗Z/3Z
in Theorem 5) is residually finite. In general, by a result of Bass and Kulkarni ([BK]), all
cocompact tree lattices are finitely generated and virtually free. Thus any cocompact lattice in
G has a residually finite subgroup of finite index. It is known that residually finite groups can
admit descending chains of subgroups. However, we do not use residual finiteness to construct
infinite descending chains over the lattices in Theorem 1. Our strategy is to extend coverings of
edge-indexed graphs to covering morphisms of graphs of groups with abelian groupings (Section
3.3). This provides a new tool for constructing descending chains of subgroups in locally compact
groups that act on trees. The benefit of this method is that it is constructive and allows us to
determine the quotient graphs of groups, the presentations and covolumes of all sublattices in the
descending chain. This method is not specific to cocompact lattices in Kac-Moody groups and
may be used to produce chains of subgroups acting on trees in a general setting. For example,
our method also applies to lattices that are not residually finite, such as nonuniform lattices,
though we do not consider this case here.

The sufficient condition stated in (2) of Theorem 1 was first proposed for tree lattices by
Lubotzky who proved that this condition is satisfied in SL2.

Part (1) of Theorem 1 is adapted from Lemma 3.5 of [L] to the setting of rank 2 affine or
hyperbolic Kac-Moody groups using the Levi decomposition of the parabolic subgroups due to
[RR] (see below).

Lemma 2. ([L], 3.5) For every prime power q, SL2(Fq) contains a subgroup Mq acting tran-
sitively on the projective line P1(Fq).

◦ For q =11, 19, 29, A5 embeds in PSL2(Fq), so take Mq to be the preimage of A5 in SL2(Fq).
Then |Mq| = 120.

◦ For q =7, S4 embeds in PSL2(Fq), so take Mq to be the preimage of S4 in SL2(Fq). Then
|Mq| = 48.

◦ For q /∈ {2s, 5, 7, 11, 19, 29}, Mq is the normalizer of a non-split Cartan subgroup. Then
|Mq| = 2(q + 1).

◦ For q = 2s, Mq is a non-split Cartan subgroup, and hence abelian. Then |Mq| = q + 1.

◦ For q =5, A4 embeds in PSL2(Fq), so take Mq to be the preimage of A4 in SL2(Fq). Then
|Mq| = 24.

We extend this lemma to the setting of Kac-Moody groups over Fq corresponding to rank 2
affine or hyperbolic generalized Cartan matrices by using the embedding of [RR] of SL2(Fq)
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into standard parabolic subgroups of the Kac-Moody group. Rémy and Ronan define the Levi
factor of a standard parabolic subgroup of type i, i = 1, 2, as

Li = (SL2(Fq)× (F×
q ))i

where Li is the group generated by H ∼= F×
q × F×

q and the root groups U±αi
. Rémy and Ronan

show that standard parabolic subgroup of type i is the semidirect product

Pi = Li n U i,

where U i is a pro-p group and is the normal closure of the group generated by all positive root
groups except Uαi

. We refer the reader to [RR] for a definition of the action of the group Li

on U i. We remark that the Levi factors of parabolic subgroups are isomorphic for rank 2 affine
and hyperbolic Kac-Moody groups over Fq.

By a slight abuse of notation, we let Mq denote the image of the group Mq of ([L], Lemma 3.5)

in the Levi factor L1 and we let M̃q denote the image of Mq in L2. Combining the above results
we deduce the following.

Theorem 3. Let A be a rank 2 affine or hyperbolic generalized Cartan matrix. Let G be a locally
compact Kac-Moody group associated to A over a finite field Fq in the Rémy-Ronan completion.
Let X = Xq+1 be the Bruhat-Tits tree for G. Let P1 and P2 be the maximal standard parabolic

subgroups of G. Let Mq and M̃q be subgroups of P1 and P2 respectively satisfying

StabMq(x2) = Mq ∩ M̃q = Stab
M̃q

(x1)

for adjacent vertices x1, x2 ∈ V X. Then G contains a cocompact lattice subgroup

Γ = Mq ∗Mq∩M̃q
M̃q, where

(i) For q = 2s, we take Mq to be the image of the non-split Cartan subgroup of SL2(Fq) of order

q + 1 in L1, and M̃q its image in L2.

(ii) For q /∈ {2s, 5, 7, 11, 19, 29}, we take Mq to be the image of the normalizer of a non-split

Cartan subgroup of SL2(Fq) of order 2(q + 1)in L1, and M̃q its image in L2.

(iii) For q =11, 19, 29, A5 embeds in PSL2(Fq), so we take Mq to be the preimage of A5 in L1,

and M̃q its preimage in L2.

(iv) For q = 7, S4 embeds in PSL2(Fq), so we take Mq to be the preimage of S4 in L1, and M̃q

its preimage in L2.

(v) For q =5, A4 embeds in PSL2(Fq), so we take Mq to be the preimage of A4 in L1, and M̃q

its preimage in L2.

Theorem 3 assumes the existence of finite subgroups Mq and M̃q of P1 and P2 respectively

and a sufficient condition on the action of Mq and M̃q on the Tits building X. Using Lemma 2 we

deduce the existence of Mq ≤ P1 and M̃q ≤ P2 as in Theorem 3. However, in this work we only

verify that StabMq(x2) = Mq ∩ M̃q = Stab
M̃q

(x1) in case (i) of Theorem 3. We refer the reader

to [CT] where the authors classify all subgroups Mq and M̃q giving rise to cocompact lattice
amalgams in rank 2 locally compact Kac-Moody groups corresponding to symmetric generalized
Cartan matrices.
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When q = 2, we are able to obtain some of the results of Theorem 1 in the rank 3 setting using
the following.

Theorem 4. Let G be a locally compact symmetrizable rank 3 Kac-Moody group of type ∞
over a finite field Fq. Let X be the Tits building of G. Then X contains a naturally inscribed
bihomogeneous tree X = X3,q+1 which is trivalent when q = 2.

In [GP] Gaboriau and Paulin considered an ideal hyperbolic triangle of groups with face groups
trivial and the edge groups finite groups A, B, and C. The fundamental group Γ of the triangle
of groups is the free product A ∗ B ∗ C. The authors observe that Γ is a discrete subgroup of
Aut(X) where X is the universal cover of the triangle of groups, endowed with the compact
open topology. By taking the finite groups A, B, and C to be copies of Z/3Z’s, we show that
the triangle of groups can be embedded into our rank 3 Kac-Moody groups G of noncompact
hyperbolic type, and that its image in G is also discrete (Theorem 5).

Theorem 5. Let G be a symmetrizable locally compact rank 3 Kac-Moody group of type ∞ over
a finite field Fq. Let X be the Tits building of G. Suppose that q = 2.

(1) Let Γ denote the free product Z/3Z ∗ Z/3Z ∗ Z/3Z. Then Γ is an X -lattice for the tree
X of Theorem 4.

(2) The image Γ′
1 of Γ in G is a cocompact lattice in G.

(3) There is non-discrete subgroup Λ′ ≤ G with Γ′
1 ≤ Λ′ and Λ′\X a simplex (ideal triangle)

in the Tits building X.
(4) There is an infinite descending chain . . . Γ′

3 ≤ Γ′
2 ≤ Γ′

1 of cocompact lattices in G.

To produce the infinite descending chain of lattices in (4) of Theorem 5 we use the action of
Γ′

1 on the simplicial tree X . The group G acts on X with quotient a tripod. The subgroup
Γ′

1 ≤ G acts cocompactly with finite stabilizers. Moreover Γ′
1 is isomorphic to the group Γ1

in the infinite descending chain of Theorem 1 in the rank 2 Kac-Moody group over F2. Thus
the construction of the rank 2 chain also gives the construction of the chain (4) in the rank 3
setting. We construct the resulting quotient graphs of groups Γ′

i\\X for the lattices Γ′
i, we give

the presentations of the Γ′
i and we compute their covolumes. Using a covering morphism of

graphs of groups we embed Γ into G. We construct a covering morphism of triangles of groups
to exhibit the nondiscrete subgroup Λ′ ≤ G in Theorem 1 (Section 5).

When G has rank 3, the tree X inscribed in the Tits building X of G is homogeneous only when
q = 2. Since our results depend on the homogeneity of X , we do not expect our methods in rank
3 to extend easily to other values of q, though a generalization may be possible. Our methods
for rank 3 groups might also extend beyond the class of Kac-Moody groups of type∞, however,
this class of groups is most compatible with our constructions in rank 2.

