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A well-known result from 1957, due to De Giorgi and Nash (see [3]), asserts that if
𝑢𝑢 ∈ 𝐻𝐻1(Ω) satisfies ∑

𝑖𝑖𝑖𝑖

∫

Ω

𝑎𝑎𝑖𝑖𝑖𝑖
∂𝑢𝑢

∂𝑥𝑥𝑖𝑖

∂𝜑𝜑

∂𝑥𝑥𝑖𝑖
= 0 ∀𝜑𝜑 ∈ 𝐶𝐶∞

𝑐𝑐 (Ω), (1)

where the coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 𝐿𝐿∞(Ω) are uniformly elliptic, then 𝑢𝑢 ∈ 𝐶𝐶0,𝛼𝛼
loc (Ω) for some

𝛼𝛼 𝛼 0, with a corresponding estimate. In particular

∥𝑢𝑢∥𝐿𝐿∞(𝜔𝜔) ≤ 𝐶𝐶∥𝑢𝑢∥𝐻𝐻1(Ω), ∀𝜔𝜔 with 𝜔𝜔 ⊂ Ω. (2)

Since (1) makes sense for functions 𝑢𝑢 ∈ 𝑊𝑊 1,1(Ω), one may wonder whether the
De Giorgi–Nash estimate (or the weaker form (2)) is still valid when 𝐻𝐻1 is replaced by
𝑊𝑊 1,1. In his 1964 paper (paper [i] below) J. Serrin produced a striking example showing
that such a stronger version of the De Giorgi–Nash estimate fails: Given any 𝑝𝑝 𝑝 2, J.
Serrin constructed a function 𝑢𝑢 ∈ 𝑊𝑊 1,𝑝𝑝(Ω) in a ball Ω ⊂ ℝ𝑁𝑁 , 𝑁𝑁 ≥ 2, satisfying (1) for
some elliptic coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 𝐿𝐿∞, and such that 𝑢𝑢 𝑢∈ 𝐿𝐿∞

loc(Ω). In the same paper he
proposed the following:

Conjecture (J. Serrin, 1964). Assume that the coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 are Hölder and uniformly
elliptic. Assume that 𝑢𝑢 ∈ 𝑊𝑊 1,1(Ω) satisfies (1). Then 𝑢𝑢 is “classical”, i.e., 𝑢𝑢 ∈ 𝐻𝐻1

loc(Ω)
(and therefore 𝑢𝑢 is Hölder by De Giorgi–Nash).

A partial answer to Serrin’s conjecture was given in 1971 by two former PhD stu-
dents of J. Serrin, R. Hager and J. Ross:

Theorem 1 ([4]). Assume that the coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 are Hölder and uniformly elliptic. As-
sume that 𝑢𝑢 belongs to 𝑊𝑊 1,𝑝𝑝(Ω) for some 𝑝𝑝 𝛼 1, and satisfies (1). Then 𝑢𝑢 ∈ 𝐻𝐻1

loc(Ω).

H. Brezis gave a complete solution of Serrin’s conjecture and also weakened the first
assumption in the theorem of Hager–Ross. The results were announced in [1] and the
detailed proofs are presented in [2] as an Appendix in a paper by A. Ancona (who, in
turn, used this result while answering a question raised by H. Brezis and A. Ponce).

Theorem 2 ([1], [2]). Assume that the coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 are continuous in Ω and uniformly
elliptic. Assume that 𝑢𝑢 belongs to 𝑊𝑊 1,𝑝𝑝(Ω) for some 𝑝𝑝 𝛼 1, and satisfies (1). Then 𝑢𝑢

belongs to 𝑊𝑊 1,𝑞𝑞
loc (Ω) for every 𝑞𝑞 𝑝 ∞. Moreover

∥𝑢𝑢∥𝑊𝑊 1,𝑞𝑞(𝜔𝜔) ≤ 𝐶𝐶∥𝑢𝑢∥𝑊𝑊 1,𝑝𝑝(Ω) ∀𝜔𝜔 with 𝜔𝜔 ⊂ Ω, (3)
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where 𝐶𝐶 depends only on 𝜔𝜔𝜔Ω, the ellipticity constant, 𝑝𝑝𝜔 𝑝𝑝, and the modulus of continuity
of the 𝑎𝑎𝑖𝑖𝑖𝑖 ’s.

