Bass-Tits minimization of automata, quotients of trees and diameters

Lisa Carbone ${ }^{*, 1}$, Dennis Clark ${ }^{2}$
Department of Mathematics, Rutgers, The State University, 110 Freling Huysen Road, Piscataway, NJ 08854-8019, USA

Received 21 July 2004; received in revised form 5 January 2005
Communicated by C.A. Weibel

Abstract

of the membership problem for a subgroup is regular if and only if the subgroup has finite index. © 2005 Published by Elsevier B.V. Abstract Let X be a tree and let $G=\operatorname{Aut}(X)$, Bass and Tits have given an algorithm to construct the 'ultimate quotient' of X by G starting with any quotient of X, an 'edge-indexed' graph. Using a sequence of integers that we compute at consecutive steps of the Bass-Tits (BT) algorithm, we give a lower bound on the diameter of the ultimate quotient of a tree by its automorphism group. For a tree X with finite quotient, this gives a lower bound on the minimum number of generators of a uniform X-lattice whose quotient graph coincides with $G \backslash X$. This also gives a criterion to determine if the ultimate quotient of a tree is infinite. We construct an edge-indexed graph (A, i) for a deterministic finite state automaton and show that the BT algorithm for computing the ultimate quotient of (A, i) coincides with state minimizing algorithm for finite state automata. We obtain a lower bound on the minimum number of 19 states of the minimized automaton. This gives a new proof that language for the word problem in a finitely generated group is regular if and only if the group is finite, and a new proof that the language

MSC: primary 20F32; secondary 22F50

[^0]
1 1. Introduction

In [3], Bass and Tits gave an algorithm for computing the ultimate quotient of a tree X by

41 The authors would like to thank Paul Schupp for pointing out that the BT algorithm should coincide with the state minimizing algorithm for a finite state automaton, and to Ilya its full automorphism group starting with any quotient of the tree, an 'edge-indexed' graph. In this work we give a number of applications of the BT algorithm. We show that the BT algorithm can be used to obtain a lower bound on the diameter of the ultimate quotient of a tree (Section 5). Given an edge-indexed graph we obtain a sequence $\left(d_{s}\right)_{s} \geqslant 0$ of positive integers, where the term d_{s} of the sequence is determined at step s of the Bass-Tits algorithm. At each step s, the term d_{s} is a lower bound for the diameter of the ultimate quotient.
The sequence $\left(d_{s}\right)_{s \geqslant 0}$ converges to the diameter if the ultimate quotient is finite. If the sequence diverges our results imply that the ultimate quotient is infinite. In many cases
1 this can be determined in a finite number of steps even though the BT algorithm may not terminate.
3 For finite edge-indexed graphs equal to their ultimate quotients, we can compute their diameters. Our diameter computation is a slight generalization of a standard method which computes the largest height of a shortest paths tree. Here we replace the distance between two vertices in a graph by the distance between a vertex and an equivalence class arising from the BT algorithm.

As another application we show that the BT algorithm can be viewed as a generalization of the state minimizing algorithm for a finite state automaton.

More precisely, to each deterministic automaton we associate a directed edge-indexed graph and we show that the edge-indexed graph of the minimized automaton coincides (up to graph isomorphism preserving edge-indices) with the BT ultimate quotient of the edgeindexed graph of the automaton (Section 8). The correspondence between these algorithms is natural given that they can both be viewed as using refinements of an equivalence relation on edge-indexed graphs.

The sequence $\left(d_{s}\right)_{s} \geqslant 0$ when computed for the edge-indexed graph of a finite state automaton gives a lower bound on the minimum number of states of the automaton (Section 9).
When applied to the automaton of the Cayley graph of a group G with fixed finite generating set S, our results give a new proof of Anisimov and Seifert's
3 theorem [1] that states that the word problem language for G is regular if and only if the edge-indexed graph of the automaton, and hence the group G, is finite. We also give
33 a new proof that the language of the membership problem for subgroups is not regular (Theorem 7).
In Section 2 we outline the notions of graphs and edge-indexed graphs. In Section 3, we describe the BT algorithm. In Section 4 we examine the structure of the ultimate quotient by determining the images of paths in an edge-indexed graph under the quotient morphism. We also give a description of the fiber over a vertex in the ultimate quotient. In Section 5 we
39 describe the sequence $\left(d_{s}\right)_{s} \geqslant 0$ of an edge-indexed graph which determines the diameter of the ultimate quotient. Kapovich for helpful discussions.

JPAA3227

ARTICLE IN PRESS

L. Carbone, D. Clark / Journal of Pure and Applied Algebra |II (III) III-III

2. Graphs and edge-indexed graphs

In this section and throughout the paper, by a graph we mean a quasi-graph in the
arguments presented here may require slight modification for the explicit presence of selfinverse loops. Such details are routine and are left to the reader.

