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Abstract. Kac–Moody groups G over R have been conjectured to occur as symmetry groups of
supergravity theories dimensionally reduced to dimensions less than 3, and their integral forms
G(Z) conjecturally encode quantized symmetries. In this review paper, we briefly introduce the
conjectural symmetries of Kac–Moody groups in supergravity as well as the known evidence for
these conjectures. We describe constructions of Kac–Moody groups over R and Z using certain
choices of fundamental modules that are considered to have physical relevance. Eisenstein series
on certain finite dimensional algebraic groups are known to encode quantum corrections in the
low energy limit of superstring theories. We describe briefly how the construction of Eisenstein
series extends to Kac–Moody groups. The constant terms of Eisenstein series on E9, E10 and
E11 are predicted to encode perturbative string theory corrections.

1. Introduction

Kac–Moody groups and algebras are the most natural generalizations to infinite dimensions of
finite dimensional simple Lie groups and Lie algebras. Affine Kac–Moody algebras and their
generalizations by Borcherds have concrete physical realizations and have wide applications in
physical theories. Suitable extensions of the Dynkin diagrams of affine Kac–Moody algebras
give rise to hyperbolic and Lorentzian Kac–Moody algebras, such as E10 and E11.

As discussed in some of the talks, hyperbolic and Lorentzian Kac–Moody groups and algebras
have recently been discovered as symmetries in supergravity theories. To understand the group
theoretic questions that arise, it’s instructive to first briefly view the symmetries in a physical
context. An excellent and detailed survey of the physics we will discuss is given in [FKGP] (see
also [D1], [DN], [HPS], [FKP], [KN], [Ni2] and [Ni3]). An expanded version of this article is
available at [BC].

We describe a construction of a representation theoretic Kac–Moody group GV , over R and Z
using integrable highest weight modules V and a Z–form of the universal enveloping algebra.
We describe a choice of fundamental modules V for the Kac–Moody groups E9, E10 and E11

that are conjectured to play a role in certain supergravity theories.

Let G be (finite dimensional) semisimple algebraic group and let K be a maximal compact
subgroup of G. Eisenstein series on K\G(R)/G(Z) appear naturally in the context of super-
string theories, where they encode quantum corrections in the low energy regime described by
supergravity theories ([GMRV], [LW]).
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We describe briefly how the construction of Eisenstein series extends to Kac–Moody groups. It
is also thought that the Eisenstein series on the Kac–Moody groups E9, E10 and E11 should
encode the quantum correction terms in string theory ([FK]). We outline the construction of
Eisenstein series on these groups and we review current developments and open questions in the
study of automorphic forms on non–affine Kac–Moody groups.

2. Supergravity theories

The leading candidate in theoretical physics for a single consistent theory of all the fundamental
forces is superstring theory. However, there is no single theory of superstrings, but rather five
theories that describe various aspects of the behaviour of strings. In the 1990’s, Witten, building
on previous insights by Duff, Townsend, and others, proposed an overarching theory, known as
M–theory, whose various special limits are the superstring theories ([Wi1], [Wi2]). M–theory
has a rich structure, both mathematically and physically, but has not yet been fully formulated
and will likely require new mathematics for its full development.

Essential for superstring theory is supersymmetry. This symmetry, discovered in 1972, trans-
forms fermions into bosons and vice versa. Supergravity is a theory that incorporates both
quantum field theory and general relativity using supersymmetry. It was discovered in 1978 as
a 4 dimensional theory, but it can occur in dimensions up to 11, where there are 7 additional
spacial dimensions.

The possible supergravity theories were classified in the 1970s. Given a physical theory (La-
grangian) in D dimensions, dimensional reduction is a procedure that gives rise to a Lagrangian
in d < D dimensions, by taking all fields to be independent of location in the extra D − d
dimensions. The extra dimensions are contracted to an ‘invisible scale’ along a choice of vector
field, involving the full geometry of spacetime.