Theorem 3 ([1], [2]). Assume that the coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 are Dini-continuous, i.e.,

∣𝑎𝑎𝑖𝑖𝑖𝑖(𝑥𝑥) − 𝑎𝑎𝑖𝑖𝑖𝑖(𝑦𝑦)∣ ≤ 𝛾𝛾(∣𝑥𝑥− 𝑦𝑦∣) ∀𝑥𝑥𝜔 𝑦𝑦 ∈ Ω𝜔 with

∫ 1

0

𝛾𝛾(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑡𝑡 𝑑 ∞

(e.g., 𝑎𝑎𝑖𝑖𝑖𝑖 are Hölder). Assume that 𝑢𝑢 belongs to 𝑊𝑊 1,1(Ω) and satisfies (1). Then 𝑢𝑢 ∈
𝐶𝐶1(Ω) and moreover

∥𝐷𝐷𝑢𝑢∥𝐿𝐿∞(𝜔𝜔) ≤ 𝐶𝐶∥𝑢𝑢∥𝑊𝑊 1,1(Ω) ∀𝜔𝜔 with 𝜔𝜔 ⊂ Ω𝜔 (4)

where 𝐶𝐶 depends only on 𝜔𝜔𝜔Ω, and on the Dini-modulus of continuity of the 𝑎𝑎𝑖𝑖𝑖𝑖’s.

Here are several comments showing that the results of Theorems 2 and 3 are sharp
and more subtle than they seem! Under the assumptions of Theorem 3 the following
estimate holds, for every 𝑝𝑝 𝑑 ∞,

∥𝐷𝐷𝑢𝑢∥𝐿𝐿𝑝𝑝(𝜔𝜔) ≤ 𝐶𝐶∥𝑢𝑢∥𝑊𝑊 1,1(Ω)𝜔 ∀𝜔𝜔 with 𝜔𝜔 ⊂ Ω (5)

where 𝐶𝐶 depends only on 𝜔𝜔𝜔Ω𝜔 𝑝𝑝 and the modulus of continuity of the 𝑎𝑎𝑖𝑖𝑖𝑖 ’s (but not
on the Dini-modulus of continuity!). Estimate (5) suggested that the answer to Serrin’s
conjecture might still be positive when the 𝑎𝑎𝑖𝑖𝑖𝑖 ’s are merely continuous. H. Brezis raised
that question in [2]. It turns out that the answer is negative! T. Jin, V. Maz’ya and J.
Van Schaftingen [5] have constructed an ingenious example of a function 𝑢𝑢 ∈ 𝑊𝑊 1,1(Ω)
satisfying (1) for some elliptic coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶0, such that 𝐷𝐷𝑢𝑢 does not belong even
to the class 𝐿𝐿 log𝐿𝐿! They also answered another question raised by H. Brezis: they found
a function �̃�𝑢 which belongs to 𝑊𝑊 1,𝑝𝑝(Ω) ∀𝑝𝑝 𝑑 ∞, which satisfies (1) for some elliptic
coefficients 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶0, and such that 𝐷𝐷�̃�𝑢 𝑢∈ BMO. Putting all those facts together one has
now a clear picture of the “smoothing effects” for elliptic equations in divergence form
with continous coefficients.
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On Surfaces of Constant Mean Curvature 
which Span a Given Space Curve 

JAMES SERRIN 

Let F be a Jordan curve in E 3, which is contained in the closed unit ball B 
about the origin. Recently it has been shown by Heinz [61 and Werner [18], 
and by Hildebrandt [7], that there exists a surface of constant mean curvature 
which spans the curve F and lies inside B, provided the mean curvature in 
question does not exceed 1. The surface is of course defined parametrically as 
in the case of Plateau's problem for minimal surfaces, and accordingly may 
have self-intersections, multiple coverings, and branch points. 

The purpose of this note is to describe a sufficient condition for this surface 
to be unique, and to obtain an a priori  limitation on the form of the region in 
which it is contained. As a corollary, the results include a well-known criterion 
due to Rad6 for a solution of Plateau's problem to be unique and regular. 

Besides the results just noted, Theorems 1 and 1' contain a general limita- 
tion on the diameter of the region in which a surface of constant mean curvature 
must lie, assuming that it spans a curve F contained in B. Finally, Theorem 4 
gives an interesting maximum principle for non-parametric surfaces of constant 
mean curvature. 

The methods by which we arrive at our conclusions belong to the realm 
of differential geometry. Nevertheless the ultimate basis of the results comes 
from an analysis of the partial differential equations obeyed by the surfaces in 
question. To illustrate, we require at one stage the construction of a non- 
parametric surface of constant mean curvature spanning a given space curve. 
This surface, once its existence is established, can be treated as a geometric 
structure or entity; but the basic existence theorem is a matter depending 
heavily on the theory of a priori  estimates of non-linear partial differential 
equations and the delicate fixed point analysis of Leray and Schauder (see [16]). 
Again, we make use of the fact that two surfaces of constant mean curvature 
which touch at a point, but do not cross one another, must in fact coincide. 
This is a geometric statement, but its proof relies on the analytical maximum 
principle of E. Hopf (see footnote 4). The result just noted is a fundamental 
one in surface theory, and might in fact appropriately be called the "touching 
principle ". 