Let A denote a graph, with vertices $V A$, oriented edges $E A$. We assume that all graphs are connected. A path in A is called reduced if it contains no backtracking. A morphism $\phi: A \longrightarrow B$ of graphs takes vertices to vertices, edges to edges and satisfies:

$$
\begin{aligned}
& \overline{\phi(e)}=\phi(\bar{e}), \\
& \partial_{0} \phi(e)=\phi\left(\partial_{0}(e)\right), \\
& \partial_{1} \phi(e)=\phi\left(\partial_{1}(e)\right),
\end{aligned}
$$

where $\partial_{0}(e)$ and $\partial_{1}(e)$ denote the initial and terminal vertices of an edge, respectively. An isomorphism of graphs is a morphism which is bijective on both vertices and edges.

Let A be a graph. The diameter of A is

$$
\operatorname{diam}(A):=\max _{a, b \in V A} d(a, b)
$$

where $d(a, b)$ is the length of the shortest reduced path between a and b. Let $v \in V A$. The star of v, denoted $E_{0}(v)$ is

$$
E_{0}(v):=\left\{e \in E A \mid \partial_{0}(e)=v\right\}
$$

Let $C \subseteq V A$ be a subset of vertices. Let $v \in V A$ be a vertex. A geodesic from v to C, denoted $[v, C]$, is a shortest reduced path from v to a vertex in C, and the distance from v to C is defined as

$$
d(v, C):=\min _{x \in C} d(v, x)=|[v, C]| .
$$

An edge-indexed graph (A, i) consists of an underlying graph A, and an assignment of a positive integer $i(e)>0$ to each oriented edge $e \in E A$. An edge-indexed graph (A, i) is finite if it has finitely many vertices and finitely many edges but we allow for the possibility that for some $e \in E A, i(e)=\infty$. For $v \in V A$, the degree of v in (A, i) is defined as

$$
\operatorname{deg}_{(A, i)}(v):=\sum_{e \in E_{0}(v)} i(e) .
$$

An edge-indexed graph (A, i) determines its universal covering tree $X=\widetilde{(A, i)}$ up to isomorphism ([2], Chapter 2). Every edge-indexed graph arises as a quotient of its universal covering tree $X=(A, i)$ by a subgroup of $G=\operatorname{Aut}(X)$.

The diameter of an edge-indexed graph (A, i) is the diameter of its underlying graph A.

ARTICLE IN PRESS

4
L. Carbone, D. Clark / Journal of Pure and Applied Algebra |II (III) III-III

An isomorphism $\rho:(A, i) \longrightarrow(B, j)$ of edge-indexed graphs is a morphism $\rho: A \longrightarrow$ B such that for each $v \in V A$

If $\phi: A \longrightarrow B$ is a graph isomorphism, then ϕ satisfies the following continuity rule: if $v \in V A$, then ϕ maps the neighbours (the vertices at distance 1 from v) of v bijectively to the neighbours of $\phi(v)$.

3. The BT degree refinement algorithm

Following [3], let V be a set, and let $E q(V)$ denote the set of all equivalence relations on V. For $R \in E q(V)$ and $x \in V$, let x_{R} denote the R-class of x.

BT introduced the degree refinement operator on (A, i)

$$
\rho: E q(V A) \longrightarrow E q(V A)
$$

defined on $R \in E q(V A)$ as follows:

$$
(a, b) \in \rho R \Longleftrightarrow(a, b) \in R \quad \text { and } \quad i\left(a, c_{R}\right)=i\left(b, c_{R}\right) \quad \text { for } c \in V A
$$

where for $C, D \subseteq V A$ we set

$$
i(C, D):=\sum_{e \in E(C, D)} i(e),
$$

with

$$
E(C, D):=\left\{e \in E A \mid \partial_{0} e \in C, \partial_{1} e \in D\right\}
$$

When $C=\{a\} \in V A$ we write

$$
i(a, D)=i(\{a\}, D)
$$

Next we define $R_{N}=R_{N}(A, i)$ inductively as follows:

$$
\begin{aligned}
& R_{0}=V A \times V A \\
& R_{N+1}=\rho R_{N} \subset R_{N}
\end{aligned}
$$

for $N \geqslant 0$, and we put

$$
R_{*}=R_{*}(A, i)=\cap_{N \geqslant 0} R_{N}
$$

Thus

$$
(a, b) \in R_{0} \quad \text { for all } a, b \in V A
$$

and

$$
(a, b) \in R_{1} \Longleftrightarrow \operatorname{deg}_{(A, i)}(a)=\operatorname{deg}_{(A, i)}(b)
$$

We will refer to $N \in \mathbb{N} \cup\{*\}$ as step N of the BT degree refinement algorithm, and to the elements of R_{N} as classes at step N, or as R_{N}-classes.

ARTICLE IN PRESS

L. Carbone, D. Clark / Journal of Pure and Applied Algebra III (III) III-III

Proposition 1 (Bass and Tits [3], (6.6)). We have
(a) $\rho R_{*}=R_{*}$.

3 (b) if $R \in E q(V A)$ and $\rho R=R$ then $R \subset R_{*}$.
(c) $R_{*}=R_{N}$ if $N \geqslant|V A|$.

$$
\left(A_{*}, i_{*}\right):=(A, i) / R_{*} .
$$

7 We call $\left(A_{*}, i_{*}\right)$ the ultimate quotient of (A, i), or of X modulo G. The following theorem justifies the use of this terminology.