The type IIA and type IIB supergravity theories in 10–dimensions are the low energy limit of
the type II string theories while the low energy limit of M–theory is known to coincide with
11–dimensional supergravity. These supergravity theories are important, as they encode both
perturbative and non–pertubative effects, many of which are not easily calculated from first
principles in string theory or M–theory (see for example [GLW]).

The maximal supergravities are those with the maximal number of supercharges, or fermionic
generators of the super–Poincaré algebra. The maximal supergravities in dimensions less than
11 are obtained by dimensional reduction of the classical action of 11–dimensional supergravity
on an n–torus. Dimensional reduction may be carried out on other compact manifolds, but on
an n–torus all the supercharges are preserved. The resulting (11− n)–dimensional supergravity
action in the Einstein frame has the property that the scalar fields of the maximal supergravity
theory in (11−n) dimensions take values in the coset K(En(R))\En(R), where En is a split real
form of the simple exceptional Lie group of type En and K(En) is a subgroup invariant under
the Cartan involution.

For example, on dimensional reduction to D = 4 spacetime dimensions, 11–dimensional super-
gravity has the maximal number N = 8 of supercharges and the scalar fields take values in the
coset K(E7(R))\E7(R). We discuss this example in more detail in the next subsection.
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Dimension K(G) G(R) G(Z)
10, IIA 1 R+ 1
10, IIB SO(2) SL2(R) SL2(Z)
9 SO(2) SL2(R)× R+ SL2(Z)
8 SO(3)× SO(2) SL3(R)× SL2(R) SL3(Z)× SL2(Z)
7 SO(5) SL5(R) SL5(Z)
6 (Spin(5)× Spin(5))/Z2 Spin(5, 5;R) Spin(5, 5;Z)
5 USp(8)/Z2 E6(R) E6(Z)
4 SU(8)/Z2 E7(R) E7(Z)
3 Spin(16)/Z2 E8(R) E8(Z)
2 K(E9) E9(R) E9(Z)
1 K(E10) E10(R) E10(Z)
0 K(E11) E11(R) E11(Z)

Table 1. Coset symmetries in maximal supergravities.

Symmetries of the scalar cosets were first established for 1 ≤ n ≤ 8 in [CJ]. For n = 9, it
was discovered that the scalar fields take values in the coset K(E9)\E9(R) arising from the
affine Kac–Moody group E9 ([Ju1] and [N]). Moreover, the supergravity equations of motion are
invariant under the Virasoro algebra.

A correspondence between the scalar fields of 11–dimensional supergravity theory dimensionally
reduced to 1 dimension and the hyperbolic E10 coset K(E10)\E10(R) was established in [DHN1]
after certain truncations were made on both sides of the correspondence, in particular, only at
‘low levels’ of the roots of E10. The subgroup E10(Z) of E10(R) has been conjectured to be a
discrete symmetry group of Type II superstring theory ([Ju1], [HT]).

West ([W1]) showed that truncated versions of the bosonic sectors of 11–dimensional supergrav-
ity and type IIA supergravity can be derived in terms of a certain truncation of the Lorentzian
E11 coset K(E11)\E11.

The full list of symmetry groups in maximal supergravity theories is summarized in Table ??.

2.1. Example: maximal supergravity in D = 4 spacetime dimensions. It is known that
the 11–dimensional maximal supergravity, dimensionally reduced to D = 4 spacetime dimen-
sions, has global E7(R) symmetry ([CJ]). That is, the equations of motion of the supergravity
theory, dimensionally reduced to D = 4 are invariant under E7(R). However, the Lagrangian is
not invariant under E7(R), but under a smaller group which acts on the vector fields. The 70
scalar fields of this theory take values in the coset [SU(8),R)/{±Id}]\E7(R) ([CJ]).

In D = 4 spacetime dimensions, the electric and magnetic charges of the theory lie in a 56–
dimensional vector space V , with 28 electric and 28 magnetic fundamental charges. These
charges are subject to the ‘Dirac–Schwinger–Zwanziger quantization condition’, which constrains
the charges to lie on a lattice VZ in V called the charge lattice ([HT]).
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The space V is the 56–dimensional fundamental representation of e7. This representation gives
rise to a faithful representation of E7(R) in Sp56(R). The charge lattice admits an action of the
discrete group E7(Z) preserving the set of electric and magnetic charges ([HT]).