Another construction, used here as a geometrical tool apparently for the 
first time, is due to Bonnet, and states that parallel to any regular surface of 
6 Math. Z., Bd. 112 
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constant mean curvature there is a second surface also having constant mean 
curvature. In point of fact, to apply Bonnet's construction requires an analysis 
of the behavior of the second surface in the neighborhood of points which are 
images of umbilical points of the original surface, an analysis which can be 
carried through only after a careful discussion of the local behavior of surfaces 
of constant mean curvature near an umbilic. 

We note that a similar interplay between analytic and geometrical concepts 
also occurs in other work in the theory of surfaces of constant mean curvature, 
notably that of H. Hopf  and A. D. Alexandrov. 

1. A Priori Limitations 

We shall retain the notations of the introduction throughout the paper. 
Thus F will denote a Jordan curve (not necessarily rectifiable) contained in the 
closed unit ball B about the origin. Let D denote the parameter domain 
u 2 + v 2 <  1 and let D be its closure. A surface S will be called a solution of 
Plateau's problem for constant mean curvature /-/ provided that S can be 
represented by a vector function 2(u, v)~ C(D)~ C z (D) such that both 

A ~=2H2ux2v  
and 

I~.l--I~vl, x..xv=O 

in D, while the boundary of D is topologically mapped onto F. We may ob- 
viously assume that H > 0 without loss generality. 

Before turning to the main a priori limitations, we note a few simple results 
concerning the local behavior of solutions of Plateau's problem. A branch 
point 2o of S is a point where the surface has the local representation 

~=~o+ ~ a~j(U-Uo)i(V-Vo) j, 
i+j>=u 

where #>=2 is the order of the branch point. We can assume without loss of 
generality that Xo = 0 and Uo = v0 = 0. Then exactly as in the case of Plateau's 
problem for minimal surfaces, it follows that 

x + iy = A ( u +  i v)u+ O(lu+ i vl ~--1) 

z= O(lu+ivl ~+1) 

for appropriately oriented coordinates 2 = (x, y, z), where A is a suitable positive 
constant t. It is an immediate consequence that the surface S has a unique 
tangent plane at each point not on F (points of S which arise from different 
values (u, v) are considered to be different). Moreover, it is clear that branch 
points of S must necessarily be isolated/. 

1 The result for minimal surfaces is due to Chen [4]; cf. also [12], p. 235. I first learned of 
its generalization to surfaces of constant mean curvature in a communication of Hildebrandt. 

2 Hildebrandt, ibid. 
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Somewhat less immediate, but still a consequence of the development above, 
the surface S must have self-intersections in the neighborhood of any branch 
point 3. Indeed, it is easily verified that any suitably small neighborhood of 
(0, 0) in the (u, v) plane is mapped by 

x + i y= A(u+ iv)u +O(lu+ ivl) ~ 

onto a neighborhood of the origin of the Riemann surface for (u + i v) u. Con- 
sequently we can find a curve 7 surrounding the origin in the (u, v) plane, whose 
image in the (x, y) plane is the circle x 2 + y Z =  62 covered/~ times. Consider the 
values of (x, y, z) as (u, v) traverses 7 once. If S has no self-intersections, then 
each time the point (x, y) circles the origin once the value of z must increase 
(or decrease). But this is impossible because after # circuits z returns to its 
initial value. Consequently S must have self-intersections in the neighborhood 
of a branch point, as asserted. 

We may now turn to our main results. Recall here that S denotes a solution 
of the Plateau problem spanning a Jordan curve F contained in the unit ball B. 

Theorem 1. Suppose that H< 1 and that S is contained in the closed ball of 
radius 1/H about the origin. 7hen S is contained in B. 

Before proving this result, we observe that the conclusion becomes false 
without the hypothesis that S is contained in the closed ball of radius 1/H 
about the origin, as is apparent by considering a sphere of radius 1~It which 
intersects B. Whether the radius 1/H in the theorem is best possible is not 
known, but the same example shows that the conclusion is definitely untrue 
if 1/H is replaced by any number greater than (2//-/)- 1. (We note that if the 
h y p o t h e s i s / / <  1 is dropped the theorem remains true, but becomes trivial.) 