The existence of cocompact lattices in certain Kac-Moody groups has already been established
by Carbone and Garland ([CG]) and by Rémy and Ronan ([RR]). In [CG], Carbone and Gar-
land generalized Lubotzky’s construction of Schottky groups of automorphisms in SL2 over a
nonarchimedean local field to give torsion free cocompact lattices in any rank 2 locally compact
Kac-Moody group over a finite field Fq. In [CT] the authors classified cocompact lattices with
torsion and with quotient a simplex in rank 2 Kac-Moody groups corresponding to symmetric
generalized Cartan matrices. Their classification includes our examples for q = 2s of Theorem 1
when the generalized Cartan matrix is symmetric, though our construction of descending chains
of cocompact lattices holds for a general 2× 2 generalized Cartan matrix.
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In [Bo1] and [Bo2], Bourdon constructed a family of cocompact lattices in the automorphism
groups of certain hyperbolic Kac-Moody buildings. Here ‘hyperbolic’ means that the Coxeter
group comes from a tiling of some hyperbolic space, but the fundamental domain is not re-
quired to be a simplex. In [RR], Rémy and Ronan showed that Bourdon’s cocompact lattices
Γr,q+1, r ≥ 5, q ≥ 3, can be embedded into the closure of right-angled Kac-Moody groups in
the automorphism groups of their buildings, Ir,q+1 for q a prime power. The buildings Ir,q+1

are right-angled Fuchsian buildings whose associated Weyl groups are the hyperbolic reflection
groups arising from a tiling of the hyperbolic plane by regular right-angled r-gons (though the
fundamental domain is not necessarily a simplex). The link at each vertex of Ir,q+1 is the com-
plete bipartite graph of type (q + 1, q + 1) (see also [Re]). The images of the lattices Γr,q+1 in
the Kac-Moody group are given by the presentations

Γr,q+1 = 〈{γi}i∈Z/rZ | γ
q+1
i = 1, [γi, γi+1] = 1〉.

The Kac-Moody groups of type ∞ we consider here are examples of right-angled Kac-Moody
groups, however there is no overlap with the setting of [RR]. The analog of ‘r’ in our results,
that is, the type of fundamental polygon for the Weyl group, is 2 or 3, while the results of [RR]
and [Bo1], [Bo2] hold only for r ≥ 5. It is intriguing however that the lattices of [RR] (Section
5C) appear to be quotients of the lattices we construct in the rank 3 Kac-Moody group.

Using actions of Kac-Moody groups on their Tits buildings, in [C1] the author showed that all
symmetrizable affine or hyperbolic locally compact Kac-Moody groups G of either rank 2 or of
rank 3 noncompact hyperbolic type have the Haagerup property. Since the Haagerup property
for a locally compact group G implies the Haagerup property for a lattice subgroup Γ ≤ G, the
lattices of the descending chains of Theorems 1 and 5 have the Haagerup property.

The authors are grateful to Frédéric Paulin for explaining his construction to us and to Delaram
Kahrobaei for helpful discussions. We thank Bertrand Rémy for clarifying the details of his
paper with Ronan ([RR]). We are indebted to Gabriel Rosenberg for teaching us how to extend
coverings of edge-indexed graphs to covering morphisms of graphs of groups (Section 3.3). Some
of our results were obtained independently by Inna Capdeboscq (Korchagina) and Anne Thomas
who gave a detailed classification of lattices in rank 2 locally compact Kac-Moody groups with
quotient a simplex. We refer the reader to their informative paper [CT] and we thank them
for helpful discussions during the early phase of this work. We also thank Anne Thomas for
explaining to us how to construct the covering morphism of Theorem 1 for rank 3 Kac-Moody
groups. We are grateful to the referee for suggestions that improved a number of our statements.
We also thank the editor for helpful comments.

2. Locally compact Kac-Moody groups

Though there is no obvious infinite dimensional generalization of finite dimensional Lie groups,
Tits associated a group functor GA on the category of commutative rings, such that for any
symmetrizable generalized Cartan matrix A and any ring R there exists a group GA(R) ([Ti1],
[Ti2]). Tits defined not one group, but rather minimal and maximal groups. The value of the
Tits functor GA over a field k is called a minimal Kac-Moody group. The maximal or complete
Kac-Moody group is defined relative to a completion of the Kac-Moody algebra and contains
GA(k) as a dense subgroup.
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2.1. Tits’ presentation of minimal Kac-Moody groups. In this subsection we define min-
imal Kac-Moody groups over arbitrary fields by generators and relations, following Tits ([Ti1]).

Let g be a symmetrizable Kac-Moody algebra with Cartan subalgebra h. For each simple root
αi, i ∈ I = {1, . . . `}, we define the simple root reflection

wi(αj) := αj − αj(α
∨
i )αi.

The wi generate a subgroup W = W (A) ⊆ Aut(h∗), called the Weyl group of A. We introduce
an auxiliary group W ∗ ⊆ Aut(g), generated by elements {w∗

i }i∈I , where

w∗
i = exp(ad(ei))exp(−ad(fi))exp(ad(ei)) = exp(−ad(fi))exp(ad(ei))exp(−ad(fi)).

There is a surjective homomorphism ε : W ∗ → W which sends w∗
i to wi for all i. We define

certain elements of g, denoted {eα}α∈Φ, where Φ denotes the set of real roots of g. Given α ∈ Φ,
write α in the form wαj for some j ∈ I and w ∈ W , choose w∗ ∈ W ∗ which maps onto w, and
set eα = w∗eαj

. It is clear from [Ti1, (3.3.2)] that eα belongs to the root space gα, eα is uniquely
determined up to sign, and for all i ∈ I, w∗

i eα = ηα,iewiα for some constants ηα,i ∈ {±1}.
Let A be a symmetrizable generalized Cartan matrix. Let k denote an arbitrary field. The

group G = GA(k) defined below is called the incomplete simply-connected Kac-Moody group
corresponding to A.

By definition, GA(k) is generated by the set of symbols {χα(u) | α ∈ Φ, u ∈ k} satisfying
relations (R1)-(R7) below. In all the relations i, j are elements of I, u, v are elements of k and
α and β are real roots.

(R1) χα(u + v) = χα(u)χα(v);
(R2) Let (α, β) be a prenilpotent pair, that is, there exist w, w′ ∈W such that

wα, wβ ∈ Φ+ and w′α, w′β ∈ Φ−.

Then

[χα(u), χβ(v)] =
∏

m,n≥1

χmα+nβ(Cmnαβumvn)

where the product on the right-hand side is taken over all real roots of the form mα + nβ,
m,n ≥ 1, in some fixed order, and Cmnαβ are integers independent of k (but depending on the
order). This product appearing on the right-hand side is finite.
For each i ∈ I set

χ±i(u) = χ±αi
(u), u ∈ k

w̃i(u) = χi(u)χ−i(−u−1)χi(u), u ∈ k
w̃i = w̃i(1) and hi(u) = w̃i(u)w̃−1

i , u ∈ k∗.
The remaining relations are

(R3) w̃iχα(u)w̃−1
i = χwiα(ηα,iu),

(R4) hi(u)χα(v)hi(u)−1 = χα(vu〈α,α∨

i 〉) for u ∈ k∗,
(R5) w̃ihj(u)w̃−1

i = hj(u)hi(u
−aji),

(R6) hi(uv) = hi(u)hi(v) for u, v ∈ k∗, and
(R7) [hi(u), hj(v)] = 1 for u, v ∈ k∗.

An immediate consequence of relations (R3) is that GA(k) is generated by {χ±i(u)}. The

elements w̃i generate a group W̃ which is isomorphic to the group W ∗ above.
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2.2. BN-pair and Tits building of a minimal Kac-Moody group. Tits’ Kac-Moody group
functor may be described by certain group theoretic data, called a Tits system or (B,N)-pair.
This data determines a simplicial complex X called the Tits building on which the group acts.
Here we describe briefly the (B,N)-pair associated to minimal Kac-Moody group (Tits’ functor)
over a finite field.

A minimal Kac-Moody group G (Tits’ functor) over the finite field Fq has subgroups B± ⊆ G,
N ⊆ G, and Weyl group W = N/H, where H = N ∩B± is a normal subgroup of N . There is a
surjective homomorphism ν : N −→ W . We identify W (non-canonically) with a subset (not a
subgroup) of N which contains exactly one representative of every element of W . By abuse of
notation, this set of representatives will also be called W . This coincides with the Weyl group
W of the previous section. We have B± = HU± where U+ is generated by all positive real root
groups and U− is generated by all negative real root groups. Then (B+, N) and (B−, N) are
BN -pairs, and

G = B+NB− = B−NB+.

