A Note on Limiting Cases of Sobolev Embeddings

and Convolution Inequalities

Haim Brezis University of Paris VI

Stephen Wainger University of Wisconsin Madison, Wisconsin

Section 1 - Introduction:

A classical theorem of Sobolev, see e.g. [N] or [S], asserts that if f and all k th order derivatives of f are in $L^p(\mathbb{R}^d)$ and

$$\frac{1}{q} = \frac{1}{p} - \frac{k}{d}$$

then f is in L^q provided kp < d and so $q < \infty$. Also if kp > d, f is in L^∞ . In case kp = d and p > 1, it is well known that f need not be in L^∞ .

Recently two variants of the limiting case kp = d have been discovered, and it has turned out that these results have had various applications. See e.g. [BG], [H], [M], [ST], [T], and references cited there.

These theorems are expressed in terms of the spaces w_p^k . If k is an integer, w_p^k is the space of functions f in L^p such that all derivatives of f up to order k are in L^p , and the norm of a function is expressed by the formula

$$\begin{aligned} \left|\left| \mathbf{f} \right| \right|_{\mathbf{k},\mathbf{p}} &= \left\{ \left| \mathbf{f} \right| \mathbf{f} \right|^p + \sum_{\left| \alpha \right| \leq \mathbf{k}} \left| \mathbf{p}^{\alpha} \mathbf{f} \right|^p \right) \mathbf{d}_{\mathbf{x}} \right\}^{1/p} \quad . \end{aligned}$$

773

Copyright © 1980 by Marcel Dekker, Inc.

Trudinger [T] obtained the following theorem:

Theorem A: If $f \in W_p^k$ and kp = d, then $\exp(c_{d,k}|u|^{d/(d-1)})$ is locally integrable for some small constant $c_{d,k}$, and

$$\sup_{\|u\|_{k,p} \le 1} \int_{\|x| \le 1} \exp\{c_{d,k} |u|^{d/(d-1)}\} dx < \infty .$$

Trudinger claims that the power d/(d-1) is the best possible power. If k=1, this is in fact correct. However, if k is strictly greater than one, Strichartz [ST] has pointed out that the power d/(d-1) may be replaced by the larger power p/(p-1). See also Hedberg [H]. It has also been pointed out to us by E. M. Stein that the correct power is obtained in [2] in the framework of one dimensional fractional integration.

A second type of limiting case of Sobolev's inequalities was discovered by Brezis and Gallouet [B.G.]. They found Theorem B.

Theorem B: Suppose $f \in W_2^2$, $||f||_{1,2} \le 1$ and d = 2. Then

$$||f||_{\infty} \le c\{1 + \log^{1/2}(1 + ||f||_{2,2})\}$$

for some absolute constant C.

Theorems A and B raise two questions. Theorem B raises the question as to what is the general form of the theorem. Our first theorem will assert that in any number, d, of dimensions

$$\left|\left|f\right|\right|_{\infty} \leq C(1 + \log^{1/p'}(1 + \|f\|_{\ell,q}))$$

provided f is in \mathbb{W}_q^{ℓ} for some ℓ and q with $\ell q > d$, $\left| \left| f \right| \right|_{k,p} \leq 1 \quad \text{with} \quad kp = d, \quad \text{and} \quad 1$

Theorem A raises the question as to why Trudinger did not obtain the optimal power that Strichartz later obtained. Now Trudinger reduced the case

k>1 to the case k=1 by using a result of Sobolev . Namely if f is in W_p^k $k\ge 2$, pk=d, then f is in W_d^1 . (Strichartz on the other hand uses a direct argument.) However, if f is in W_p^k , then f is actually in a space better than W_d^1 , namely, the first derivatives are in the Lorentz space L(d,p), at least if p>1, see e.g. [SW]. (We shall give the precise definition later.) Thus one might ask whether functions, f, having first derivatives in L(d,p) satisfy the condition that $\exp\{c|f|^{p/(p-1)}\}$ is locally integrable. Essentially, we are asking whether $\exp[c|f|^{p/(p-1)}]$ is integrable if f is in L(d,p) where k is in $L(d/(d-1),\infty)$, and k is suitably small at infinity.

Section 2: General Form of Theorem B

In Theorem 1 below we consider also derivatives of fractional order, that is spaces w_p^k where k is any positive number. We shall prove the following theorem:

Theorem 1: Let $f \in W_q^l(R^d)$ with lq > d, $1 \le q \le \infty$, and let kp = d, $1 \le p \le \infty$. If $||f||_{k,p} \le 1$, then

$$||f||_{\infty} \le c \{1 + \log^{1/p} (1 + ||f||_{2,q})\}$$
.