9 Theorem 1 (Bass and Tits [3], (6.6)). Let (A, i) be an edge-indexed graph, let $X=\widetilde{(A, i)}$, and let $G=\operatorname{Aut}(X)$. Then

$$
\left(A_{*}, i_{*}\right)=I(G \backslash \backslash X),
$$

where $G \backslash \backslash X$ denotes the quotient graph of groups for X modulo G, and $I(G \backslash \backslash X)$ denotes let $Y \subseteq V X$ be an H-invariant subset of vertices of X. Let $x \in V X$. Then

$$
d(x, Y)=d(h x, Y)
$$

for every $h \in H$. In particular this is true if Y is an equivalence class of vertices at some step of the BT algorithm. It follows easily that if $H \leqslant G=\operatorname{Aut}(X)$ and $A=H \backslash X$ is the quotient graph, then a shortest path γ from a vertex $x \in V X$ to an H-invariant subset $Y \subseteq V X$ maps injectively to a shortest path γ_{0} in the ultimate quotient $\left(A_{0}, i_{0}\right)$.

JPAA3227

ARTICLE IN PRESS

6
L. Carbone, D. Clark / Journal of Pure and Applied Algebra III (IIII) III-III

1 Definition.

Let (A, i) be an edge-indexed graph. Let $s \in \mathbb{Z}_{>0}$ be a step of the BT algorithm applied 3 to (A, i). Let $v \in V A$ and let C be an equivalence class of vertices that occurs at step s. Define

$$
d_{s}:=\max _{v \in V A, C} d(v, C),
$$

where

$$
d(v, C)=\min _{x \in C} d(x, v)
$$

and $d(x, v)$ denotes the length of the shortest reduced path in A between x and v in $V A$. Let $9 \mathscr{D}$ denote the sequence $\left(d_{s}\right)_{s \in \mathbb{Z}_{>0}}$.

The following lemma is clear.
11 Lemma 1. Let (A, i) be an edge-indexed graph. Let $\left(A_{0}, i_{0}\right)$ be the ultimate quotient of (A, i). Then

13 (1) For each $s \in \mathbb{Z}_{>0}$ we have $d_{s} \leqslant d_{s+1}$.
(2) For all $s \in \mathbb{Z}_{>0}$
graph. The following gives a sufficient condition for the universal covering tree of an edgeindexed graph (A, i) to be non-uniform.

Corollary 1. Let (A, i) be an infinite edge-indexed graph.
(a) If

$$
\begin{equation*}
\lim _{s \rightarrow \infty} d_{s}=\operatorname{diam}\left(A_{0}, i_{0}\right) \tag{3}
\end{equation*}
$$

It follows from the Lemma that if $d_{s}<\infty$ for each s, then $\left(A_{0}, i_{0}\right)$ is finite and

$$
\operatorname{diam}\left(A_{0}\right)=\max _{u, v \in V A_{0}} d(u, v)=\lim _{s \rightarrow \infty} d_{s} .
$$

We say that a tree X is non-uniform if X is not the universal covering of a finite connected

$$
\lim _{s \rightarrow \infty} d_{s}=\infty
$$

then $\left(A_{0}, i_{0}\right)$ is infinite.

JPAA3227
 ARTICLE IN PRESS

L. Carbone, D. Clark / Journal of Pure and Applied Algebra |II (III) III-III

1 (b) If there exists an R_{n}-class $C, n \geqslant 1$, of the $B T$ algorithm for (A, i) such that

$$
\max _{v \in V A} d(c, C)=\infty
$$

Proof. For (a), if $\lim _{s \rightarrow \infty} d_{s}=\infty$ then $\operatorname{diam}\left(A_{0}\right)=\infty$ and thus $\left(A_{0}, i_{0}\right)$ is infinite. For 5 (b), observe that in this case $d_{n}=\infty$.

Condition (b) in Corollary 1 is sufficient but not necessary as is demonstrated by Example 73 below. As an application, if (A, i) has finite volume then its ultimate quotient also has finite volume, and hence if infinite, automatically satisfies the BT criterion for non-discreteness.
9 It follows immediately that if the sequence $\left(d_{s}\right)_{s \geqslant 0}$ diverges, and if (A, i) has finite volume, then the automorphism group of the universal covering tree of (A, i) is not discrete.

11 Corollary 2. Let (A, i) be an infinite edge-indexed graph and let $n \geqslant 1$. If any R_{n}-class of the $B T$ algorithm for (A, i) is finite, then $\left(A_{0}, i_{0}\right)$ is infinite.

13 Proof. Since (A, i) is infinite and any R_{n}-class C is finite, there are vertices arbitrarily far away from C and therefore there exists $s \in \mathbb{Z}_{>0}$ such that $\max _{v \in V A, C \subseteq V A} d(v, C)=\infty$.

Finally, we use the results in this section to give a lower bound on the minimum number of generators of a uniform tree lattice. For a detailed discussion of tree lattices and related 17 notions, we refer the reader to [3].