It follows that
G = tw∈W B±wB±.

Let S be the standard generating set for the Weyl group W consisting of simple root reflections.
Let U ( S. The standard parabolic subgroups are

PU = tw∈〈U〉 B±wB±.

A parabolic subgroup is any subgroup containing a conjugate of B±. The Tits building of G
is a simplicial complex X of dimension dim(X) = |S| − 1. In fact we associate a building X±

to each BN -pair (B+, N) and (B−, N). The buildings X+ and X− are isomorphic as chamber
complexes and have constant thickness q + 1 (see [DJ], Appendix KMT).

The vertices of X are given by cosets of the maximal parabolic subgroups in G. The incidence
relation is described as follows. The r + 1 vertices P1, . . . , Pr+1 span an r-simplex if and only if
the intersection P1∩· · ·∩Pr+1 is parabolic, that is, contains a conjugate of B±. If the root system
is infinite, the Weyl group W is infinite, so by the Solomon-Tits theorem, X is contractible. The
group G acts by left multiplication on cosets.

2.3. Complete Kac-Moody groups. Let A be an ` × ` symmetrizable generalized Cartan

matrix. Let Ĝ = GA(Fq) be a completion of Tits’ functor associated to A and the finite field
Fq. The existence of such a completion was noted by Tits ([Ti2]). Explicit completions have
been constructed using distinct methods by Carbone and Garland ([CG]) and by Rémy and

Ronan ([RR]). A complete Kac-Moody group Ĝ over a finite field is locally compact, totally
disconnected and the Tits building X is locally finite. We shall primarily use the Rémy-Ronan
completion, which we review in this subsection. From now on, we write B = B+ and U = U+.

Let X be the building associated with the positive BN-pair (B,N), and consider the action of
G on X. We define a topology on G by taking a subbase of neighborhoods of the identity to
consist of stabilizers of vertices of X. We shall call this topology the building topology. The
completion of G in its building topology will be referred to as the Rémy-Ronan completion and

denoted by Ĝ. Let Z be the kernel of the natural map G → Ĝ (or, equivalently, the kernel of
the action of G on X). Using results of Kac and Peterson [KP], Rémy and Ronan [RR, 1.B]
showed that Z is a subgroup of H and hence is finite. Furthermore, Z coincides with the center
of G.
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Now let B̂ (resp. Û) be the closure of B (respectively U) in Ĝ. The natural images of N and H

in Ĝ are discrete, and therefore we will denote them by the same symbols (without hats).

The following theorem is a collection of results from [Re] and [RR]:

Theorem 6. Let Ĝ, B̂ and N be as above. Then:

(a) The pair (B̂,N) is a BN-pair of Ĝ. Moreover, if X̂+ is the associated building, there

exists a Ĝ-equivariant isomorphism between X+ and X̂+. In particular, the Coxeter

group associated to (B̂,N) is isomorphic to W = W (A).

(b) The group B̂ is an open profinite subgroup of Ĝ. Furthermore, Û is an open pro-p

subgroup of B̂.

As is shown in [CER], the Rémy-Ronan completion of the Kac-Moody group G of type A
(1)
1 over

F is isomorphic to PSL2(Fq((t
−1))).

In the remainder of the paper, we will assume that our Kac-Moody group G is Rémy-Ronan
complete, and we drop the ‘hats’ in the description of the Kac-Moody group G.

2.4. Kac-Moody Groups of Type ∞. Let G be a Kac-Moody group and suppose that G has
type ∞. Then the associated Weyl group W = N/H, as described using the BN -pair, is a free
product of copies of Z/2Z. In particular, let G be a Kac-Moody group of type ∞ over a finite
field Fq. Then the Weyl group has the form

W = 〈wi | i = 1, ..., n〉 ∼= ∗i=1,...,nZ/2Z ,

where n = rank(G). If G is affine or hyperbolic and has type ∞, then G has rank 2 or rank 3.

Rank 2

Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over Fq. Then

W = Z/2Z ∗ Z/2Z .

The Tits building X is the (q + 1)-regular tree Xq+1. The vertex set V X is given by the set of
cosets of the maximal standard parabolic subgroups

P1 := B tBw1B , and

P2 := B tBw2B.

The oriented edge set is given by

EX = G/B tG/B ,

where G/B denotes the edges of opposite orientation.

The tree X is a homogeneous, bipartite tree (see Figure 1)of degree

[P1 : B] = [P2 : B] = q + 1.

Since G acts with two orbits on vertices and a single orbit on edges, we can recover, by application
of the fundamental theorem of Bass-Serre [S], a presentation for G as an amalgamated free
product

G = P1 ∗B P2 .

Rank 3
9



q + 1

= cosets of P2= cosets of P1

Figure 1. Bruhat-Tits tree for rank 2 Kac-Moody group over Fq

Let G be a symmetrizable locally compact rank 3 Kac-Moody group of type∞ over a finite field
Fq. Then

W = Z/2Z ∗ Z/2Z ∗ Z/2Z.

As we mentioned in the introduction, we may apply the classification of symmetrizable hyper-
bolic Dynkin diagrams ([Sa]) to deduce that G is of noncompact hyperbolic type and that the
generalized Cartan matrix of G is one of the following:

A =




2 −2 −2
−2 2 −1
−2 −1 2


 , A =




2 −4 −2
−1 2 −1
−2 −1 2


 , A =




2 −1 −2
−4 2 −1
−2 −1 2


 .

The Tits building X consists of the hyperbolic plane tessellated by ideal triangles, together
with q − 1 additional triangles glued along each edge of a triangle in the hyperbolic plane. The
vertices V X of ideal triangles are given by the set of cosets of the maximal standard parabolic
subgroups

P1,2 :=
⊔

w∈<w1,w2>

BwB , and

P2,3 :=
⊔

w∈<w2,w3>

BwB , and

P1,3 :=
⊔

w∈<w1,w3>

BwB .

The edges correspond to cosets of

Q1 := B tBw1B , and

Q2 := B tBw2B , and

Q3 := B tBw3B.

The triangular faces correspond to cosets of B.

We can embed a (q + 1, 3)-bihomogeneous tree in X by taking the maximal tree X of the
barycentric subdivision, as shown in Figure 2. The action of G on X induces an action on X .

For a Kac-Moody group of type∞ over a field of two elements, we will use the action of G on its
building (or embedded tree) to exhibit lattice subgroups by constructing their quotient graphs
of groups. This technique is explained in the next section.

10



3
q + 1

3

q + 1

q + 1

3

3

Figure 2. Tits building for a rank 3 Kac-Moody group with (3, q + 1)-
bihomogeneous inscribed tree

3. Lattices and covering theory

Let G be a locally compact group acting on a set X with compact open stabilizers, and let µ
be a (left) Haar measure on G. Let Γ ≤ G be a discrete subgroup with quotient p : G −→ Γ\G.
We call Γ a G-lattice if µ(Γ\G) < ∞, and a uniform or cocompact G-lattice if Γ\G is compact.
When G is unimodular, µ(Gx) is constant on G-orbits, so we can define:

µ(G\\X) :=
∑

x∈V (G\X)

1

µ(Gx)
,

where Gx denotes the stabilizer in G of the vertex x and V (G\X) denotes the set of vertices of
the quotient graph G\X.

Theorem 7. ([BL], (1.6)) Suppose that a group G acts on a set X with compact open stabi-
lizers. For a discrete subgroup Γ ≤ G, the following conditions are equivalent:

(a) V ol(Γ\\X) <∞.
(b) Γ is a G-lattice (hence G is unimodular), and µ(G\\X) <∞.

In this case:
V ol(Γ\\X) = µ(Γ\G) · µ(G\\X).�

Let Γ ≤ G be discrete. Then the diagram of natural projections

X
pΓ

↙
pG

↘

Γ\X
p
−→ G\X

commutes. Assume that V ol(Γ\\X) <∞. Then Γ is a G-lattice. To determine if Γ is uniform
or non-uniform in G, we use the following:

Lemma 8. ([BL], (1.5.8)) Let X be a set with compact open stabilizers and let x ∈ X. The
following conditions are equivalent:

11



(a) Γ is a uniform G-lattice.
(b) Some fiber p−1(pG(x)) ∼= Γ\G/Gx is finite.
(c) Every fiber of p is finite.