Remark 1: The case p=1, k=d is known. This is in a fact a part of [G]. We thank Bob Turner for pointing out to us that trivially if $\frac{\partial^d f}{\partial x_d^d \cdots \partial x_1}$ is integrable, f is bounded.

Remark 2: Let $\psi(\mathbf{r})$ be in $c_0^{\infty}[0,\infty)$ with the further condition that $\psi(\mathbf{r})$ be 1 near $\mathbf{r}=0$.

Downloaded By: [BIUS Jussieu/Paris 6] At: 21:27 18 February 2011

set

$$u_{\delta}(\mathbf{x}) = \frac{\log(\frac{1}{|\mathbf{x}|^2 + \delta^2})}{(\log \frac{1}{\delta})^{1/p}} \psi(|\mathbf{x}|).$$

Then by considering the functions $u_{\hat{\delta}}(x)$ one can show the power in Theorem 1 is sharp and in fact no estimate of the form.

$$||u||_{\infty} \leq \varepsilon \log^{1/p} (||u||_{\ell,q} + 1) + C_{\varepsilon}$$

is possible.

Proof of Theorem 1: We write

$$f(x) = \int e^{i\xi \cdot x} \widehat{f}(\xi) \phi(\xi/R) d\xi$$
$$+ \int e^{i\xi \cdot x} \widehat{f}(\xi) \psi(\xi/R)$$
$$= f_1(x) + f_2(x) ,$$

where $\varphi \in C_0^\infty$ φ = 1 near the origin, $\varphi + \psi$ = 1, and R > 2 is a positive constant to be determined later. We shall prove two facts

$$||f_1||_{L^{\infty}} \leq C(\log R)^{1/p'}$$

and

$$||f_2||_{L^\infty} \leq \frac{C}{R^\eta} ||f||_{\ell,q} \qquad \qquad \text{for some} \quad \eta > 0 \ .$$

We then finish the proof by taking $R = \max (2, ||f||_{\ell,q}^{1/\eta})$.

Downloaded By: [BIUS Jussieu/Paris 6] At: 21:27 18 February 2011

We first prove i)

$$f_1(x) = \int e^{i\xi \cdot x} (1 + |\xi|^2)^{k/2} \widehat{f}(\xi) \frac{\phi(\xi/R)}{(1+|\xi|^2)^{k/2}} d\xi$$
$$= g(x) * K_R(x)$$

where $g(x) \in L^p$, and $\left| \left| g \right| \right|_{L^p} = \left| \left| f \right| \right|_{k,p} \le 1$, and

$$\widehat{K}_{R}(\xi) = \frac{\phi(\xi/R)}{(1+|\xi|^2)^{k/2}}.$$

Thus it suffices to show $\left|\left|K_{R}(x)\right|\right|_{L^{p'}} \leq C(\log R)^{1/p'}$, R>2.

$$K_{R}(x) = L_{R}(x) \star G_{k}(x)$$

where

$$L_{R}(x) = R^{d}L(Rx)$$

and

$$\widehat{L}(\xi) = \phi(\xi) .$$

Thus L is in $L^1(\mathbb{R}^d) \cap C^{\infty}(\mathbb{R}^d)$ and $G_k(x) \leq \frac{c_1}{|x|^{d-k}} e^{-|c_2|x|}$ (see [S], p. 132).

Let X(t) be the characteristic function of the unit interval, and set

$$G_k^1(x) = G_k(x)\chi(|x|R)$$
,

and

$$G_k^2(x) = G_k(x) (1 - \chi(|x|R))$$
.

So $K_R(x) = L_R(x) \star G_k^{(1)}(x) + L_R(x) \star G_k^2(x)$. One checks that

$$\|L_{R}(x)\|_{L^{1}} = \|L\|_{L^{1}} \le C$$

$$||L_{R}(x)||_{L^{p}}, \leq CR^{d/p},$$

$$\left| \left| \mathsf{G}_{k}^{1}(\mathbf{x}) \right| \right|_{\mathsf{L}^{1}} \leq \mathsf{CR}^{-k} = \mathsf{CR}^{-d/p}$$

and

$$\left|\left|\mathsf{G}_{k}^{2}(x)\right|\right|_{L^{p}}\leq C\left(\log\,R\right)^{1/p}^{'}\;.$$

Conclusion i) now follows from Young's inequality.