Corollary 3. Let (A, i) be an unimodular edge-indexed graph with universal covering tree Let $d=\operatorname{diam}\left(A_{0}, i_{0}\right)$. Then there is a uniform X-lattice Γ with the same quotient graph as
$21 G=\operatorname{Aut}(X)$ and with at least d generators.
Proof. Since $\left(A_{0}, i_{0}\right)$ is finite and automatically unimodular, by [3] there is a uniform X-lattice Γ with

$$
I(\Gamma \backslash \backslash X)=I(G \backslash \backslash X)=\left(A_{0}, i_{0}\right),
$$

where $I(\Gamma \backslash \backslash X)$ and $I(G \backslash \backslash X)$ denote the edge-indexed graphs for quotients of X by Γ and $G=\operatorname{Aut}(X)$, respectively. Then

$$
d=\operatorname{diam}\left(A_{0}, i_{0}\right)=\operatorname{diam}(\Gamma \backslash X) \leqslant \text { number of vertices of } \Gamma \backslash X
$$

$$
\leqslant \text { number of generators of } \Gamma \text {. }
$$

5. Examples

In this section we give a number of examples.

ARTICLE IN PRESS

8
1 Example 1. A graph of diameter 2 (see also ([3], p. 211)).

As in ([3], p. 211) we have
R_{1}-classes: $\{0\},\{1,2,3,4,6\},\{5\}$.
$5 \quad R_{2}$-classes: $\{0\},\{1,6\},\{2,3\},\{4\},\{5\}$.
R_{3}-classes: $\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}$.
7 We have $d_{1}=1$ since
0 is adjacent to 6 ,
5 is adjacent to 0 ,
5 is adjacent to 6
9 and $d_{2}=2$ since $\{2,3\}$ has distance 2 from $\{0\}$ and all other distances are smaller. Moreover $d_{n}=2, n \geqslant 3$ since even though 2 and 3 are separated in $R_{n}, n \geqslant 3,\{3\}$ has distance 2 from $11\{0\}$.

Example 2. An infinite edge-indexed graph with finite ultimate quotient.
Let $(A, i)=$

15 We claim that $\left(A_{0}, i_{0}\right)=$

17 and so $\left(A_{0}, i_{0}\right)$ has diameter 4 .
We have
$19 R_{1}$-classes: $\left\{a_{0}, a_{4}, a_{8}, \ldots\right\},\left\{a_{1}, a_{3}, a_{5}, \ldots\right\},\left\{a_{2}, a_{6}, a_{10}, \ldots\right\}$.
R_{2}-classes: $\left\{a_{0}, a_{4}, a_{8}, \ldots\right\}, \quad\left\{a_{2}, a_{6}, a_{10}, \ldots\right\}, \quad\left\{a_{3}, a_{5}, a_{11}, a_{13}, \ldots\right\}, \quad\left\{a_{1}, a_{7}, a_{9}, a_{15}\right.$,
21
$\left.a_{17}, \ldots\right\}$.
R_{3}-classes: $\left\{a_{0}, a_{8}, a_{16}, \ldots\right\},\left\{a_{4}, a_{12}, a_{20}, \ldots\right\},\left\{a_{1}, a_{7}, a_{9}, \ldots\right\},\left\{a_{2}, a_{6}, a_{10}, \ldots\right\},\left\{a_{3}\right.$, $\left.a_{5}, a_{11}, a_{13}, \ldots\right\}$

JPAA3227

ARTICLE IN PRESS

1 and $R_{n}=R_{3}, n>3$. Thus the ultimate quotient is $\left(A_{0}, i_{0}\right)$ as above. Moreover $d_{1}=2$ since a_{2} is not adjacent to a_{0} or a_{4} and all other distances are smaller, $d_{2}=3$ since a_{0} has distance 3 from a_{3} and all other distances are smaller, $d_{3}=4$ since a_{0} has distance 4 from a_{4} and all other distances are smaller.

5 Example 3. Fix $n \in \mathbb{Z}_{>0}$. Here $d_{s}<\infty$ for $s<n$ but $d_{n}=\infty$ and the BT algorithm does not terminate.
Consider a semi-infinite ray (A, i), with $V A=\left\{a_{0}, a_{1}, \ldots\right\}, E A=\left\{e_{0}, \overline{e_{0}}, e_{1}, \ldots\right\}$. Choose $k \in \mathbb{Z}_{\geqslant 0}$ and define indices for all $j \in \mathbb{Z}_{\geqslant 0}$ as follows:

$$
i\left(e_{0}\right):=2 .
$$

If k divides j and $j \neq 0$:

$$
i\left(e_{j}\right):=2, \quad i\left(\overline{e_{j-1}}\right):=2,
$$

otherwise

$$
i\left(e_{j}\right):=1, \quad i\left(\overline{e_{j-1}}\right)=1
$$

Then the R_{n}-classes for (A, i) in the BT algorithm are
R_{1} classes:

$$
\begin{gathered}
\left\{a_{0}, a_{1}, \ldots, a_{k-1}, a_{k+1}, \ldots\right\}, \\
\cup \\
\left\{a_{k}, a_{2 k}, \ldots\right\} .
\end{gathered}
$$

R_{2} classes:

$$
\begin{gathered}
\left\{a_{0}, a_{1}, \ldots, a_{k-2}, a_{k+2}, \ldots\right\}, \\
\cup \\
\left\{a_{k}, a_{2 k}, \ldots\right\}, \\
\cup \\
\left\{a_{k-1}, a_{k+1}, a_{2 k-1}, a_{2 k+1}, \ldots\right\} .
\end{gathered}
$$