Now let G be a Kac-Moody group of noncompact hyperbolic type. Let X be the Tits building
of G. Then G\X is not compact. Suppose that G contains a cocompact G-lattice Γ. By the
Lemma above, this implies that Γ\G/Gx is finite for any x ∈ V X, that is, Γ\G/gPig

−1 is finite
for any g ∈ G, where Pi is a maximal parabolic subgroup of G. Even though G\X is not
compact, the number of orbits of G on X is finite.

3.1. Edge-indexed graphs. Let A be a connected locally finite graph, with sets V A of vertices
and EA of oriented edges. The initial and terminal vertices of e ∈ EA are denoted by ∂0e and
∂1e respectively. The map e 7→ e is orientation reversal, with ∂1−je = ∂je for j = 0, 1.

A graph of groups A = (A,Av ,Ae, αe) over a connected graph A consists of an assignment of
vertex groups Av for each v ∈ V A and edge groups Ae = Ae for each e ∈ EA, together with
monomorphisms αe : Ae → A∂0e for each e ∈ EA. We refer the reader to [B] for the definitions

of the fundamental group π1(A, a0) and universal covering tree X = (̃A, a0) of a graph of groups
A = (A,Av,Ae, αe), with respect to a basepoint a0 ∈ V A.

An edge-indexed graph (A, i) consists of an underlying graph A together with an assignment of
a positive integer i(e) ∈ Z>0 to each edge e ∈ EA. Let A = (A,A) be a graph of groups. Then
A naturally gives rise to an edge-indexed graph I(A) = (A, i), with for each e ∈ EA, the map
i : EA→ Z>0 given by i(e) = [A∂0e : αeAe], which we assume to be finite.

Given an edge-indexed graph (A, i), a graph of groups A such that I(A) = (A, i) is called a
grouping of (A, i). We call A a finite grouping if the vertex groups Aa are all finite, and a
faithful grouping if A is a faithful graph of groups, that is if the fundamental group π1(A, a0)

acts faithfully on the universal covering tree X = (̃A, a0).

As an example, let G be a rank 2 Kac-Moody group over a finite field Fq. The action of G on
X = Xq+1 gives rise to a quotient graph of groups, whose vertices and edges are the G-orbits of
vertices and edges in X.

P2G\\X =
B

P1

Figure 3. graph of groups for a rank 2 Kac-Moody group

The Kac-Moody group G is the fundamental group of this graph of groups, and the Tits building
X is the universal covering tree. The corresponding edge-indexed graph is a pair of edges {e, e}
with i(e) = i(e) = [Pi : B] = q + 1.

We now describe a method for constructing lattices in Aut(X) which follows naturally from the
fundamental theory of Bass–Serre (see [B],[S]), and was first suggested in [BK]. We begin with

an edge-indexed graph (A, i). Then (A, i) determines a universal covering tree X = ˜(A, i, a0) up
to isomorphism. Let A be a finite grouping of (A, i). Then there is a homomorphism

π1(A, a0)→ Aut(X).
12



This map is a monomorphism if and only if A is faithful, in which case we may identify π1(A, a0)
with its image in Aut(X). Since A is a finite grouping, this image is discrete. By the discussion
in Section 3.1 above, the image of π1(A, a0) is a lattice in Aut(X) if and only if A is a faithful
graph of finite groups of finite volume.

3.2. Coverings. We have described in Section 3.1 above how to construct lattices in Aut(X)
as fundamental groups Γ of graphs of groups. In order to determine if such a Γ embeds into a
subgroup G < Aut(X) such as a Kac-Moody group, we will use covering morphisms of graphs
of groups.

Definition 1. Let A = (A,Av,Ae, αe) and A′ = (A′,A′
v,A

′
e, α

′
e) be graphs of groups. A covering

morphism Φ = (ϕ, (δ)) : A→ A′ consists of:

(1) a graph morphism ϕ : A→ A′;
(2) monomorphisms

ϕa : Aa → A
′
ϕ(a) (a ∈ V A), ϕe = ϕē : Ae → A

′
ϕ(e) (e ∈ EA);

(3) For each e ∈ EA with a = ∂0e an element δe ∈ A
′
ϕ(a) such that the following two

conditions hold:
(a) The following diagram commutes:

Ae

ϕe

��

αe
// Aa

ϕa

��

A′
ϕ(e)

ad(δe)◦α′

ϕ(e)
// A′

ϕ(a)

where ad(x)(s) = xsx−1.
(b) For f ∈ EA′, a′ = ∂0f and a ∈ ϕ−1(a′), the map

Φa/f :




∐

e∈ϕ−1
(a)

(f)

Aa/αeAe


 −→ A′

ϕ(a)/α
′
fA

′
f

defined by

Φa/f ([s]e) = [ϕa(s)δe]f

is bijective (where s ∈ Aa, [s]e is the class of s in Aa/αeAe, and ϕ−1
(a)(f) = {e ∈

EA | ϕ(e) = f, ∂0(e) = a}).

Covering morphisms of graphs of groups were originally defined by Bass (Definitions 2.1 and 2.6
of [B]). By Proposition 2.7 of [B], a covering morphism Φ : A → A′ induces a monomorphism
of fundamental groups Φa0 : π1(A, a0) → π1(A′, a′0) and an isomorphism of universal covers

Φ̃ : (̃A, a0) → ˜(A′, a′0) (where a0 ∈ V A and a′0 = ϕ(a0) for ϕ : A → A′ the underlying graph
morphism of the covering Φ).

We will embed cocompact lattices in a Kac-Moody group G by constructing coverings of the
corresponding graphs of groups. Our first example shows that free groups may be embedded as
cocompact lattices in G.

13



Proposition 9. Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over
Fq. Let X = Xq+1 be the Tits building of G, a (q+1)−regular tree. Let A be any (q+1)−regular
bipartite graph. Then

(1) The free group Fs = π1(A) is a discrete subgroup of G, where s is the number of edges
outside any maximal tree in A.

(2) If A is finite, then the free group Fs = π1(A) is a cocompact lattice in G, where s is the
number of edges outside any maximal tree in A.

To prove this, we construct a covering morphism of graphs of groups. We need the following
lemma regarding embedding lattices in G.

Lemma 10. Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over Fq.
Let A = (A, Av, Ae, αe) be any graph of groups. Let G be the graph of groups for G. Suppose
there is a covering morphism Φ : A→ G. Then

(1) Γ = π1(A) is a subgroup of G = π1(G).
(2) If A is a graph of finite groups, then Γ = π1(A) is a discrete subgroup of G.
(3) If A is a finite graph of finite groups, then Γ = π1(A) is a cocompact lattice in G.
(4) If A is an infinite graph of finite groups, with V ol(A) :=

∑
v∈V A

1
|Av|

< ∞, then Γ =

π1(A) is a nonuniform lattice in G.

Proof. (1) is a restatement of Bass’s equivalence between a covering morphism of graphs of
groups and an embedding of fundamental groups of graphs of groups ([B], Proposition 2.7).

For (2), let G0 be the faithful quotient of G on X. By (1), Γ is a subgroup of G, and hence acts
on X. Since A is a graph of finite groups, the action has finite vertex stabilizers, and thus Γ
is discrete in Aut(X). Moreover, G0 is a closed subgroup of Aut(X) and the quotient topology
on G0 coincides with the quotient topology on Aut(X) ( [CG], Sec9). Therefore Γ is discrete in
Aut(X) if and only if Γ is discrete in G.

For (3), since A is a finite graph, the map A = π1(A)\X −→ G\X has finite fibers. Since
π1(A) is discrete in G it follows from ( [BL], 1.5) that π1(A) is cocompact in G.

For (4), by ([BL], 1.6) V ol(A) < ∞ if and only if µ(Γ\G) < ∞ and

µ(G\\X) :=
1

µ(P1)
+

1

µ(P2)
< ∞ ,

where µ is the Haar measure on G. Since Γ is discrete in G and µ(Γ\G) < ∞ and A is an
infinite graph, it follows that Γ is nonuniform in G.