Although the symmetry groups of the classical maximal supergravities involve Lie groups con-
structed over the real numbers R, adding quantum corrections is conjectured to break these
continuous groups to discrete subgroups defined over Z ([HT]). For 11–dimensional maximal
supergravity, dimensionally reduced to D = 4, the discrete group is E7(Z) = E7(R) ∩ Sp56(Z).
Soulé gave a rigorous mathematical proof that the E7(Z) of [HT] coincides with the Chevalley
Z–form G(Z) of G = E7 ([S]). In the appendix of [MS], the authors gave a physics inspired
construction of the group E8(Z).

3. Construction of Kac–Moody groups over R and Z

Now let g be a Kac–Moody algebra over C with simple roots αi, i ∈ I. Here we summarize the
construction of a Kac–Moody group G associated to g in analogy with Chevalley’s construction
of finite dimensional semisimple algebraic groups. The generalization of this method to Kac–
Moody groups over fields is provided by [CG] and over Z by [Ca]. Some external data is needed:
namely an integrable highest weight module V for g and a Z-form VZ constructed from a Z-form
of the universal enveloping algebra.

Let V = V λ be the unique irreducible highest weight module for g corresponding to dominant
integral weight λ. Let Λ ⊆ h∗ be the linear span of the simple roots αi, for i ∈ I, and let Λ∨ ⊆ h
be the linear span of the simple coroots α∨i , for i ∈ I.

Let ei and fi be the Chevalley generators of g. Let UC be the universal enveloping algebra of g.
Let UZ ⊆ UC be the Z–subalgebra generated by

emi
m!
,
fmi
m!

,

(
h
m

)
for i ∈ I, h ∈ Λ∨ and m ≥ 0.

Let vλ ∈ V be a highest weight vector. We set

V λ
Z = UZ · vλ.

Then V λ
Z is a lattice in V λ

R = R⊗Z V
λ
Z and a UZ–module.

For s, t ∈ R and i ∈ I, set
χαi(t) = exp(ρ(sei)),

χ−αi(t) = exp(ρ(tfi)),

where ρ is the defining representation for V . Then these are elements of Aut(V λ
R ), thanks to the

local nilpotence of ei, fi.

We let Gλ(R) ≤ Aut(V λ
R ) be the group:

Gλ(R) = 〈χαi(s), χ−αi(t) | i ∈ I, s, t ∈ R〉.
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We summarize the construction as follows.

Theorem 3.1. Let g be a symmetrizable Kac–Moody algebra over a commutative ring R with 1.
Let αi, i ∈ I, be the simple roots and ei, fi the Chevalley generators of g. Let V λ

R be an R–form

of an integrable highest weight module V λ for g, corresponding to dominant integral weight λ
and defining representation ρ : g −→ End(V λ

R ). Then

Gλ(R) = 〈χαi(s) = exp(ρ(sei)), χ−αi(t) = exp(ρ(tfi)) | s, t ∈ R〉 ≤ Aut(V λ
R )

is a representation–theoretic Kac–Moody group associated to g.

Now we define Kac–Moody groups over R and Z as follows:

Gλ(R) = 〈χαi(s), χ−αi(t) | s, t ∈ R, i ∈ I〉.
Gλ(Z) = 〈χαi(s), χ−αi(t) | s, t ∈ Z, i ∈ I〉.

The following was proven in [Ca].

Theorem 3.2. ([Ca]) The group Gλ(Z) has the following generating sets:

(1) χαi(1) and χ−αi(1),

and

(2) χαi(1) and w̃αi(1) = χαi(1)χ−αi(−1)χαi(1).

The generating set (2) is the analog of the S, T -generating set for SL2(Z) and coincides with the
generating set obtained in [AC] where the authors also gave a finite presentation for the group
E10(Z).

3.1. Explicit construction of the groups E9, E10 and E11. An important question in
string theory is to determine which representations of the underlying Kac–Moody algebras (or
Lie algebras) enter into the construction of the automorphic forms. Here we describe possible
choices of modules V for E9, E10 and E11 that have physical relevance.

