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0. Statement of the main results

Let X be a locally finite tree, and G = Aut(X). Then G is naturally a locally compact
group with compact open vertex stabilizers Gx, x ∈ V X ([BL], (3.1)). A subgroup Γ ≤ G
is discrete if and only if Γx is a finite group for some (hence for every) x ∈ V X. A discrete
subgroup Γ ≤ G is called an X-lattice if

(1) V ol(Γ\\X) :=
∑

x∈V (Γ\X)

1
|Γx|

is finite, and a uniform X-lattice if Γ\X is a finite graph.
We wish to determine conditions that will ensure that G contains X-lattices. Let

µ be a (left) Haar measure on G. Let Γ ≤ G be a discrete subgroup with quotient
p : G −→ Γ\G. Then µ induces a measure, also denoted µ, on Γ\G. We call Γ a
G-lattice if µ(Γ\G) < ∞, and a uniform G-lattice if Γ\G is compact.

For x ∈ V X, 0 < µ(Gx) < ∞. When G is unimodular, µ(Gx) is constant on G-orbits,
so we can define ([BL], (1.5)):

(2) µ(G\\X) :=
∑

x∈V (G\X)

1
µ(Gx)

.
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(0.1) Theorem ([BL], (1.6)). For a discrete subgroup Γ ≤ G = Aut(X), the following
conditions are equivalent:

(a) Γ is an X-lattice, that is, V ol(Γ\\X) < ∞.
(b) Γ is a G-lattice (hence G is unimodular), and µ(G\\X) < ∞.

In this case:
V ol(Γ\\X) = µ(Γ\G) · µ(G\\X).

The main result proved here is the following theorem, originally conjectured in an
earlier version of [BL]:

(0.2) Lattice Existence Theorem. Let X be a locally finite tree, let G = Aut(X),
and let µ be a (left) Haar measure on G. The following conditions are equivalent:

(a) G contains an X-lattice Γ.
(b) (U) G is unimodular, and

(FV) µ(G\\X) < ∞.

(0.3) Remarks.

(1) The implication (a) =⇒ (b) follows from Theorem (0.1).
(2) When (FV) is replaced by the stronger condition:

(F) G\X is finite,
then we have the:

(0.4) Uniform Existence Theorem ([BK], (4.10)). Let X be a locally finite tree
and let G = Aut(X). The following conditions are equivalent:

(a) G contains a uniform X-lattice Γ, which is also a uniform G-lattice.
(b) G contains a uniform X-lattice Φ such that Φ\X = G\X.
(c) (U) G is unimodular, and

(F) G\X is finite.
(d) X is the universal cover of a finite connected graph.

Under these conditions, X is called a ‘uniform tree’.

In light of (0.4), to prove the Lattice Existence Theorem (0.2), we are reduced to proving:

(0.5) Theorem. Let X be a locally finite tree, let G = Aut(X), and let µ be a (left)
Haar measure on G. Assume that:

(U) G is unimodular,
(FV) µ(G\\X) < ∞, and
(INF) G\X is infinite.
Then G contains a (necessarily non-uniform) X-lattice Γ.

This theorem will be deduced from the following result about ‘edge-indexed graphs’.
Here we follow the notations and terminology of [BL], Ch 2, and we defer explanation
until Section 2.
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(0.6) The Bounding Denominators Theorem. Let (A, i) be an edge-indexed graph,
and let a0 ∈ V A. Assume

(U)(A,i) (A, i) is unimodular.

Then there is a canonical covering

p : (B, j) −→ (A, i)

of edge indexed graphs, and a b0 ∈ p−1(a0), with the following properties:

(U)(B,j) (B, j) is unimodular.

(FF ) p has finite fibers. Hence B is infinite if and only if A is infinite.

(V ) V olb0(B, j) = V ola0(A, i). Hence V ol(B, j) < ∞ if and only if V ol(A, i) < ∞.