$19 R_{(k / 2)-1}$ classes:

$$
\begin{gathered}
\left\{a_{0}, a_{1}, \ldots, a_{k / 2}\right\}, \\
\left.\cup \cup, a_{k}, a_{2 k}, \ldots\right\}, \\
\cup \\
\left\{a_{k-1}, a_{k+1}, a_{2 k-1}, a_{2 k+1}, \ldots\right\}, \\
\left.\cup a_{k-2}, a_{k+2}, a_{2 k-2}, a_{2 k+2}, \ldots\right\}, \\
\cup \\
\left\{a_{(k / 2)+1}, a_{(3 k / 2)-1}, a_{(3 k / 2)+1}, a_{(5 k / 2)-1}, \ldots\right\} .
\end{gathered}
$$

JPAA3227

ARTICLE IN PRESS

1 Then $d_{s}=k$ for $s<(k / 2)-1$, but the first $R_{(k / 2)-1}$ class is finite and so by Corollary 5, $d_{(k / 2)-1}=\infty$. Hence the ultimate quotient of (A, i) is infinite. Moreover

$$
p^{-1}(v) \nsupseteq \cap_{C \in R_{k}} N(d(x, C), C)
$$

for $k<n$.

5 Example 4. $d_{s}<\infty$ for every $s \geqslant 1$ but $\lim _{s \rightarrow \infty} d_{s}=\infty$.
We define a tree (A, i) recursively as follows. Start with a semi-infinite ray $\left(A^{\prime}, i^{\prime}\right)$, and let $V A^{\prime}=\left\{a_{0}, a_{1}, \ldots\right\}$. Let

$$
T_{0}:=
$$

and attach a terminal vertex of T_{0} to a_{k}, k odd. Let $a_{k} \in V A^{\prime}, k \geqslant 1$. If $2 \mid k$ but $2^{n} \nmid k$

$$
T_{1}:=
$$

If $2^{j} \mid k$ but $2^{j+n} \nmid k$ for any $n>1$ then attach the following tree denoted T_{j} to vertex a_{k} at the bold vertex:

17

$$
T_{j}:=
$$

JPAA3227

ARTICLE IN PRESS

L. Carbone, D. Clark / Journal of Pure and Applied Algebra III (III) III-III

1 Then

$$
(A, i):=
$$

It can be shown that $d_{s}<\infty$ for every $s \geqslant 1$, in fact

$$
d_{s}<2^{\left\lceil\log _{2} s\right\rceil+4} .
$$

But $\lim _{s \rightarrow \infty} d_{s}=\infty$. The verification of these facts is routine but lengthy and is left to the reader.

6. Automata, regular languages and state minimization

In this section we recall the basic properties of finite state automata, regular languages and the state minimizing algorithm. Our reference for this section is [4].
An alphabet Ω is a finite set, and an element $\omega \in \Omega$ is called a letter of Ω. A finite sequence of letters is called a string. We use Ω^{*} to denote the set of all strings over Ω. A language over Ω is a subset of Ω^{*}.

Let Ω be an alphabet. A quintuple $\mathscr{F}=\left(S, \Omega, \mu, F, s_{0}\right)$ is a (deterministic) finite state automaton if the following conditions are satisfied:
(1) S is a finite set called the state set, F is a subset of S and $s_{0} \in S$. The elements of S are called states, $s_{0} \in S$ is called the initial state, and the elements of F are called final states.
(2) μ is a map from $S \times \Omega$ to S.

JPAA3227

ARTICLE IN PRESS

12
$1 \quad$ Let $\mathscr{F}=\left(S, \Omega, \mu, F, s_{0}\right)$ be a finite state automaton. For a string $w=u_{1}, u_{2}, \ldots, u_{n} \in \Omega^{*}$ and a state $s \in S$ we define $\mu^{*}: S \times \Omega^{*} \longrightarrow S$ by

$$
\mu^{*}(s, w)=\mu\left(\ldots \mu\left(\mu\left(s, a_{1}\right), a_{2}\right) \ldots, a_{n}\right) .
$$

We say that a string w is accepted by \mathscr{F} if $\mu^{*}\left(s_{0}, w\right) \in F$. We let $L(\mathscr{F})$ denote the set of strings accepted by \mathscr{F}.
A language \mathscr{L} over an alphabet Ω is called regular if there is a finite state automaton \mathscr{F} over Ω such $\mathscr{L}=L(\mathscr{F})$.
To each finite state automaton \mathscr{F} is associated a finite directed graph Σ. The vertices of $9 \quad \Sigma$ represent the states of \mathscr{F} and the edges of Σ are indexed by symbols which represent the transitions between states. The final states of \mathscr{F} are represented by distinguished vertices
11 of the graph Σ.
A state s of a finite state automaton \mathscr{F} over Ω that cannot be reached by any string of Ω^{*} from the initial state is called an inaccessible state. A state that is not a final state and from which no final state can be reached by any string of Ω^{*} is called a failure state.