�

We may now prove Proposition 9 by constructing a covering morphism of graphs of groups.
Recall the graph of groups for G:

P2G\\X =
B

P1

14



Proof. Let A be any (q + 1)-regular bipartite graph and let A = (A, {1}, {1}) be the corre-
sponding graph of groups with trivial vertex and edge groups. Then Fs = π1(A), where s is the
number of edges outside any maximal tree of A. By the lemma above, it is enough to show that
there is a covering morphism A −→ G. Since A is bipartite there is a graph morphism from A
to the simplex (the underlying graph of G). For each a ∈ V A, e ∈ EA, the vertex map ϕa and
the edge map ϕe are inclusions of the trivial group. Choose {δe} to be a complete set of coset
representatives of Pi/B for i = 1, 2. Since each edge and vertex group is trivial the diagram

{1}

��

// {1}

��

B
ad(δe)

// Pi

commutes for any e ∈ EA. Moreover, if the quotient graph for G is the single edge f with
vertices a1 and a2, then for i = 1, 2 the map

∐

e∈ϕ−1
(ai)

(f)

{1}e −→ Pi/B by {1}e 7→ δeB

is map from q + 1 copies of the trivial group (because A is (q + 1)-regular) to distinct cosets of
Pi/B. Thus the map is bijective, and the desired covering morphism is obtained.

�

3.3. Extending Coverings of Edge-indexed Graphs to Covering Morphisms of Graphs
of Groups. In the last section we described a technique for embedding fundamental groups of
graphs of groups by constructing covering morphisms of graphs of groups. This technique
requires us to find an infinite family of elements δe that produce corresponding commutative
diagrams and bijections on cosets.

In some cases it is possible to construct a simpler covering of edge-indexed graphs (see [BL]),

p : (B, j) −→ (A, i).

Here p : B −→ A is a graph morphism such that for all e ∈ EA, ∂0(e) = a, and b ∈ p−1(a), we
have

i(e) =
∑

f∈p−1
(b)

(e)

j(f),

where p(b) : EB
0 (b) −→ EA

0 (a) is the local map on stars EB
0 (b) and EA

0 (a) of vertices b ∈ V B
and a ∈ V A. If b ∈ V B, p(b) = a ∈ V A, then we can identify

˜(A, i, a) = X = ˜(B, j, b)

so that the diagram of natural projections

X
pB

↙
pA

↘

B
p
−→ A

commutes.

Let ϕ : (A, i) → (A′, i′) be a covering of edge-indexed graphs. In this section we consider the
following natural question:

15



Question 11. Are there faithful finite groupings A and A′ of (A, i) and (A′, i′) respectively such
that ϕ extends to a covering morphism Φ : A −→ A′?

A positive answer to Question 11 would give rise to a pair Γ ≤ Γ′ of discrete subgroups of Aut(X),

where X = (̃A, i) = (̃A′, i′) is the universal covering tree, and Γ = π1(A, a) and Γ′ = π1(A′, a′)
are the respective fundamental groups, with basepoints a ∈ V A and a′ = ϕ(a).

In Theorem 12 we give a sufficient condition for Question 11 to have a positive answer in the
case that A and A′ are abelian groupings. In this case, the definition of a covering morphism is
simplified as follows.

Let Φ : A→ A′ be a covering morphism, as in Definition 1, with monomorphisms

ϕa : Aa → A
′
ϕ(a) (a ∈ A), ϕe = ϕē : Ae → A

′
ϕ(e) (e ∈ EA),

and conjugating elements δe ∈ A
′
ϕ(a) (where ∂0e = a).

Consider the case where each action ad(δe) is trivial. This must occur in particular when the
groups A′

ϕ(a) are abelian. Since the maps ϕa and ϕe are monomorphisms, we may identify

the groups Aa and Ae with their images in A′
ϕ(a) and A′

ϕ(e) respectively. Condition (3a) of

Definition 1 then becomes
(3a′) αe = α′

ϕ(e)|Ae .

We have the following.

Theorem 12. Let ϕ : (A, i) → (A′, i′) be a covering of edge-indexed graphs. Let A and A′ be
finite abelian groupings of (A, i) and (A′, i′) respectively. Suppose further that

(1) For all a ∈ V A and e ∈ EA, we have Aa ≤ A
′
ϕ(a) and Ae ≤ A

′
ϕ(e).

(2) For all e ∈ EA, we have αe = α′
ϕ(e)|Ae .

(3) For all a ∈ V A and f ∈ EA′ such that ∂0f = ϕ(a), and for all e ∈ ϕ−1
(a)(f), we have

Aa ∩ α′
fA

′
f = αeAe.

Then ϕ extends to a covering morphism Φ = (ϕ, (δ)) : A −→ A′.

Proof We define the monomorphisms ϕa and ϕe to be just the inclusion maps. We have seen
that since we are using abelian groups, condition (3a) in the definition of a covering morphism
reduces to condition (2) in the statement of this theorem. It remains only to define the elements
δe for each e ∈ EA and show that condition (3b) in the definition of a covering morphism
is satisfied. So let a ∈ V A and let f ∈ EA′ be such that ∂0f = ϕ(a). We claim that the
{δe}e∈ϕ−1

(a)
(f) may be chosen as distinct coset representatives of

(1) (A′
ϕ(a)/α

′
fA

′
f)/(Aaα

′
fA

′
f/α′

fA
′
f )

Note that since A′
ϕ(a) is an abelian group, its subgroups Aa and α′

fA
′
f are normal, and so

Aaα
′
fA

′
f is a subgroup.

We first show that the group Aa/αeAe naturally injects to a subgroup of the group A′
ϕ(a)/α

′
fA

′
f .

Consider the map
Aa/αeAe → A

′
ϕ(a)/α

′
fA

′
f

which takes [s]e to [s]f , where s ∈ Aa. This map is well-defined since by (1) and (2) above, αeAe

is a subgroup of α′
fA

′
f . It is clearly a homomorphism, and by condition (3) in the statement of
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this theorem it is in fact a monomorphism. The image of Aa/αeAe under this monomorphism
is the group Aaα

′
fA

′
f/α′

fA
′
f .

We must also show that the number of cosets in the quotient group in (1) above is precisely the
number of edges e ∈ ϕ−1

(a)(f). Recall that if K and L are subgroups of an abelian group H then

the index [H/K : LK/K] equals [H : K]/[L : K∩L]. Applying this with H = A′
ϕ(a), K = α′

fA
′
f

and L = Aa, and using condition (3) in the statement of this theorem, we find that for any
e ∈ ϕ−1

(a)(f) the number of cosets in the quotient group (1) is i′(f)/i(e). Thus the indexing i is

constant on edges e ∈ ϕ−1
(a)(f). Since ϕ is a covering of edge-indexed graphs, we have

i′(f) =
∑

e∈ϕ−1
(a)

(f)

i(e).

Hence the number of edges in ϕ−1
(a)(f) must be exactly i′(f)/i(e) for any e ∈ ϕ−1

(a)(f) as well.

The map Φa/f is then just the map that for each e ∈ ϕ−1
(a)(f) sends the group Aa/αeAe to the

coset (Aaα
′
fA

′
f/α′

fA
′
f )δe. This is bijective since we have exactly one representative from each

coset. �

4. Existence of cocompact lattices in rank 2 Kac-Moody groups

Recall that a rank 2 Kac-Moody group G over a finite field Fq acts on the tree X = Xq+1

with quotient a simplex. The quotient graph of groups is given in Figure 4.

P2G\\X =
B

P1

Figure 4. graph of groups for a rank 2 Kac-Moody group (also Figure 3)

As discussed in section 2.4, B is the minimal parabolic subgroup, and the Weyl group is given
by

W =< w1, w2 > ∼= Z/2Z ∗ Z/2Z.

The vertex groups are the standard parabolic subgroups

P1 = B tBw1B , P2 = B tBw2B.

The Kac-Moody group G has the corresponding amalgamated product decomposition G =
P1 ∗B P2. We restate the following lemma of Lubotzky to give a sufficient condition on the
action of an amalgamated product of the form Γ = A1 ∗A1∩A2 A2 yielding Γ as a cocompact
subgroup of G. We then use this lemma to construct a cocompact lattice in a rank 2 Kac-Moody
group over a field of characteristic 2.

Lemma 13 ([L], Lemma 3.1). Let G be a rank 2 affine or hyperbolic Kac-Moody group over the
field Fq and let X = Xq+1 be the Bruhat–Tits tree of G. Let x1, x2 be adjacent vertices of X
and let A1 and A2 be finite subgroups of G such that
(1) Ai fixes xi for i = 1, 2, and StabAi

(x3−i) = A1 ∩ A2.
(2) For i = 1, 2 Ai acts transitively on the q + 1 neighbors of xi.