We summarize the constructions of the groups En(R) and En(Z) for n = 9, 10, 11. In each of
these constructions, we use the data in Table ??:

With this data, we have the groups:

En(R) = 〈χαi(s) = exp(sei), χ−αi(t) = exp(tfi) | s, t ∈ R i = 1, . . . , n〉

En(Z) = En(R) ∩Aut(VZ) = 〈χαi(s) = exp(sei), χ−αi(t) = exp(tfi) | s, t ∈ Z, i = 1, . . . , n〉
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Table 2

Algebra Generators Simple roots Fund. weights Highest weight module

e9(C)
e1, . . . , e9

f1, . . . , f9
α1, . . . , α9 ω1, . . . , ω9

V = V ω1

V integrable with high. wt. vec. vω1

corresp. to fund. weight ω1 labeled as in
Figure ??

e10(C)
e1, . . . , e10

f1, . . . , f10
α1, . . . , α10 ω1, . . . , ω10

V = V ω1+···+ω10

V irred. and integrable with high. wt. vec.
vω1+···+ω10

e11(C)
e1, . . . , e11

f1, . . . , f11

α1, . . . , α11

labeled as in
Figure ??

ω1, . . . , ω11

V = ω11–rep. of e11(C).
V integrable with high. wt. vec. vω11

corresp. to fund. weight ω11

We now outline the choice of representation for the above group constructions.

◦ E9(Z) and E9(R)

For E9, we choose V to be the fundamental representation V ω1 which is the highest weight
module with highest weight ω1, where ω1 is the fundamental weight dual to α1 as labeled in
Figure ??, viewing the Dynkin diagram for E9 as a subdiagram of E11. Our motivation for this
is the following. Certain coefficients of quantum correction terms (the R4 and ∂4R4 correction
terms for instance) in type IIB supergravity, dimensionally reduced to D ≥ 3, can be expressed in
terms of Eisenstein series on various finite dimensional Lie groups. In particular, the coefficient
of the R4 correction term is an Eisenstein series whose complex parameter is a scalar multiple
of ω1 ([GMRV]). It is an open question to determine if this symmetry structure extends to 2
dimensions with corresponding Eisenstein series on E9.

◦ E10(Z) and E10(R)

When the root lattice Q equals the weight lattice P , as is the case for e10, that is, |det(A)| = 1,
where A is the generalized Cartan matrix, then we may choose V = V ω1+···+ω10 , where ωi are
the fundamental weights. Then V is an irreducible integrable highest weight module with lattice
of weights equal to P and with highest weight ω1 + · · ·+ ω10. We have

wts(V ) ⊆ {ω1 + · · ·+ ω10 −
10∑
j=1

kjαj | kj ∈ Z≥0},

where αi are the simple roots, and 
ω1

ω2
...
ω10

 = A−1


α1

α2
...
α10

 .

Since the root lattice Q = Zα1 ⊕ · · · ⊕ Zα10 and the weight lattice P coincide, the weights of
V are contained in the Z-span of the simple roots. Hence wts(V ) contains all the fundamental
weights ωi.
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t t t t t t t t t t
t

α1 α3

α2

α4 α5 α6 α7 α8 α9 α10 α11

Figure 1. The Dynkin diagram of E11

◦ E11(Z) and E11(R)

Symmetries of the discrete group E11(Z) were discussed in [GW1], where the authors conjecture
that the group E11(Z) preserves the brane charge lattice of Type II superstring theory. This
charge lattice belongs to the fundamental representation V corresponding to the vertex at the end
of the long tail of the Dynkin diagram for E11. We call this representation the ω11–representation.
In [GW1], due to a different labeling of the vertices of the Dynkin diagram, this is called the
`1–representation.

We note that the above constructions depend on choices of modules for which there is a physical
motivation. These choices give rise to group constructions which are useful in the physical
contexts described above (for example our generating set for E11 was used in [GW1]).