We can obtain a minimized automaton with the same language as \mathscr{F} in two steps. We first create a 'reduced' automaton by removing all inaccessible states and amalgamating
17 all failure states into a single failure state, thus removing obvious redundancies. Second, we run the state minimizing algorithm to reduce the states. This is described as follows.
19 Let $\mathscr{F}=\left(S, \Omega, \mu, F, s_{0}\right)$ be a finite state automaton. Let $U_{i}, i \geqslant 0$ denote the following equivalence relation on S :

$$
\begin{aligned}
& U_{0}=S, \\
& U_{1}=\{\text { final states }\} \cup\{\text { non final states }\} \subset U_{0} .
\end{aligned}
$$

For each $i \geqslant 1, r, s \in S$ we obtain U_{i+1} from U_{i} by

$$
r \equiv \equiv_{i+1} s \text { if and only if } r \equiv_{U_{i}} s
$$

and for each $w \in \Omega$

$$
\mu(w, r) \equiv_{U_{i}} \mu(w, s) .
$$

For some $i \geqslant 1$ we have

$$
U_{i}=U_{i+1}=U_{i+2} \ldots
$$

Let U_{∞} denote the stable equivalence relation with corresponding minimized automaton

$$
\mathscr{F}_{\min }=\left(S_{\min }, \Omega, \mu_{\min }, F_{\min }, s_{0}\right),
$$

31 where $S_{\min }=S / U_{\infty}, F_{\min }=F / U_{\infty}$, and for $[s] \in S_{\min }, s \in[s]$ we have

$$
\mu_{\min }(\omega,[s])=[\mu(\omega, s)] .
$$

33 Thus $L(\mathscr{F})=L\left(\mathscr{F}_{\min }\right)$, and $\mathscr{F}_{\min }$ is the unique smallest automaton with this property. If $\mathscr{F}=\left(S, \Omega, \mu, F, s_{0}\right)$ is any automaton (with S not necessarily finite) and $\mathscr{F}_{\text {min }}=$
$35\left(S_{\min }, \Omega, \mu_{\min }, F_{\min }, s_{0}\right)$ is the corresponding minimized automaton, the Myhill-Nerode Theorem [4] implies that the language $L(\mathscr{F})$ is regular if and only if $S_{\min }$ is a finite set.

1 7. The edge-indexed graph of an automaton
Let \mathscr{F} be a finite state automaton. In this section we associate a (non-unique) edge- If e has as its initial point a non-final state, say S_{j}, we choose $i(e)=f\left(S_{j}\right)=2^{j}$. If the indexed graph to \mathscr{F}. We recall that \mathscr{F} has an associated finite directed graph Σ whose vertices represent the states of \mathscr{F} and whose edges are indexed by symbols which represent the transitions between states. The graph Σ contains a few distinguished vertices which represent the final states of $\mathscr{\mathscr { F }}$. Let $S_{1}, S_{2}, \ldots, S_{n}$ denote the symbols that index the edges of Σ. Choose bijections

$$
\begin{gathered}
f:\left\{S_{1}, S_{2}, \ldots, S_{n}\right\} \longrightarrow\left\{2,2^{2}, \ldots, 2^{n}\right\}, \\
S_{j} \mapsto 2^{j}, \\
g:\left\{S_{1}, S_{2}, \ldots, S_{n}\right\} \longrightarrow\left\{2^{n+1}, 2^{n+2}, \ldots, 2^{n+n}\right\}, \\
S_{j} \mapsto 2^{n+j} .
\end{gathered}
$$

We build a directed edge-indexed graph $(A, i)_{\mathscr{F}}$ as follows. We take $A=\Sigma$. Let $e \in E \Sigma$. initial point of e is a final state, we choose $i(e)=g\left(S_{j}\right)=2^{n+j}$.

Theorem 2. Let \mathscr{F} be a finite state automaton with edge-indexed graph $(A, i)_{\mathscr{F}}$, and let \mathscr{F}_{0} be the minimized automaton. Let $I\left(\mathscr{F}_{0}\right)$ be the edge-indexed graph of the minimized automaton. Let $\left(A_{0}, i_{0}\right)_{\mathscr{F}}$ be the BT ultimate quotient of the edge-indexed graph $(A, i)_{\mathscr{F}}$. Then

$$
I\left(\mathscr{F}_{0}\right) \cong\left(A_{0}, i_{0}\right)_{\mathscr{F}},
$$ file . I

where \cong is a graph isomorphism preserving edge-indices.
Proof. We claim that at each step of each algorithm, the equivalence classes coincide. We prove this by induction on the step of the given algorithm, denoted n.

For the BT algorithm, the R_{1}-classes (step 1) are determined by degrees of the vertices. For the edge-indexed graph of the finite state automaton \mathscr{F}, there are only two types of vertices, namely, those of degree $2^{k+1}-1$ and those of degree $2^{2 k+1}-1$ for each $k=0,1, \ldots$. The vertex v has degree $2^{k+1}-1$ if and only if it corresponds to a non-final state of \mathscr{F} and v has degree $2^{2 k+1}-1$ if and only if it corresponds to a final state of \mathscr{F}. Hence the claim is true for $n=1$.
Now let $n=s \geqslant 1$. Then a pair (u, v) of vertices belongs to the R_{s+1}-classes of the BT algorithm if and only if using notation as in Section 3 we have

$$
i(u, x)=i(v, x)
$$

and x belongs to an equivalence class at the previous step, step s, of the BT algorithm. But for each vertex $x \in V A$, the pair (u, v) belongs to the R_{s} equivalence classes of the state minimizing algorithm if and only if u transitions into x at step s by the same symbols as v does. That is, $(u, v) \in R_{s+1}$.