Then the group Γ = A1 ∗A1∩A2 A2 is a cocompact lattice in G .
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Recall that the subgroups Mq in Lemma 2 ([L], Lemma 3.5) act transitively on the projective
line. Moreover the group Pi has Levi factor Li = (SL2(Fq) × (F×

q ))i where Li is the group

generated by H ∼= F×
q × F×

q and the root groups U±αi
. By a slight abuse of notation, we let Mq

denote the image of the group Mq of Lemma 2 in the Levi factor L1 and we let M̃q denote the

image of Mq in L2. It is then clear that Mq fixes x1 and M̃q fixes x2. Since Mq and M̃q each act

transitively on Pq+1, it follows from the construction of X that Mq (resp. M̃q) acts transitively
on the q + 1 neighbors of x1 (resp. neighbors of x2). Then Lemma 14 follows directly from
Lemma 13.

Lemma 14. Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over Fq.
Let x1 and x2 be adjacent vertices in the Tits building X = Xq+1 such that Pi = Stab(xi)

for i = 1, 2. Let Mq and M̃q be subgroups of P1 and P2 as described above. If StabMq(x2) =

Mq ∩ M̃q = Stab
M̃q

(x1), then

Mq ∗Mq∩M̃q
M̃q

is a cocompact lattice in G.

Corollary 15. Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over

Fq, and suppose q = 2s. Let Mq and M̃q be as in Lemma 14. Then

(1) StabMq(x2) = Stab
M̃q

(x1) = {1}

(2) Mq ∗ M̃q is a cocompact lattice in G.

Proof. Note that the star in X of x1, denoted StarX(x1) consists of the q + 1 edges with initial
vertex x1. Moreover Mq has order q+1 and acts transtively on StarX(x1) = P1(Fq) by Lemma 2.
By transitivity of Mq on StarX(x1), the orbit of the edge (x1, x2) has cardinality q + 1. By the
orbit-stabilizer theorem it follows that the stabilizer of (x1, x2) in Mq is trivial. The group Mq

fixes x1, and hence StabMq(x2) = {1}. A similar argument shows that Stab
M̃q

(x1) = {1}. Thus

StabMq(x2) = Stab
M̃q

(x1) = Mq ∩ M̃q = {1}, and we have proven (1). Part (2) now follows

immediately from Lemma 14. �

A similar line of argument was used in Section 6.1 of [LW] to embed Z/(q + 1)Z ∗Z/(q + 1)Z as
a cocompact lattice in SL2(Fq((t

−1))) for q = 2s.

When q = 2, we have Mq
∼= M̃q

∼= Z/3Z. The following corollary gives the cocompact lattice
subgroup Γ with quotient a simplex introduced in Theorem 1.

Corollary 16. Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over
F2. Then Z/3Z ∗ Z/3Z is a cocompact lattice in G.

Remark: Note that the two factors of the cocompact lattice in the corollary are distinct copies
of Z/3Z with trivial intersection. In fact it is possible to show that

M2
∼= < χ1(1)χ−1(1) > and M̃2

∼= < χ2(1)χ−2(1) >,

where χ±i(1) ∈ Pi −B. For simplicity we just write Z/3Z for M2 and M̃2.

For the remainder of this section, let G be a rank 2 affine or hyperbolic Kac-Moody group over

a finite field Fq, and consider a cocompact lattice Γ of the form Mq ∗M M̃q. The main idea
18



is to now use covering theory to construct further cocompact lattices of G as subgroups of Γ.
More precisely, we seek to exhibit edge-indexed graphs (B, j) for which a covering p : (B, j) →
(A, i) exists, where (A, i) is the edge-indexed graph corresponding to a previously constructed
cocompact lattice, such as Z/3Z ∗ Z/3Z. We then extend the coverings to covering morphisms
ϕ : B→ A of graphs of groups, yielding an embedding of fundamental groups π1(B)→ π1(A).

The following lemma carries out this strategy of extending coverings of edge-indexed graphs
more generally. In particular we construct subgroups of an arbitrary amalgamated free product
Γ = A1 ∗A3 A2, where A3 embeds in A1 and A2 as a finite-index subgroup. The construction
uses Theorem 12 in Section 3.3 to extend coverings of edge-indexed graphs. This necessitates
the condition that the groups A1 and A2 are abelian. From this lemma we then specialize to
the Kac-Moody setting.

Lemma 17. Let Γ = A1 ∗A3 A2 be a group, and suppose that [A1 : A3] = a < ∞ and [A2 :
A3] = b <∞. Let X be the locally finite tree on which Γ acts with quotient a simplex. Suppose
further that A1 and A2 are abelian. Then Γ1 = ∗

A3
k=1,...,a

(A2)k is a subgroup of Γ. Moreover, if

A2 is finite then Γ1 is a cocompact lattice in Γ.

Proof. Let X be the (a, b) bihomogeneous tree on which Γ = A1 ∗A3 A2 acts with quotient
a simplex. Let (A, i) = (Γ\X, i) be the resulting edge-indexed graph, and let (B, j) be the
edge-indexed ‘a-star’ shown in Figure 5.

The graph morphism p : (B, j) → (A, i) depicted is a covering of edge-indexed graphs. Assume
without loss of generality that A3 ≤ A1, and let α : A3 → A2 be a monomorphism. Let A be
the graph of groups associated with the action of Γ on X. Give (B, j) the abelian grouping B
as shown in Figure 6.

It is straightforward to check that the abelian groupings A and B, together with the edge-
indexed covering p, satisfy the sufficient conditions listed in Theorem 12. Therefore p extends
to a covering morphism ϕ : B→ A of graphs of groups.

b

b

p

e
a b

a edges(B, j) = ...

(A, i) =
a1a0

Figure 5. edge-indexed covering of the simplex by the a-star
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←↩ A
3

←↩ A3

α

α

α

Φ

A2A1

A2

A2

A3

←↩ A3A =

B = ... a edges

Figure 6. abelian grouping of the a-star, covering the simplex grouping

By Proposition 2.7 of [B] it follows that π1(B) = ∗
A3

k=1,...,a

(A2)k embeds in πq(A) = Γ. If A2 is

finite then ∗
A3

k=1,...,a

(A2)k is a cocompact lattice in Γ.

�

Given that the rank 2 Kac-Moody group G has a cocompact lattice whose quotient is a simplex,
we now have a sufficient condition yielding a ‘q + 1-star’ which embeds in G as a cocompact
lattice.

Corollary 18. Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over
Fq, and suppose that A1 ∗A3 A2 is a cocompact lattice in G with quotient a simplex. Suppose
further that A1 and A2 are abelian. Then

∗
A3

k=1,...,q+1

(A2)k

is a cocompact lattice in G.

In particular, we have an embedding of such a q + 1-star when Fq is a field of characteristic 2 if

the subgroups Mq and M̃q are abelian.

Corollary 19. Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over

Fq, and suppose q = 2s. Let Mq ∗ M̃q be the cocompact lattice given in Corollary 15. If Mq and

M̃q are abelian, then

∗
k=1,...,q+1

(M̃q)k

is a cocompact lattice in G.
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In particular the Corollary holds when q = 2. This yields the cocompact lattice which is the
second subgroup in the infinite descending chain in Theorem 1 (3).

Corollary 20. Let G be a locally compact rank 2 affine or hyperbolic Kac-Moody group over
F2. Then

Γ1
∼= Z/3Z ∗ Z/3Z ∗ Z/3Z

is a cocompact lattice in G.

Remark: Note that each copy of Z/3Z in the graph of groups B is identical to the image

subgroup M̃2
∼= < χ2(1)χ−2(1) > in A (see remark following the proof of Corollary 16).

There are infinitely many cocompact lattices of G which may be constructed using the technique
described in this section. In particular in Section 8 we give the general construction for an infinite
descending chain of subgroups of an amalgamated free product and provide an example in the
Kac-Moody setting.

5. Rank 3 Complex of Groups

Let G be a rank 3 Kac-Moody group of type ∞ over the field F2, and let X denote the
corresponding Tits building. As described in section 2.4, X is a hyperbolic building whose
standard apartment consists of a tiling of the hyperbolic plane by ideal triangles. The full
building is constructed by gluings of a third triangle at each edge of the plane. The vertices of
the complex are given by cosets of the maximal standard parabolic subgroups:

Pi,i+1mod 3 =
⊔

w∈〈wi,w(i+1)mod 3〉

BwB, i = 1, ..., 3 .

The edges are given by cosets of

Qi =
⊔

w∈〈wi〉

BwB = B t BwiB, i = 1, ..., 3 .