In general, the dependence of the representation theoretic construction of Kac–Moody groups
on the choice of module is not completely understood. Garland gave a representation theoretic
construction of affine Kac–Moody groups as central extensions of loop groups, where each central
extension corresponds to a unique cohomology class represented by a cocycle, known as the
Steinberg cocycle restricted to the torus H. Garland characterized the dependence on the choice
of highest weight module V for affine groups in terms of the Steinberg cocycle. In [CW], the
authors proved that for different choices of highest weight module V , the discrepancy between
the groups EV10(Z) is contained in a finite abelian group of order at most (Z/2Z)10.

4. Eisenstein series in supergravity

The first quantum corrections to the classical supergravity action were found by computing the
scattering amplitudes of four closed interacting strings. In particular, these scattering amplitudes
give rise to quantum corrections of the form R4 and ∂4R4. The coefficient of the R4 correction
term is an Eisenstein series whose complex parameter is a scalar multiple of ω1 ([GMRV]).

Schematically, this scattering amplitude is separable into analytic and non–analytic parts

A = Aanalytic +Anon-analytic.

The analytic part of the scattering amplitude in d = (11 − n) dimensions is an expansion in
automorphic forms on the double coset K(En(R))\En(R)/En(Z) ([GMRV]). Each automorphic
form has a Fourier expansion, which naturally separates the perturbative and non–perturbative
quantum corrections.

Being the perturbative limit, the scattering amplitudes only capture the constant terms (zero–th
order terms in the Fourier expansion) of the automorphic forms ([GRV]).

The remaining parts of the Fourier expansion correspond to ‘non–perturbative instanton cor-
rections’ ([GG], [GV], [GMV]). The direct determination of instanton effects in string theory
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is usually very difficult. The benefit here is that the action of the integral group G(Z) mixes
perturbative and non–perturbative effects, which allows indirect computation of the instanton
corrections. It is conjectured that different types of instanton effects correspond to Fourier
expansions of Eisenstein series with respect to different parabolic subgroups ([GMV], [FK]).

By dimensionally reducing the higher derivative corrections of ten–dimensional IIB theory on
a torus, the authors of [GLW] and [GW1] describe some natural constraints on the En+1 auto-
morphic forms that occur in d = 10 − n dimensions. They also argue that these automorphic
forms involve the representation of En+1 with highest weight ω1.

With regard to Eisenstein series on Kac–Moody groups, in analogy with SL2(Z), the group
E10(Z) is conjectured to be a ‘modular group’ for certain automorphic forms that are expected
to arise in the context of 11 dimensional supergravity ([DN], [Ga]). Automorphic forms on E10

and E11 are conjectured to encode higher derivative corrections of string theory and M–theory
([DN2], [DHHKN], [W1]). The constant terms of Eisenstein series on E9, E10 and E11 have been
studied in [Fl] in relation to string scattering amplitudes. We discuss this further in the next
section.

5. Eisenstein series on non–affine Kac–Moody groups

In his seminal work [?, ?, ?, ?, ?, ?, ?, ?], Garland extended the classical theory of Eisenstein
series to arithmetic quotients K(G(R))\G(R)/G(Z) of affine Kac–Moody groups G. He proved
absolute convergence in a half space and meromorphic continuation to the full complex plane.
Garland’s theory of Eisenstein series has been extended to affine groups over fields such as
number fields ([Li]) and function fields ([BK], [LL], [P]) and to hyperbolic and more general
Kac–Moody groups ([CLL], [CGLLM]).

We outline the construction of general Eisenstein series on Kac–Moody groups. Let G = G(R)
be a non–affine Kac–Moody group associated to a Kac–Moody algebra g. Let G(R) = KA+N
be the Iwasawa decomposition of G, where K is the fixed point subgroup of the involution on
G(R) induced from the Cartan involution on g, A+ ∼= (R+)rank(G) is an abelian subgroup and
N is a completion of the subgroup generated by all positive real root groups ([DGH], [CLL]).

Let g = kgagng ∈ G(R), written in Iwasawa form. Let ν : A+ −→ C× be a quasi–character and
define

Φν : G(R) −→ C×

to be the function

Φν(g) = ν(ag).