ARTICLE IN PRESS

1 8. A lower bound on the minimum number of states

Let (A, i) be an edge-indexed graph. Let $s \in \mathbb{Z}_{>0}$ be a step of the BT algorithm applied to (A, i). Let $v \in V A$ and let C be an equivalence class of vertices that occurs at step s. As in Section 5 we define

$$
d_{s}:=\max _{v \in V A, C} d(v, C),
$$

where

$$
d(v, C)=\min _{x \in C} d(x, v)
$$

and $d(x, v)$ denotes the length of the shortest reduced path in A between x and v in $V A$.
Let $\left(A_{0}, i_{0}\right)$ be the ultimate quotient of (A, i). Then by Theorem 4 the sequence $\left(d_{s}\right)_{s \in \mathbb{Z}_{>0}}$ is strictly increasing, for all $s \in \mathbb{Z}_{>0} d_{s} \leqslant \operatorname{diam}\left(A_{0}, i_{0}\right)$, and $\lim _{s \rightarrow \infty} d_{s}=\operatorname{diam}\left(A_{0}, i_{0}\right)$.
Let \mathscr{F} denote a finite state automaton with corresponding edge-indexed graph $(A, i)_{\mathscr{F}}$. Let $\left(A_{0}, i_{0}\right)_{\mathscr{F}}=I\left(\mathscr{F}_{0}\right)$ denote the edge-indexed graph of the minimized automaton \mathscr{F}_{0}. Then

$$
\operatorname{diam}\left(A_{0}, i_{0}\right)_{\mathscr{F}} \leqslant \text { no. of vertices in }\left(A_{0}, i_{0}\right)_{\mathscr{F}}=\min \text { no. of states of } \mathscr{F} .
$$

It follows that if $\left(A_{0}, i_{0}\right)_{\mathscr{F}}$ is infinite, then the minimized automaton \mathscr{F}_{0} has infinitely many states.
The following is a corollary of the results in Sections 8 and 9 .
Corollary 4. Let \mathscr{F} denote a finite state automaton with corresponding edge-indexed graph $(A, i)=(A, i)_{\mathscr{F}} . L e t\left(A_{0}, i_{0}\right)=\left(A_{0}, i_{0}\right)_{\mathscr{F}}$ denote the edge-indexed graph of the minimized automaton \mathscr{F}_{0}. Consider the minimization algorithm of Bass and Tits applied to (A, i). The following conditions are equivalent:
(1) $d_{1}=\infty$.
(2) \mathscr{F} contains states arbitrarily far from an accept state.

Under the above conditions the ultimate quotient $\left(A_{0}, i_{0}\right)$ is infinite and $L(\mathscr{F})$ is not regular.

9. Languages for group theoretic decision problems

In this section we investigate the languages of certain group theoretic decision problems for the automaton of a Cayley graph of a finitely generated group. Using the edge-indexed graph of an automaton as a tool, we give a new proof that the language for the word problem in a finitely generated group is regular if and only if the group is finite, and a new proof that the language of the membership problem for finite subgroups is not regular.
We will make use of the Myhill-Nerode Theorem [4] which provides a necessary and sufficient condition for a language to be regular.

Given a language L, define an equivalence relation R_{L} on strings by $x R_{L} y$ if there is no distinguishing extension z with the property that exactly one of the strings $x z$ and $y z$ is in

JPAA3227
 ARTICLE IN PRESS

L. The Myhill-Nerode Theorem states that the number of states in the smallest automaton accepting L is equal to the number of equivalence classes in R_{L}.
if the number of equivalence classes of R_{L} is finite. An immediate corollary is that if a language defines an infinite set of equivalence classes, it is not regular.

Let G be a finitely generated group and fix a finite generating set X for G. We assume that X is symmetric, that is $X=X^{-1}$. The word problem language, denoted $W P(G)$, for G is the following:

$$
W P(G)=\left\{w \mid w \in\left(X \cup X^{-1}\right)^{*}, w={ }_{G} 1\right\},
$$

where $\left(X \cup X^{-1}\right)^{*}$ consists of all possible words in X and X^{-1}.
In [1], Anisimov and Seifert show that a group has a regular word problem if and only if it is finite. In this case $W P(G)$ is the language of a finite state automaton \mathscr{F}.