Proof of Theorem 1. Let us suppose for contradiction that S contains points 
outside B. Let K denote the Smallest closed ball with center at the origin which 
contains S, and let 2; be the spherical boundary of K. Evidently 2; has mean 
curvature > H  and is tangent to S at some point Pr We now consider two 
c a s e s .  

1. P is a regular point of S. Then, in a rectangular coordinate system with 
the z-axis oriented along the exterior normal to 2; at P, the surfaces Z and S 
can be represented in the neighborhood of P by 

z = U(x, y) and z = u(x, y) 

respectively, where the functions U(x, y) and u(x, y) satisfy the non-parametric 
equations 

(1+ U 2) Ux~- 2 U~ U, U~,+(1 + U 2) U,,= 2A(I + U2 + U~) ~ 

(l+uZ) uxx_2uxuyuxy+(l+uZ) 2 2 uyy = 22(1 + ux + uy) 

3 The corresponding result for the case of minimal surfaces is due to Chen [4]; see also 
Nitsche [13]. The present proof is similar to that for minimal  surfaces. 

By saying that S has self-intersections we mean  here that there are at least two distinct points 
(ul, vx), (u2, vz) for which 2(ul, vl)=2(u2, v2). 
6* 
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with A < - H and 2 = H or - H. Since S is internally tangent to 2; at P, we have 

u < U  near P, u=  U at P. 

This immediately implies A > 2, whence the cases A < - H and 2 = H are ruled 
out. It follows finally from E. Hopfs  maximum principle that u = U near P. 4 
Clearly then S coincides with S and consequently cannot span F. 

We note that the same argument applies even if two or more branches of S 
should intersect at P, provided P is regular for at least one of the branches. 

2. P is a branch point of S. Since branch points are isolated, it is evident 
from the previous case that S cannot touch S anywhere in the neighborhood 
of P except for the point P itself. Consider then a small spherical cap of 2; 
about P. If this cap is tilted slightly its boundary will still not touch S. Then 
letting the cap retreat from S (in the direction normal to S at P) it is clear that 
the cap will have a last position where it touches S, say at P'. Evidently P' will 
be a regular point of S, or at worst a point where regular branches intersect. 
But then we obtain a contradiction exactly as in case 1, and this completes the 
proof. (The  same proof in fact shows that S can intersect the boundary of B 
only at points of F, interior points of S being strictly contained in the interior 
of B.) 

Theorem 1 yields an interesting qualitative addition to the result of Heinz, 
Werner, and Hildebrandt noted at the beginning of the paper. In particular, 
while they prove that there exists a solution of Plateau's problem which is 
contained in B, Theorem 1 shows that there can be no solution which extends 
outside B and yet remains in the closed ball of radius 1/H about the origin. 
We remark that the same result can be obtained by considering the differential 
equation 

A [2[ 2 =2(1:2.12 + [2v[z)+4H2 �9 (2. • 2v) 

4 Cf. [8], p. 152. To give the argument  in detail, let the nonlinear operator =~av be defined by 

s = (1 +v~)vxx-2vxvgxy+(1 + v~) vrr+ 2H(1 +v~ +vr2) ~. 

Then we have s = ~ U = 0. The difference w = U - u therefore satisfies a certain linear elliptic 
differential equation 

aw~x+2bwxr+ewyy+dwx+ewr=O, 

and consequently cannot have an interior min imum unless it is constant. [The argument  can also 
be handled in an alternate way to avoid use of the max imum principle. In particular, if u =  u(x, y) 
and v=v(x, y) are solutions of the equation of constant mean curvature, such that u~v and 

u=v and Vu=Vv=O at 0, 

then there is an integer v __> 2 such that 

u--v=H(x, y)+O(r ~+1) 

where H(x, y) is a harmonic polynomial of degree v (see [17], Lemma  1). In consequence, it is 
again evident that a one-sided tangency of two solutions is possible only if the solutions are 
identical. 

The main advantage of the argument  as given is that it applies to quite general partial dif- 
ferential equations and does not  make use of the analyticity of solutions.] 
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satisfied by the function IX[ 2, but we have given the present proof because of 
its separate geometric interest and relation to later results in the paper. 

When the spanning surface S has no self-intersections an overall a priori 
limitation on its spatial location can be given. 

Theorem 1'. Suppose that S is a solution of Plateau' s problem for constant mean 
curvature H > O. Then if S has no self-intersections it must be contained in the 
open ball of radius 1 + 2 H  -I  about the origin. The number l + 2 H  -1 is best 
possible. 