We turn now to ii):

$$f_2(x) = \int e^{i\xi \cdot x} \ \widehat{f}(\xi) (1 + |\xi|^2)^{2/2} \frac{\psi(\frac{\xi}{R})}{(1 + |\xi|^2)^{2/2}} \ d\xi.$$

Define g(x) so that

$$\widehat{g}(\xi) = \widehat{f}(\xi) (1 + |\xi|^2)^{\ell/2}.$$

By hypothesis g is in $L^{\mathbf{q}}$. Thus, we wish to show for some $\eta > 0$,

$$||\kappa_{R}(x)||_{L^{q}} \leq \frac{c}{R^{n}}$$

where

$$\widehat{\kappa}_{R}(\xi) = \frac{\psi(\frac{\xi}{R})}{(1+|\xi|^{2})^{\frac{2}{N}}/2}$$

 $\left| \left| K_{R}(x) \right| \right|_{L^{\infty}} \leq \frac{C}{R^{\ell} - d}$.

Suppose now $\ q > 1$, so $\ q^{'} < \infty$; we may assume $\ \ell < d$. Then note that

$$\widehat{\kappa}_{R}(\xi) = \frac{1}{(1+|\xi|^{2})^{2/2}} - \frac{\varphi(\frac{\xi}{R})}{(1+|\xi|^{2})^{2/2}}.$$

So

$$K_{R}(x) = h(x) - h * L_{R}(x)$$
,

where

$$\hat{h}(\xi) = \frac{1}{(1 + |\xi|^2)^{\ell/2}}$$
,

$$L_R(x) = R^d L(Rx)$$
,

and

$$\hat{L}(\xi) = \phi(\xi) .$$

Thus
$$K_{R}(x) = \int [h(x) - h(x - y)] L_{R}(y) dy$$

As in [S], p. 132, we see $|h(x)| \le \frac{c_{1}}{|x|^{d-2}} e^{-c_{2}|x|}$; a similar

argument shows

$$|\nabla h| \leq \frac{c_1}{|\mathbf{x}|^{d+1-\ell}} e^{-c_2|\mathbf{x}|}$$

Since $exttt{lq} > exttt{d}$, we see $exttt{h}$ is in $exttt{L}^{ exttt{q}}$ and

$$\int |h(x-y) - h(x)|^{q} dx \le c|y|^{\delta}$$

for some $^{\mbox{\it t}}_{\delta} > 0$. It then follows by Minkowski's inequality that $\left| \left| K_{R}(x) \right| \right|_{\mbox{\it q}^{1}} \le C(1/R)^{\mbox{\it h}}$, for some $\mbox{\it n} > 0$.

Section 3: Convolution inequalities in Lorentz spaces for the limiting cases.

We first recall the definition of the Lorentz spaces L(p,q). Given a measurable function on \mathbb{R}^d we set

$$\lambda(s) = \text{meas} \{x \in \mathbb{R}^d : |f(x)| > s\}$$
 for $s > 0$,

$$f^*(t) = \inf \{s > 0; \lambda(s) \le t\}$$
 for $t > 0$

(f is the decreasing rearrangement of f),

$$f^{**}(t) = \frac{1}{t} \int_{0}^{t} f^{*}(s) ds,$$

so that $f^*(t) \le f^{**}(t)$ and f^{**} is also non-increasing. For $1 and <math>1 \le q \le \infty$, the Lorentz space L(p,q) is defined as

$$\mathtt{L}(\mathtt{p},\mathtt{q}) \,=\, \{\,\mathtt{f} \,\,;\,\, \mathtt{t}^{1/\mathtt{p}} \,\,\mathtt{f}^{\star}(\mathtt{t}) \,\,\epsilon\,\, \mathtt{L}^{\mathtt{q}}(\mathtt{0},\varpi;\,\, \frac{\mathtt{d}\mathtt{t}}{\mathtt{t}})\,\}$$

or equivalently,

$$L(p,q) = \{f : t^{1/p} f^{**} (t) \in L^{q}(0, \infty; \frac{dt}{t}) \}$$

L(p,q) is provided with the norm

(1)
$$||f||_{L(p,q)} = {\binom{q}{p}}^{1/q} ||f^{1/p} f^{**}(t)||_{L^{q}(0,\infty,\frac{dt}{t})}$$