The automaton of a finitely generated group G is obtained readily from its Cayley graph $\Gamma(G, X)$ which we now describe. The vertices of $\Gamma(G, X)$ are the elements of G. Vertices g and h of $\Gamma(G, X)$ are connected by an oriented edge e if $g s={ }_{G} h$ for some $s \in X$, and we label the edge e with the generator s. Thus the edge e^{-1} is labeled with the generator s^{-1}. We can view $\Gamma(G, X)$ as an automaton F^{G} where the vertices correspond to states and the edges to transition functions between states. The unique initial and final states correspond to the identity group element 1_{G}. Let $(A, i)_{G}$ denote the edge-indexed graph associated to this automaton, and let $\left(A_{0}, i_{0}\right)_{G}$ denote its BT ultimate quotient. We give a short proof of the AS theorem.

Theorem 3. The language $W P(G)$ is regular if and only if $(A, i)_{G}$ is finite if and only if G is finite.

Proof. Suppose first that $(A, i)_{G}$ is finite. Then $\left(A_{0}, i_{0}\right)_{G}$ is finite and so the minimization F_{0}^{G} of F^{G} has finitely many states, thus the language $W P(G)$ is regular.

Conversely, the language $W P(G)$ is regular if and only if the minimization F_{0}^{G} of F_{G} is finite if and only if $\left(A_{0}, i_{0}\right)_{G}=I\left(F_{0}^{G}\right)$ is finite. We claim that this implies that $(A, i)_{G}$ is finite. Assume for the sake of contradiction that $(A, i)_{G}$ is infinite. Then then R_{1}-classes of the BT algorithm for $(A, i)_{G}$ are

$$
\left\{1_{G}\right\} \cup G-\left\{1_{G}\right\},
$$

since the vertex corresponding to $\left\{1_{G}\right\}$ represents a final state and so its (indexed) degree is

$$
\operatorname{deg}_{(A, i)_{G}}\left(1_{G}\right)=2^{n+1}+2^{n+2}+\cdots+2^{n+n}=2^{n}\left(2^{1}+2^{2}+\cdots+2^{n}\right) .
$$

For $v \neq 1_{G}$,

$$
\operatorname{deg}_{(A, i)_{G}}(v)=2^{1}+2^{2}+\cdots+2^{n}
$$

hence $\operatorname{deg}_{(A, i)_{G}}\left(1_{G}\right)=2^{n} \operatorname{deg}_{(A, i)_{G}} \neq \operatorname{deg}_{(A, i)_{G}}(v)$ for $v \neq 1_{G}$, so the equivalence class of 1_{G} is finite. By Corollary 5 if any R_{n}-class of the BT algorithm for $(A, i)_{G}$ is finite, the

JPAA3227

ARTICLE IN PRESS

1 ultimate quotient $\left(A_{0}, i_{0}\right)_{G}$ is infinite, this is a contradiction, as $\left(A_{0}, i_{0}\right)_{G}$ is finite. Thus $(A, i)_{G}$ is finite.

3 Theorem 4. Let G be a finitely generated group with finite generating set X, closed under inversion. Let H be a subgroup of G. Let $L(H)$ be the set of all words in X that represent elements of H. Then $L(H)$ is regular if and only if the index of H in G is finite.

Proof. Let A be the Cayley graph of G with respect to X. We can construct an infinite automaton for $L(H)$ by letting the identity be the start state and setting every vertex corresponding to an element of H to be an accept state. Now let (A_{H}, i_{H}) be the corresponding edge-indexed graph. Let $\left(g_{1}, \ldots, g_{n}, \ldots\right)$ be a set of words in X representing right coset representatives of H of minimal length. We will make use of the Schreier graph of right cosets, by generators.

If $[G: H]$ is finite, the Schreier graph is finite, yielding an automaton for $L(H)$ by setting the identity coset to be the unique start and end state. Now assume $[G: H]$ is not finite. Let $C \in R_{1}$ be the class in the first step of the equivalence relation of the BT algorithm for
$17\left(A_{H}, i_{H}\right)$, and consider the set of coset representatives $\left\{g_{1}, \ldots\right\}$. Since the g_{i} are of minimal length, $d\left(g_{i}, C\right)$ is the length of the word g_{i}. However, since there are infinitely many g_{i},
19 they cannot have length bounded below by a constant. Thus $d_{1}=\infty$, so by Corollary 7, $L(H)$ is not regular.

Acknowledgements

The authors would like to thank the University of Hong Kong whose hospitality is greatly appreciated.

References

[1] A.V. Anisimov, F.D. Seifert, Zur algebraischen Charakteristik der durch kontext-freie Sprachen definierten Gruppen, Elektron, Informationsverarb, Kyber-net, vol. 11, 1975, pp. 695-702.
[2] H. Bass, A. Lubotzky, Tree Lattices, Progress in Mathematics, vol. 176, Birkhauser, Boston, 2000.
[3] H. Bass, J. Tits, A discreteness criterion for certain tree automorphism groups, Appendix [3] in Tree Lattices, in: Progress in Mathematics, vol. 176, Birkhauser, Boston, 2000.
[4] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory, Languages, and Computation, AddisonWesley, Reading, 2000.

[^0]: * Corresponding author.

 E-mail address: carbonel@math.rutgers.edu (L. Carbone).
 ${ }^{1}$ The first author was supported in part by NSF Grant \#DMS-0401 107.
 ${ }^{2}$ The second author was supported in part by a research award for undergraduates at Harvard, and an NSF Graduate Research Fellowship at the University of Michigan.