Proof Recall that S spans a curve F located in the unit ball B. We show 
first that no radius smaller than 1 + 2 H -  ~ suffices for the conclusion. For let 
be a sphere of radius 1/H which intersects the boundary of B along a circle F. 
The portion S of S which lies outside B and spans F then satisfies the hypotheses 
of the theorem. Clearly the distance from the outermost point of S to the origin 
can be made arbitrarity near 1 + 2 H -  1 by a suitable choice of S, proving that 
the radius 1 + 2 H -  a cannot be improved. 

Now consider a solution S of the Plateau problem which extends outside B, 
and has no self-intersections. It is clear from the remarks preceding Theorem 1 
that S can have no branch points and hence is regular. Denote by p the maxi- 
mum distance from the origin to points of S. We must show that p < 1 + 2H-~. 

Let P be a point of S whose distance from the origin is p, and consider the 
tangent plane To to S at P. We now suppose this plane to be continuously 
moved normal to itself to positions nearer the origin. At each stage of the 
motion the resulting plane T will cut off from S a (closed) cap N(T). We assert 
that this cap has a single-valued projection onto T as long as the distance 
from T to the origin is not less than ( l+p)/2;  and even more, that no point of 
the cap has a tangent plane orthogonal to T. 

This result is clear for all positions of T sufficiently near To. Moreover 
(by continuity) the set of positions of T where it holds is certainly open and 
connected. It remains to show that the set is also closed, provided the distance 
from T to the origin is at least (l+p)/2. 

Thus let T~ denote the limiting position of a set of planes T for which the 
result holds, the distance from T~ to the origin being at least (1+p)/2. It must 
be shown that/;(T1) has a single-valued projection onto T, and that no tangent 
plane of this cap is orthogonal to T~. 

For any cap ~(T) let N'(T) be the reflection of this cap in T. We claim to 
begin with that U(TO lies in the region bounded by S and the surface of the 
ball B. Indeed if this were not true, it is evident that by continuously withdrawing 
the plane T from a position coincident with T~ we would arrive at a position T2 
intermediate between T~ and T o for which the cap 27(T2) is internally tangent 
to S (here we use the fact that for all planes T between T 1 and To the cap ,!7(T) 
lies outside B and has a single-valued projection on T). The maximum principle 
of Hopf then shows that the part of S on the same side of T2 as U ( ~ )  must 
coincide with 17(T2), a patent absurdity. We have thus shown that U(T  0 is 
interior to S, as claimed. 
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Now suppose that there were a point P on Z(Ta) with a tangent plane V 
orthogonal to T1. Clearly P must lie on T1, by the assumption that T1 is the 
limit of planes for which our result holds. Let us introduce rectangular coor- 
dinates with origin at P, with the z-axis orthogonal to V, and with the x-axis 
along the intersection of V and T~. Then locally S and Z'(T~) have representa- 
tions z=u(x,  y) and z--U(x, y) for y < 0  (say), and either u__< U or u >  U since 
N'(T1) is interior to S. Clearly Ou/~y= OU/Oy = 0 at (0, 0) since both Z'(T1) and S 
have V as tangent plane at P. By HopFs boundary point lemma [9], it follows 
that the part of S below T1 must coincide with s which is certainly impos- 
sible. Thus no tangent plane of Z(T~) is orthogonal to T~. 

We must still show that Z(T1) has a single-valued projection onto T~. 
From what has gone before, it is clear that N(T~) consists of one or more com- 
ponents each of which separately has a single valued projection. The only 
overlapping of these projections which could occur would be due to new 
components appearing at the instant T reaches coincidence with T~. But these 
latter components must also have projections which are distinct from other 
components, in view of the fact that the reflected cap 2'(TI) is interior to S. 
The original assertion is thereby proved; that is, for any plane Twhose distance 
from the origin is at least (1 +p)/2 the corresponding cap Z(T) has a single- 
valued projection onto T, and no point of ~ (T) has a tangent plane orthogonal- 
to T. 

Consider the cap 2 cut off from S when the distance from T to the origin is 
exactly (1 + p)/2. By what we have just shown, 2 can be considered a non- 
parametric solution of the equation of constant mean curvature over a portion 
of T, which takes on the value zero on the boundary of T. According to the 
maximum principle proved in the final section of this paper, the distance from 
points of 2 to the set T cannot exceed I'/H. Consequently, by considering the 
point P on 2 we obtain the relation 

p + l  1 <__ 
P 2 = H '  

that is p_<_ 1 + 2 H -  1. If equality holds, then by Theorem 4 the cap 2 must be a 
hemisphere, whence S is a portion of a sphere. But then S does not after all 
extend the full distance 1 + 2 H -  1 from the origin. This completes the proof of 
the theorem s. 

We note that the assumption that S has no self-intersections is similar in 
both concept and use with the corresponding assumption in Alexandrov's 
proof that a closed surface of constant mean curvature having no self-inter- 
sections is a sphere. 