(BD)(B,j) (B, j) has bounded denominators.

The utility of this result is indicated by the following.

(0.7) Theorem ([BK], (2.4)). Let (B, j) be an edge-indexed graph. Then (B, j) admits
a finite faithful grouping B = (B,B), if and only if (B, j) satisfies:

(U)(B,j) (B, j) is unimodular, and

(BD)(B,j) (B, j) has bounded denominators.

With the notations of (0.6) and (0.7), if b0 ∈ V B and a0 = p(b0) ∈ V A, then we put

˜(A, i, a0) = X = ˜(B, j, b0)

so that
X

pB

↙
pA

↘
B

p−→ A

commutes. Let G = Aut(X) and

G(B,j) := {g ∈ G | pB ◦ g = pB} ≤ G(A,i) := {g ∈ G | pA ◦ g = pA}.

Let Γ = π1(B, b0) ≤ G(B,j).
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(0.9) Theorem. Assuming

(U)(A,i) (A, i) is unimodular, and

(FV )(A,i) V ol(A, i) < ∞,

then Γ is an X-lattice, Γ ≤ G(A,i), and Γ is a uniform G(A,i)-lattice. In fact, if x0 ∈
p−1

B (b0), then

V ol(Γ\\X) =
1

|Γx0 |
V ola0(A, i).

(0.10) Corollary. Let X be a locally finite tree, G = Aut(X), H ≤ G a subgroup
acting without inversions, pH : X −→ A = H\X, and (A, i) = I(H\\X). Assume that
H = G(A,i). Then the following conditions are equivalent:

(a) There is an X-lattice Γ ≤ H.
(b) (U)H H is unimodular, and

(FV )H µ(H\\X) < ∞.
Under these conditions, we can choose Γ to be a uniform H-lattice.

Proof. By Remark ((0.3), (1)), we need only verify the implication (b) =⇒ (a). We
verify that the hypotheses of Theorem (0.9) are satisfied. We have (U)H ⇐⇒ (U)(A,i)

by ([BK], (3.7)), and we have (FV )H ⇐⇒ V ol(A, i) < ∞ by ([BL], (3.6)(2)). Taking
H = G gives (0.2) and (0.5). �

1. Related existence results and questions

Under the assumptions that G is unimodular, and µ(G\\X) < ∞, Theorem (0.5) gives
existence of an X-lattice Γ that is of course non-uniform when G\X is infinite. However,
the Γ we produce in Theorem (0.5) is a uniform G-lattice. This naturally raises the
following:

(1.1) Question. Let X be a locally finite tree that admits a non-uniform X-lattice. Does
X admit one that is also a non-uniform G-lattice?

Question (1.1) has a positive answer if X is a uniform tree ([C1], [C2]). Hence it
remains to answer Question (1.1) in the case that G = Aut(X) is unimodular, µ(G\\X) <
∞ and G\X is infinite. We address this case in [CR], assuming that X has more than
one end, and in [CC], when X has a unique end.

Following ([BL], (3.5)) we call X rigid if G is discrete, and we call X minimal if G
acts minimally on X, that is, there is no proper G-invariant subtree. If X is uniform
then there is always a unique minimal G-invariant subtree X0 ⊆ X ([BL] (5.7), (5.11),
(9.7)). We call X virtually rigid if X0 is rigid (cf. ([BL], (3.6)). All lattices on virtually
rigid trees must be uniform ([BL], (3.6)). Conversely:
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(1.2) Non-uniform Lattices on Uniform Trees ([C1], [C2]). If X is uniform and
not virtually rigid then G contains a non-uniform X-lattice Γ, which is also (necessarily)
a non-uniform G-lattice.

We observe that the assumptions of Theorems (1.2) and (0.5) are mutually exclusive.
In fact, under the conditions of Theorem (0.5), either X has a unique minimal G-invariant
subtree X0, and X0 is not rigid, or else X is parabolic and has no rigid G-invariant
subtrees.
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