Then ν is well defined since the Iwasawa decomposition is unique. For convenience, we write
Γ = G(Z).

Let B denote the minimal parabolic subgroup of G(R). Define the Eisenstein series on G(R) to
be the infinite formal sum ([CLL], [CGLLM])

Eν(g) :=
∑

γ∈Γ/Γ∩B

Φν(gγ).
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When G is finite dimensional, we define the constant term ([CLL], [CGLLM])∫
N/N∩Γ

Eν(gu)du

where du is a measure on the compact space N/N∩Γ. For example, when G = SL2, Γ = SL2(Z),
N/N ∩ Γ = S1.

The constant term corresponds to the zero–th Fourier coefficient in the Fourier expansion of the
Eisenstein series.

Regarding the complex question of convergence of Eisenstein series, in [CLL], the authors proved
convergence of the constant term and hence almost everywhere convergence of the full Eisenstein
series on rank 2 hyperbolic Kac–Moody groups over R. The techniques in [CLL] have been
extended to Kac–Moody groups in general ([CGLLM]).

5.1. The Weyl group and the constant term. Let G be a semi simple algebraic group or a
Kac–Moody group. Then G has Bruhat decomposition G = twGw where

Gw = BwB,

w ∈W , the Weyl group and B is the ‘upper triangular’, or Borel subgroup. Each Bruhat cell

Γ/Γ ∩B = tw∈W (Γ ∩Gw)/(Γ ∩B)

then contributes one term to the constant term. The number of terms in the constant term thus
equals the cardinality of the Weyl group W .

When G is a Kac–Moody group, W is infinite. In [FK], the authors showed that remarkably, for
certain choices of the complex parameter ν, there are only finitely many terms in the constant
terms for E9, E10 and E11. This uses a reduction method of [GMRV] for eliminating terms
of the constant term. For E9, this also uses the structure of the affine Weyl group and the
Weyl group orbits. This is consistent with the (conjectural) notion that the constant terms of
Eisenstein series on Kac–Moody groups should encode a finite number of perturbative string
theory corrections. A detailed analysis of this question is given in [Fl].

Eisenstein series on non–affine Kac–Moody groups G(R) are invariant under translations by
G(Z) and hence have a Fourier expansion. In [CLL], the authors defined and calculated the
degenerate Fourier coefficients for Eisenstein series on rank 2 hyperbolic Kac–Moody groups
over R. In [Fl], the author gave the Fourier integrals needed to obtain the constant term and
the higher order Fourier modes for Eisenstein series in E9, E10 and E11 and showed how the
‘collapse mechanism’ of [FK] extends to the higher order Fourier modes. He also gave explicit
expressions for the constant terms and Fourier modes of some Kac–Moody Eisenstein series.

6. Some open questions

There are certain obstacles to overcome in order to determine the precise role of Kac–Moody
Eisenstein series in supergravity. For example, in the study of E9(Z) in 2 dimensions, the super-
gravity action cannot be cast in the Einstein frame, that is, the coordinate frame where the coset
symmetries are manifest. The objective is to interpret Eisenstein series as coefficients of higher
derivative corrections in the string scattering amplitudes. However, without the supergravity
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action in the Einstein frame, identifying symmetries in the string scattering amplitudes may be
considerably more difficult. A formulation of the quantum corrections on the level of equations
of motion may be required.

The Kac–Moody Eisenstein series studied in [Fl] have been seen to appear in string scattering
amplitudes ([Fl], Sec 2.2.1). Characterizing the underlying physical mechanism at work here
will require a more detailed knowledge of string scattering in 2 and 1 dimensions.

The Eisenstein series should be an eigenfunction of the Casimir operators including the Laplacian
on K(G(R))\G(R)/G(Z). It would be interesting to find the explicit forms of these eigenvalue
equations using the higher order Casimir operators introduced in [K1].

In some cases, certain constraints are required on Eisenstein series defined using representation
theory in order that these automorphic forms are eigenfunctions of the Laplacian ([OP1]). It is
not yet understood how this might generalize to the Kac–Moody case.
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