We suppose from here on that the curve F has a single-valued parallel 
projection F* onto some plane L in E 3, and that each point P ofF* (viewed as a 
plane curve in L) admits a supporting circle of radius 1 which surrounds F*. 

5 Note added in proof A generalization of Theorem 1' to apply to elliptic Weingarten surfaces 
has been obtained by A. Aeppli and the author. 
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(If F* is of class C 2 this condition is equivalent to the requirement that the 
curvature of F* is everywhere greater than or equal to �89 A surface S which 
spans F and has a single-valued projection on L will be called a non-parametric 
spanning surface. The following result then holds. 

Lemma. For any constant A satisfying O<A< 1 there exist exactly two 
regular non-parametric spanning surfaces of F having (unsigned) constant 
mean curvature A. 

To see this, we first introduce a fixed rectangular coordinate system with 
the z-axis normal to L. Then any regular non-parametric spanning surface 
may be represented in the form z = U(x, y) where U(x, y) must satisfy either 

o r  

(1§ U 2) Uxx-2 Ux Uy U~y+ (1 + U if) Uyy-- 2A (1 + Uff+ U~) ~ 

(1+ U 2) U~,,-2 Ux Uy U~y+ (1 + U 2) Uy,= - 2A(1 + Uff§ U~) ~, 

and where U(x, y) takes on appropriately defined values on the curve F*. 
The assertion is therefore equivalent to the existence of a unique solution of 
the Dirichlet problem for each equation. In view of the results of [16], both 
problems are solvable provided that the curve F is of class C 2. An additional 
limiting argument based on an interior estimate for the gradient of solutions 
then shows that the problems are solvable even for continuous F, cf. [17]. 
Uniqueness follows at once from the maximum principle for the difference of 
solutions. 

Let the two surfaces described above be denoted by S+ and S_ respectively, 
and let_R(A) be the closed region bounded by these surfaces [note that S§ lies 
below S_ if the upward direction is associated with the positive z-axis]. 

Theorem 2. Suppose 0< H <  1. Let F have the properties noted above and 
let S be a solution of Plateau' s problem for constant mean curvature H, contained 
in the closed ball of radius 1/H about the origin. Then S is contained in R(H). 

Proof. We show first that S must be contained in the right cylinder with cross 
section F* + Interior (F*), and can intersect the boundary of this cylinder only 
along the curve F. Suppose in fact that this were not the case. Then, recalling 
that S is contained in B according to Theorem 1, it is evident that there would 
exist a right circular cylinder of radius �89 which is tangent to S at some point 
P r F. (To see this, begin with the cylinder in a position tangent to B and translate 
it in an appropriate direction parallel to L until it first touches S.) Since the 
cylinder has mean curvature 1, our assertion now follows as in the concluding 
argument of the proof of Theorem 1. 

Next suppose that S is not contained in R(H). Let S§ and S_ be the lower 
and upper bounding surfaces of this region, as before. Then we can translate S+ 
downwards (or S_ upwards) so that it reaches a final position tangent to S at 
some point Pr This being done, we again reach a contradiction as in the 
proof of Theorem 1, and the demonstration of Theorem 2 is completed. 
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The following result is due to Rad6 [14], though the proof we give is quite 
different and independent of the monodromy theorem which was required 
by Rad6. 

Theorem 2'. Let S be a minimal surface spanning a Jordan curve C in E 3, 
where C has a single-valued convex projection C* onto a plane L in E 3. Then S 
is a regular non-parametric spanning surface, and is unique. 

Proof By replacing the right circular cylinders used in the preceding proof 
by planes normal to L, it is easy to see that S must be contained in the right 
cylinder with cross section C*+ Interior (C*), and can intersect the boundary 
of this cylinder only along C. 

We now observe that there is exactly one regular non-parametric minimal 
surface So spanning F.6_By the argument of Theorem 2, it follows that S lies 
both above and below So, and hence coincides with So- This completes the 
proof. 

Remark. Theorems 1 and 2 have been stated in terms of a Jordan curve F 
contained in the unit ball. This has been done in order to facilitate comparison 
with the existence theorem of Heinz, Werner, and Hildebrandt, but it is quite 
apparent that the results would apply equally after an arbitrary change of 
scale, that is, with F contained in a ball of radius l ip and with H < p where 
0 < p < oe. In this way, it becomes clear that Theorem 2' is precisely the limiting 
case H --+ 0 of Theorem 2. 