The faces are given by cosets of B. (Here we are, by abuse of notation, writing wi for the element
w̃i.)

There are q + 1 = 3 faces adjoining each edge. Note that

Pi−1,i ∩ Pi,i+1 = Qi and ∩3
i=1 Qi = B.

In general each edge coset is the intersection of the corresponding vertex cosets, and each face
is the intersection of the adjoining edges cosets (or vertex cosets).

The quotient by the action of G on X is the triangle of groups in Figure 7.

We note that the triangle of groups in Figure 7 is a (simple) complex of groups, as defined in
III.C of [BH], and the Kac-Moody group G over the field F2 is the corresponding fundamental
group.

Lin and Thomas [LT] show that a covering of complexes of groups induces an embedding of the
corresponding fundamental groups. We may thus construct a subgroup of a rank 3 Kac-Moody
group by constructing a triangle of groups and constructing a covering from this triangle of
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P1,2

Q3

Q1

Q2

P2,3

B

P3,1

Figure 7. quotient triangle of groups for a rank 3 Kac-Moody group

groups to the triangle of groups for G. Such a covering of triangles of groups may be constructed
by exhibiting the following:

monomorphisms ϕij : Aij → Pij , ϕi : Ai → Qi , i : A→ B

such that these monomorphisms induce bijections

Aij/A → Pij/B , Ai/A → Qi/B , and Aij/Ai → Pij/Qi .

We use this method in the following section to construct subgroups of the rank 3 Kac-Moody
group.

6. Existence of cocompact lattices in rank 3 type ∞ Kac-Moody groups over F2

Let G be a symmetrizable locally compact rank 3 Kac-Moody group of type ∞ over the
field F2, and X its Tits building as described in the previous section. We now use coverings of
complexes of groups to construct a non-discrete subgroup whose quotient is also an ideal triangle
of groups, that is whose quotient is a simplex. This is the non-discrete subgroup Λ′ in rank 3
introduced in Theorem 5. We thank Anne Thomas for explaining to us how to construct the
covering morphism of Lemma 21.

Lemma 21. Let G be a locally compact symmetrizable rank 3 Kac-Moody group of type ∞ over
the field F2. Let Λ′ be the fundamental group of the ideal triangle depicted below. Then Λ′ is a
subgroup of G. The image of Λ′ in G is non-discrete.

Z/3Z {1}

Z/3Z ∗ Z/3Z

Z/3Z ∗ Z/3Z

Z/3Z

Z/3Z ∗ Z/3Z

Z/3Z

Figure 8. triangle of groups for Λ′
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Proof. We construct a covering of complexes of groups from the triangle of groups for Λ′ to the
triangle of groups for G.

The face group of Λ′ is trivial so we let the local map i here be the natural inclusion of the
identity element into B. For the edge groups, write Z/3Z = 〈ε〉 for the cyclic group of order 3.
For each i = 1, 2, 3 we claim that there is a group monomorphism ϕi : 〈ε〉 → Qi.

By definition of the elements wi = w̃i, and using the fact that in the field F2 we have 1 = −1,

χi(1)χ−i(1) = wiχi(1)
−1.

Since χi(1) = χαi
(1) ∈ Uαi

⊆ U ⊆ B, we have that

ϕi(ε) = wiχi(1)
−1 ∈ BwiB = Qi −B

as required. In particular, ϕi(ε) 6= 1 and < ϕi(ε) > ∩ < ϕj(ε) > = {1} for i 6= j.

Next we show that ϕi(ε) has order 3. For this, it is enough to show that (ϕi(ε))
3 = 1. We

compute

(ϕi(ε))
3 = χi(1)χ−i(1)χi(1)χ−i(1)χi(1)χ−i(1)

= wiχ−i(1)χi(1)χ−i(1)

= wiχ−i(1)w
−1
i wiχi(1)w

−1
i wiχ−i(1)w

−1
i wi

= χi(1)χ−i(1)χi(1)wi

= w2
i

= 1.

We thus have a monomorphism

ϕi : Z/3Z→ Qi

for each i = 1, 2, 3. Moreover, the elements {ϕi(1), ϕi(ε), ϕi(ε
2)} form a set of coset representa-

tives of Qi/B since ϕi(ε) has order 3 and does not lie in B.

For the vertex groups, since ϕi(ε) ∈ Qi −B, we have that for i = 1, 2, 3,

ϕi(〈ε〉) ∩ ϕi+1(〈ε〉) = {1}.

Hence we obtain an embedding

〈ε〉 ∗ 〈ε〉 ↪→ Pi,i+1.

Moreover the image ϕi(〈ε〉) in Pi,i+1 forms a set of coset representatives for Pi,i+1/Qi+1, and
similarly for the image of ϕi+1(〈ε〉) and Pi,i+1/Qi. Finally the image of 〈ε〉 ∗ 〈ε〉 in Pi,i+1 forms
a set of coset representatives for Pi,i+1/B since this image only intersects B trivially.

We have thus constructed a covering of complexes of groups from the complex of groups for Λ′

to the complex of groups for G. It follows that Λ′ is a subgroup of G. Since the vertex groups
are infinite groups, the image of Λ′ in G is non-discrete. �

In the following section, we provide a different embedding of Z/3Z ∗ Z/3Z ∗ Z/3Z as a
cocompact lattice in G.

23



7. Actions of cocompact lattices on ideal complexes and on their inscribed

trees

A locally compact Kac-Moody group G of rank 2, and hence any lattice subgroup, comes
equipped with an action on a simplicial tree, the Tits building of G.

In [C1] the author showed that all symmetrizable locally compact Kac-Moody groups G of rank
3 noncompact hyperbolic type over finite fields Fq have the Haagerup property, and she exhibited
an action of G on a simplicial tree X where certain lattices act discretely, that is, with finite
vertex stabilizers. When G has type ∞, the tree X is the bihomogeneous bipartite tree X3,q+1

([C1]). When q = 2, X is the homogeneous bipartite tree denoted X3. We can think of X as the
tree of barycenters for the rank 3 building X.

Thus we have actions of the rank 2 and rank 3 Kac-Moody groups over the field F2 on the
trivalent tree. Let G be a rank 3 symmetrizable locally compact Kac-Moody group of type ∞
with Tits building X. We showed in Lemma 21 that the non-discrete subgroup Λ′ embeds in
G. The proof of Lemma 21 also shows that the subgroup generated by the face and edge groups
of the triangle of groups Λ′\\X embeds in the subgroup of G generated by the face and edge
groups of the triangle of groups G\\X. That is, the X -lattice Γ1

∼= Z/3Z ∗Z/3Z ∗Z/3Z embeds
as a cocompact lattice in the subgroup, denoted Q, of G generated by all non-maximal standard
parabolic subgroups.

It turns out that Q = G. This is easy to see, since we have Q = 〈Q1, Q2, Q3〉 where Qi =
B tBwiB. We claim that Q = tw∈WBwB = G where W = Z/2Z ∗ Z/2Z ∗ Z/2Z is the infinite
Weyl group W = 〈w1〉 ∗ 〈w2〉 ∗ 〈w3〉. Since W is a free product, the multiplication rule for
double cosets gives BwiB · BwB = BwiwB for each i = 1, 2, 3. Hence Q generates the Bruhat
decomposition for the whole of G.

The edge-indexed graph quotient graph of Γ1 on X is inscribed (as a tripod formed by the
barycenters) in the ideal triangle which is the fundamental chamber for the Weyl group W of
G.

Our methods show that Γ1 also acts discretely and cocompactly on X . The following is a
summary of these results.

Theorem 22. Let G be a rank 3 symmetrizable locally compact Kac-Moody group of type ∞
over the finite field F2. Let X be the Tits building of G and let X = X3 be the bihomogeneous
bipartite simplicial tree inscribed in X. Let Γ1

∼= Z/3Z ∗ Z/3Z ∗ Z/3Z be as in Corollary 20.
Then Γ1 is a cocompact X -lattice with edge-indexed quotient a tripod. Moreover the image Γ′

1 of
Γ1 in G is a cocompact lattice in G.

