On a Characterization of Flow-Invariant Sets^{*}

HAIM BREZIS

Courant Institute and Institut Poincaré, France

Let E be a finite-dimensional Euclidean space. Let Ω be an open set in E and let $F \subset \Omega$ be relatively closed in Ω . For $x \in E$ we use the notation $d(x, F) = \min_{y \in F} |x - y|$. Let A be a locally Lipschitz mapping of Ω into E. If $x \in \Omega$, we denote by S(t)x the solution of the differential equation

 $\dot{x}(t) = A x(t)$, $t \in [0, T_x)$, x(0) = x.

THEOREM 1. The following conditions are equivalent:

(1)
$$\lim_{h \downarrow 0} \frac{d(x + hA x, F)}{h} = 0 \quad \text{for every} \quad x \in F,$$

(2)
$$S(t)x \in F$$
 for every $x \in F$ and $t \in [0, T_x]$.

Proof: It is clear that (2) implies (1), since

$$d(x + hA x, F) \leq ||S(h)x - x - hA x||$$

and ||(S(h)x - x)/h - Ax|| tends to zero as $h \to 0$.

Conversely, it is sufficient to prove that $S(t)x \in F$ for $x \in F$ and small t. We may assume that $||A y_1 - A y_2|| \leq L ||y_1 - y_2||$ for all y_1 , y_2 in an open ball B(x, r). Consequently,

$$||S(t)y_1 - S(t)y_2|| \le e^{Lt} ||y_1 - y_2||$$

if $y_1, y_2 \in B(x, r)$ and t is small enough.

We choose $T < T_x$ so that $||S(t)x - x|| < \frac{1}{2}r$ for $0 \le t < T$. We set $\phi(t) = d(S(t)x, F)$. Let $y_t \in F$ be such that $||y_t - S(t)x|| = \phi(t)$. Therefore, $||y_t - r|| < r$ for $0 \le t < T$. In the following, x and $0 \le t < T$ are fixed.

^{*} The research for this paper was sponsored by the National Science Foundation, grant NSF-GP-11600 at the Courant Institute of Mathematical Sciences, New York University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

^{© 1970} by John Wiley & Sons, Inc.

For h > 0 sufficiently small, $S(h)y_t \in B(x, r)$ and therefore

$$\begin{aligned} \phi(t+h) &\leq \|S(t+h)x - S(h)y_t\| + \|S(h)y_t - y_t - hAy_t\| + d(y_t + hAy_t, F) \\ &\leq e^{Lh} \|y_t - S(t)x\| + \|S(h)y_t - y_t - hAy_t\| + d(y_t + hAy_t, F) . \end{aligned}$$

Thus,

$$\frac{\phi(t+h)-\phi(t)}{h} \leq \left(\frac{e^{Lh}-1}{h}\right)\phi(t) + \left\|\frac{S(h)y_t - y_t}{h} - Ay_t\right\| + \frac{d(y_t + hAy_t, F)}{h}.$$

We deduce from (1) that

(3)
$$\lim_{h \downarrow 0} \sup \frac{\phi(t+h) - \phi(t)}{h} \leq L\phi(t) \quad \text{for every} \quad 0 \leq t < T.$$

It follows from (3), by a standard argument, that $e^{-Lt}\phi(t)$ is nonincreasing on [0, T). Since $\phi(0) = 0$, we conclude that $\phi(t) = 0$ for all $t \in [0, T)$.

Remarks. 1. Theorem 1 is well known in the case when F is a closed set bounded by a "smooth surface".

2. Theorem 1 can be easily extended to general Banach spaces if we replace (1) by

(1') for every
$$x \in F$$
, there is a neighborhood U of x such that

$$\lim_{h \neq 0} d(y + hAy, F)/h = 0 \text{ uniformly in } y \in U.$$

The following application is useful in [1] and was suggested to me by L. Nirenberg.