2. A Uniqueness Theorem 

The method of proof introduced in Section 1 allows us to obtain a uniqueness 
theorem for spanning surfaces of constant mean curvature, which is a partial 
analogue of Rad6's theorem for minimal surfaces (Theorem 2' of Section 1). 

We suppose as before that F is contained in the unit ball B, has a single 
valued parallel projection F* onto a plane L in E 3, and that each point of F* 
admits a supporting circle of radius �89 which surrounds F*. Then we have the 
following theorem. 

Theorem 3. Suppose that 0 < H <  1. Then there are exactly two solutions of 
the Plateau problem for constant mean curvature H which are contained in B 
and have no self-intersections. Moreover, each of these surfaces is regular and 
has a single-valued parallel projection on L. 

6 This is of course well-known and was proved first by Rad6, making use of the result of 
Theorem 2'. Since we are here proving Theorem 2' on the basis of the existence of So it is necessary 
to cite an independent proof of the latter result in order to avoid circularity. Should C be smooth  
and C* have positive curvature this goes back to Bernstein [2]; see also [11] and [15] for simpler 
proofs of the same result. For the general case the first independent proof was given by Finn, 
[5], p. 415. Another  demonstrat ion was given by Jenkins and Serrin, [10], pp. 323-324 ,  and an 
outline proof appears in the article of Nitsche, [12], p. 201. From a more general point of view 
the result can be considered as the special case A = 0  of the existence theorem which was used in 
the proof of the lemma preceding Theorem 2. 
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Proof Let S be a solution of the Plateau problem which is contained in B 
and has no self-intersections. As in the proof of Theorem 1' it follows that S 
can have no branch points and hence is regular. We shall show that S must 
coincide with one of the surfaces S+ or S_ defined previously, which will com- 
plete the proof. 

Thus suppose for contradiction that S~= S+, S_. Then since S is contained 
in R(_H) according to Theorem 2, it is apparent that S lies strictly between S+ 
and S_. This being the case, we can translate the (upper) boundary surface S_ 
of R (H) downwards until it reaches a final position tangent to S at some point 
Pr Then by the argument of Theorem 1 the signed mean curvature of S at P 
with respect to the upward directed normal must be + H (if it were - H  then S 
would coincide with the translation of S_ and would not span F). 

In the same way, we can translate S+ upwards until it reaches a final 
position tangent to S at some point Qr The mean curvature of S at Q would 
then be - H. 

Now the surface S must be oriented, and, moreover, the upward normals 
to S at both P and Q must point to the same side of S. (This can be seen most 
easily by considering the two relatively open subsets of R (H) which are sepa- 
rated from each other by S.) Accordingly the signed mean curvatures at P 
and Q must be equal, and this contradicts the first part of the proof. Conse- 
quently S must coincide with S+ or S_ and the proof is completed. 

3. A Maximum Principle 

In this section we prove a maximum principle for non-parametric solutions 
of the equation of constant mean curvature. Besides being required for the 
proof of the earlier Theorem 1', this result has a basic interest in its own right. 

Theorem 4. Let A be a positive constant, and suppose u= u(x, y) is a solution 
of the equation 

(1 + u~) Uxx-2Ux u, ux,+(1 + u 2) u, , - -2A( l+ug+u2)  ~ 

in a bounded domain f2. I f  u is continuous up to the boundary of f2, then we have 

m - 1 / A < u < M  in f2 

where m and M are respectively the minimum and maximum boundary values of u. 
Equality is attained on the left only if u represents a hemisphere of radius 1/A. 

Proof The right hand inequality is obvious, since a surface of positive mean 
curvature surely cannot posses an interior maximum point. 

In order to prove the left hand inequality, we shall use of a theorem of Bon- 
net ([3], p. 119) which states that if S is a surface of constant mean curvature A, 
then the parallel surface to S at a distance 1/A in the direction of the preferred 
normal to S has mean curvature - A .  In point of fact, this applies only at 
points of the parallel surface which are regular, since focal points of S must 
obviously be excluded. Such focal points can arise only as images of umbilics 
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of S, for at a non-umbilical point the principal curvatures kl and kz (being 
unequal and summing to the value 2A) could not have the value A. More 
precisely, then, Bonnet's theorem asserts that the parallel surface (or set) is 
regular and has constant mean curvature - A  at all points which are not the 
image of an umbilical point of S. 

Now let S denote specifically the surface z=u(x ,y) , (x ,y)eO.  If S is a 
hemisphere, then the left hand inequality is trivial, and we must therefore show, 
when S is not a hemisphere, that 

1 
u > m - - -  in ~?. 

A 

Let S* be the parallel surface associated to S by Bonnet's theorem. The required 
inequality will follow at once if we can prove that S* lies entirely above the 
plane z = m. 