8. Infinite descending chains of cocompact lattices

In this section, we consider groups of the form Γ1 = ∗
A3

k=1,...,a

(A2)k, an amalgamated free

product of copies of a group A2 over a subgroup A3 of finite index. The group Γ1
∼= Γ′

1
∼=

Z/3Z ∗ Z/3Z ∗ Z/3Z, which embeds in a type-∞ Kac-Moody group over F2 as described in
Corollary 20 for rank 2 and Theorem 22 for rank 3, is an example of such an amalgamted free
product.
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Q2

B
Q1

Q3

Z/3Z

Z/3Z {1}

Φ

Z/3Z

Figure 9. Embedding of Z/3Z ∗ Z/3Z ∗ Z/3Z in rank 3 group via action on
inscribed tree

Remark: The notation reflects the fact that we will be building on the constructions in
Lemma 17.

We will construct infinite descending chains of subgroups of Γ1. Specializing to the Kac-Moody
setting, this construction will yield infinite descending chains of subgroups which embed as
cocompact lattices in subgroups of a type∞ Kac-Moody group over the field F2. That is we will

embed the descending chains in the subgroup G̃ generated by all standard parabolic subgroups
which are disjoint unions of double cosets of B indexed by a single Weyl group generator. In

the rank 2 setting G̃ is the full Kac-Moody group. In the rank 3 setting G̃ = Q, the subgroup
generated by all non-maximal parabolic subgroups (see Theorem 22).

Theorem 23. Let G be a locally compact affine or hyperbolic Kac-Moody group of type ∞

over the field F2 with Weyl group W =< wi >. Let G̃ be the subgroup generated by the standard

parabolic subgroups of the form BtBwiB. Then G̃ contains an infinite descending chain . . . Γ3 ≤
Γ2 ≤ Γ1 of cocompact lattices with distinct fundamental domains, with Γk

∼= ∗
j=1,...,nk

(Z/3Z)j ,

where nk = 1 + 3k −
∑k−1

i=0 3i and V ol(Γk) = 2(3)k−1. Hence the Γk are pairwise non-conjugate.

In general we can construct an infinite descending chain of subgroups in Γ1 = ∗
A3

k=1,...,a

(A2)k by

iterating the technique described in the proof of Lemma 17. We use the action of Γ1 on an
a-regular tree X. We first build an infinite sequence of coverings of edge-indexed graphs over
the quotient of Γ1 on X. We then extend this to an infinite sequence of covering morphisms
of finite graphs of finite groups. The following theorem gives the sufficient conditions for these
infinite sequences, and Theorem 23 will follow as a special case, with A2

∼= Z3 and A3
∼= {1}.
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Theorem 24. Let A2 be a group with subgroup A3 of finite index [A2 : A3] = a < ∞. Let
Γ1 = ∗

A3
k=1,...,a

(A2)k be an amalgamted free product. Let X be the a-regular tree on which Γ1 acts

with quotient Γ1\X. Let (A, i) = (Γ1\X, i) denote the edge-indexed quotient graph for Γ1 on X,
and let A = Γ1\\X denote the corresponding graph of groups. Suppose that A2 is abelian. Then
there exists an infinite sequence of coverings of finite edge-indexed graphs

. . . −→ (B3, j3) −→ (B2, j2) −→ (B1, j1) = (A, i)

and an infinite sequence of covering morphisms of graphs of groups

. . . −→ B3 −→ B2 −→ B1 = A

with Bk a grouping of (Bk, jk)such that Γk+1 = π1(Bk+1) ≤ Γk = π1(Bk) and Γk
∼= ∗

A3
j=0,...,nk

(A2)j ,

where nk = 1 + ak −
∑k−1

j=1 aj. Moreover, if |A2| = c <∞, then V ol(Γk) = 2ak

c . In this case the
Γk are pairwise non-conjugate and form a descending chain of cocompact lattices in Γ1.

To produce the infinite sequence of coverings of finite edge-indexed graphs in Theorem 24,
we use an iteration of a method known as ‘open fanning’ of ‘arithmetic bridges’ in the edge-
indexed graphs in the sequence. This method was used by the first author to prove existence of
nonuniform coverings over finite edge-indexed graphs and hence to prove existence of nonuniform
lattices on uniform trees ([C2]). This method was also used by Gabriel Rosenberg ([R]) to exhibit
infinite ascending chains of cocompact lattices with arbitrarily small covolumes in automorphism
groups of locally finite trees.
In our edge-indexed graph (A, i), the ‘arithmetic bridge’ can be taken to be any single separating
edge e with an index (ramification factor) i(e) = [A2 : A3] = a. The open fanning then has the
schematic diagram:

(A1, i)
d · i0(e)(A0, i)

(A0, i)

(A1, i)

...

i0(e)

i0(e)
d copies

(A1, i)

p

Figure 10. schematic of an open fanning along an edge

Proof. (of Theorem 24) We now use the method of open fannings on a single edge to recursively
construct a sequence of edge-indexed coverings as follows:

(1) Let (B1, i1) = (A, i) = (Γ1\X, i) be the edge-indexed ‘a-star’ and choose an edge e of B1

with index i1(e) = i(e) = a.
26



(2) Let (B2, j2) be an open a-fanning on the edge e, as shown in Figure 11.

a− 1 edges

a edges

a− 1 edges

... a− 1 edgesa

a

a

a

...

...

...

a

a

a

e

p1

Figure 11. edge-indexed covering p1 : (B2, j2) −→ (B1, j1) (open fanning of the
a-star)

(3) For each k ≥ 2, choose an edge e of Bk with index ik(e) = a and let (Bk+1, jk+1) be an
open a-fanning of Bk on e.

Note that the a-star (B1, i1) has a edges of index a. An easy induction shows that for k ≥ 1,
Bk has

nk = 1 + ak −

k−1∑

j=0

aj ≥ a edges of index a.

Thus the recursion is well-defined. Moreover we may associate an abelian grouping Bk to (Bk, ik)
consisting of copies of A2 at each initial vertex of these nk edges and copies of A3 at each
remaining vertex and along each edge. It is straightforward to check that for k ≥ 1, the
groupings Bk and Bk+1, together with the edge-indexed covering pk : (Bk+1, ik+1) → (Bk, ik),
satisfy the sufficient conditions of Theorem 12.

Therefore for k ≥ 1, pk extends to a covering morphism ϕk : Bk+1 → Bk of graphs of
groups. By Proposition 2.7 of [B] it follows that Γk+1 = π1(Bk+1) = ∗

A3
j=1,...,nk+1

(A2)j embeds in

Γk = π1(Bk) = ∗
A3

j=1,...,nk

(A2)j (and ultimately in Γ1 = π1(B1)). Thus these Γk form an infinite

descending chain of subgroups. If |A2| = c <∞, then another easy induction shows for k ≥ 1,

V ol(Γk+1) = aV ol(Γk) = 2
ak+1

c
,

where the volume is calculated using Lemma 10 (4). �
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As stated previously, Theorem 1 (3) follows from Theorem 24. In particular, the infinite chain
of subgroups embed as lattices in the rank 2 Kac-Moody group over F2 and in the rank 3 Kac-
Moody group over F2 of type ∞ (see Theorem 22). We also remark that the open fanning of
edge-indexed graphs exhibited in the proof above may be viewed in rank 3 within their ambient
quotient complex of the Tits building. We illustrate this in Figure 12, showing the fanning from
Figure 11 inscribed in the corresponding ideal triangles.

3

3

3

3

3

3 3

3

3

Figure 12. fanned tripod inscribed in fanned ideal triangles

In constructing the chain of subgroups in Theorem 24, we use an open fanning on a single edge,
that is an arithmetic bridge of size 1, at each step. Changing the size of the bridge at any
step will yield further (distinct) descending chains. In this manner we can construct an infinite
number of infinite descending chains of cocompact lattices. We give additional examples of this
construction in [CCR].
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[Sa] Saçliog̃lu, C. Dynkin diagrams for hyperbolic Kac-Moody algebras, Journal of Physics A: Mathematics and

General 22, (1989) 3753–3769.
[Ti1] Tits, J. Uniqueness and presentation of Kac-Moody groups over fields Journal of Algebra, 105 (1987),

542–573.
[Ti2] Tits, J. Resume de Cours - Theorie des Groupes, Annuaire du College de France, 1980–1981, 75–87.

Department of Mathematics, Hill Center, Busch Campus, Rutgers, The State University of

New Jersey, 110 Frelinghuysen Rd, Piscataway, NJ 08854-8019

E-mail address: carbonel@math.rutgers.edu

Department of Mathematics, Hill Center, Busch Campus, Rutgers, The State University of

New Jersey, 110 Frelinghuysen Rd, Piscataway, NJ 08854-8019

E-mail address: cobbs@math.rutgers.edu

29