Let $\overline{\Omega}$ be an open set in $\mathbb{R}^N \times \mathbb{R}$; let $b(y,t) : \Omega \to \mathbb{R}$ be a C^2 function and let $Y(y,t) : \Omega \to \mathbb{R}^N$ be locally Lipschitz. We assume that the following conditions hold:

(4) If
$$b(y, s) < 0$$
 for some $(y, s) \in \Omega$, then $b(y, t) \leq 0$
for $(y, t) \in \Omega$ with $t \geq s$.

(5) $Y(y,t) \cdot b_y(y,t) \leq 0$ at any point $(y,t) \in \Omega$, where b(y,t) = 0.

(6)
$$Y(y,t) = 0 \text{ at any point } (y,t) \in \Omega, \text{ where } b(y,t) = 0, \\ b_y(y,t) = 0 \text{ and } b_t(y,t) = 0.$$

THEOREM 2. Let $(y_0, t_0) \in \Omega$ and let y(t) be the solution of

$$\dot{y}(t) = Y(y(t)), \qquad t \in [t_0, t_1), \quad y(t_0) = y_0.$$

If $b(y_0, t_0) < 0$, then $b(y(t), t) \leq 0$ for $t \in [t_0, t_1)$.

Proof: We define F_0 by $(x, s) \in F_0$ if and only if $(x, s) \in \Omega$ and there is some $(x, t) \in \Omega$ with $t \leq s$ such that b(x, t) < 0. Let F be the closure of F_0 relative to Ω . Clearly, F has the property that if $(y_0, t_0) \in F$, then $(y_0, t) \in F$ for $t_0 \leq t < t_0 + h$, h small enough. By (4) we have $b(y, t) \leq 0$ for all $(y, t) \in F$. We are going to prove that (1) holds with A(y, t) = (T(t, y), 1). Let $(y_0, t_0) \in F$; we consider three cases.

a. $b(y_0, t_0) < 0$, so that (y_0, t_0) lies in the interior of F and (1) clearly holds at (y_0, t_0) .

b. $b(y_0, t_0) = 0$, $b_y(y_0, t_0) = 0$, $b_t(y_0, t_0) = 0$. By (6), $Y(y_0, t_0) = 0$ so that $A(y_0, t_0) = (0, 1)$ and $(y_0, t_0) + hA(y_0, t_0) = (y_0, t_0 + h)$ is in F for h small enough. Hence (1) holds at (y_0, t_0) .

c. $b(y_0, t_0) = 0$, $|\nabla b(y_0, t_0)| \neq 0$, where $\nabla b(y_0, t_0) = (b_y(y_0, t_0), b_t(y_0, t_0))$. Thus there is a constant $c \ge 0$ such that b(y, t) < 0 on the set

$$\{(y,t)\in\Omega:(y-y_0)\cdot b_y(y_0,t_0)+(t-t_0)b_t(y_0,t_0)+c(|t-t_0|^2+|y-y_0|^2)<0\}.$$

Therefore,

$$d((y_0, t_0) + hA(y_0, t_0), F) \\ \leq \max\left\{0, \frac{hY(y_0, t_0) \cdot b_y(y_0, t_0) + hb_t(y_0, t_0) + ch^2(1 + |Y(y_0, t_0)|^2)}{|\nabla b(y_0, t_0)|}\right\}.$$

Since $b(y_0, t_0) = 0$ and $Y(y_0, t_0)$, $b_y(y_0, t_0) \leq 0$ by (5), condition (4) implies that $b_t(y_0, t_0) \leq 0$, Consequently,

$$\frac{d((y_0, t_0) + hA(y_0, t_0), F)}{h} \le \frac{ch(1 + |Y(y_0, t_0)|^2)}{|\nabla b(y_0, t_0)|}$$

and (1) holds at (y_0, t_0) .

Bibliography

[1] Nirenberg, L. and Treves, J. F., Local solvability of linear partial differential equations II; sufficient conditions, Comm. Pure Appl. Math., Vol. 23, 1970, to appear.

Received November, 1969.