Assume first for contradiction that S* contains some point below this plane. 
Since the image of points of S which are sufficiently near its boundary clearly 
lies above any plane z = m - e ,  it follows that S* contains some point P with 
minimum ordinate m'< m. We consider two cases. 

1. P is a regular point of S*. Then in the neighborhood of P the set S* is a 
regular surface having constant mean curvature - A .  Such a surface obviously 
cannot possess an interior minimum point, whence we obtain a contradiction 
and need consider only case 

2. P is the image of an umbilical point Q of S. Introduce new rectangular 
coordinates (x', y', z') with origin at Q and with the z'-axis directed along the 
(upper) normal to S. The spherical bowl of radius 1/A which is tangent to S 
at Q is represented in this coordinate system by the relation 

z ' = v ( x ' , y ' ) = l ( 1 - 1 / 1 - A 2 r ' 2 ) ,  r'2 = x'2 -}- y '2" 

Similarly let S be locally represented in the new coordinates by z'=u(x',  y'). 
Then since the normal curvatures of S at Q are all equal to A, the first differing 
terms in the Taylor expansions of u and v about (0, 0) will be of degree v> 3. 
Using Lemma 1 of [-17], we find therefore 

u(x', / ) =  v(x', y') + H(x', y') +O(r '~+1) 

where H(x', y') is a harmonic polynomial of degree v. 
Now using (x', y') for local coordinates in the set S* near P, the points 

(x*, y*, z*) of this set are described parametrically by the relations 

U x , b /y ,  

x*=x '  A(I+u~,+ 2 ~, Y*=Y' u,,y A (1 + @ + @)~ 

1 
z*=b/(x' ,y')~ ~ lu  x ;~-"+b/~,+u' , '~'  
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as one sees easily. By expansion around the function v we obtain without diffi- 
culty 

H ,+O(r )} vx,+v,,) {1-vx ,  Hx,-Vy, ,v+l 

(this calculation is made under the assumption v > 3; ifv = 2 an extra term would 
appear). Hence by a straightforward evaluation we get 

x * -  iy* = c(x' + iy') ~- 1 + O(r,~) 

, ( 1 )  
z * = ~ + A  1 -  Real{c(x'+iy')~}+O(r'V+l), 

where c is a complex constant. In accordance with these formulae, it is apparent 
that the set S* must have a unique tangent plane at P and must furthermore 
extend both above and below the horizontal plane z = m' through P, which 
contradicts the fact that P is a point of S* with minimum ordinate. Thus S* 
cannot extend below the plane z = m. 

Next suppose that S* contained a point of the plane z = m. This point would 
have a minimum ordinate, and the same proof as before then leads to a con- 
tradiction. 

Having shown that S* lies entirely above z = m, we note that each point Q 
of S is associated with a point Q* of S* such that IQQ*I= 1/A. Hence S must lie 
everywhere above the plane z = m -  l/A, completing the proof of the theorem. 

It is remarkable that the bound given by the left hand inequality of Theorem 4 
tends to minus infinity as the value of A tends to zero, even though in this 
limit the equation of constant mean curvature comes more and more nearly to 
resemble the minimal surface equation, for which the maximum principle 
holds in the form 

m<-u<-M in O. 

This anomaly is partly explained by the fact that the domain must become 
increasingly large if the lower bound m -  1/A is to be attained. For  a f ixed 
domain, and for suitally small values of A, an alternate lower bound is available 
which (while depending on the size of the domain) does at least tend to the 
value m as A tends to zero. More precisely, we have the following result com- 
plementing the conclusion of Theorem 4. 

Theorem 4'. Suppose that the hypotheses of Theorem 4 are satisfied, and that 
in addition g2 is contained in a disk of radius a <_<_ 1/A. Then we have 

m - A a 2 < = u < M  in f2. 

The equality can hold on the left hand side only if u represents a hemisphere. 

Proof With the help of Hopfs  maximum principle it is evident that in (2 

1 
M>u>=m--~{] / / 1 - -A2(xZ+y2) - - l / 1 - -A2  a 2} 

> m - l { 1 - ~ a 2 } > m - A a  2 

as required. 
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In this form of the maximum principle, it is clear that one recovers the 
conclusion m_< u < M  in the limit as A tends to zero. We note finally that 
Theorems 4 and 4' can be combined into a single statement, as follows. 

Let the hypotheses of Theorem 4 be satisfied, and suppose that 0 is contained 
in a disk of radius a. Then we have 

m - M i n ( A - ~ , A a Z ) < u < M  in O, 

where the equality can hold on the left hand side only when u represents a 
hemisphere. 
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