(for an expository presentation of L(p,q) spaces, see e.g. [S.W.] or [H]). In particular we recall that

$$L(p,p) \approx L^{p}$$
 and $L(p,\infty) = M^{p}$

(M $^{\rm p}$ denotes the weak ${\tt L}^{\rm p}$ space or Marcinkiewicz space). It is clear from (1) that

(2)
$$f^*(t) \le f^{**}(t) \le \frac{1}{t^{1/p}} ||f||_{L(p,q)}$$
 $\forall t > 0.$

A result of O'Neil and Stein (see [0]) asserts that if $f \in L(p_1,q_1)$ and $g \in L(p_2,q_2)$ with $\frac{1}{p_1} + \frac{1}{p_2} > 1$, then $u = f \star g \in L(p_3,q_3)$ with $\frac{1}{p_3} = \frac{1}{p_1} + \frac{1}{p_2} - 1$ and $q_3 \ge 1$ is any number such that $\frac{1}{q_3} \le \frac{1}{q_1} + \frac{1}{q_2}$.

Our main result deals with the limiting case where $\frac{1}{p_1} + \frac{1}{p_2} = 1$. We shall actually obtain a result slightly sharper than Theorem 3 promised in the introduction, and then deduce Theorem 3 from it.

Theorem 2. Let $1 , <math>1 \le q_1 \le \infty$, $1 \le q_2 \le \infty$ be such that $\frac{1}{q_1} + \frac{1}{q_2} < 1$ and set $\frac{1}{r} = \frac{1}{q_1} + \frac{1}{q_2}$. Assume $f \in L(p,q_1)$ and $g \in L(p',q_2) \cap L^1$ so that $u = f \star g$ is defined (1). Then

$$\frac{u^{*}(t)}{1 + \log t} \in L^{r}(0,1;\frac{dt}{t})$$

and
$$\left| \left| \frac{u^{\star}(t)}{1 + \left| \log t \right|} \right| \right|_{L^{r}(0,1;\frac{dt}{t})} \le c \left| \left| f \right| \right|_{L(p,q_{1})} (\left| \left| g \right| \right|_{L(p^{\star},q_{2})} + \left| \left| g \right| \right|_{1})$$

where C depends only on p, q_1 and q_2 .

Remark If $f \in L(p, q_1)$ and $g \in L(p', q_2)$ with $\frac{1}{q_1} + \frac{1}{q_2} \ge 1$, then $u \in L^{\infty}$.

Note that $f \star g$ need not be defined if we assume only $f \in L(p, \infty)$ and $g \in L(p', \infty)$.

<u>Proof of Theorem 2</u> For simplicity we set $||f|| = ||f||_{L(p,q_1)}$ and $||g|| = ||g||_{L(p',q_2)} + ||g||_{L^1}$. We shall distinguish two cases:

a) r < ∞

b)
$$r = \infty$$
 (i.e. $q_1 = q_2 = \infty$).

a) The case r < ∞

We shall make use of the following interesting inequality due to O'Neil (see [0], Theorem 1.7):

(3)
$$u^{**}(t) \le t f^{**}(t) g^{**}(t) + \int_{t}^{\infty} f^{*}(s) g^{*}(s) ds,$$
 $\forall t > 0.$

Note that the integral on the right hand side of (3) is finite since we have

(4)
$$f'(s) \le f^{**}(s) \le \frac{1}{s^{1/p}} ||f||_{L(p,q_1)}$$

(5)
$$g^*(s) \leq g^{**}(s) \leq \frac{1}{s^{1/p}} ||g||_{L(p',q_2)}$$

(6)
$$g^*(s) \le \frac{1}{s} ||g||_{L^1}$$
.

It follows easily from (3), (4), (5) and (6) that for t < 1

(7)
$$u^{**}(t) \leq p||f|| ||g|| + \int_{t}^{1} f^{*}(s)g^{*}(s)ds$$
.

In order to finish we shall need the following logarithmic variant of Hardy's inequality

Lemma 1 Assume $t\varphi(t) \in L^{r}(0,1;\frac{dt}{t})$. Then

$$\left| \left| (1 + \left| \log t \right| \right|^{-1} \int_{t}^{1} \varphi(s) \, ds \, \left| \left| L^{r}(0,1;\frac{dt}{t}) \right| \leq \frac{r}{r-1} \, \left| \left| t\varphi(t) \right| \right| L^{r}(0,1;\frac{dt}{t}) \right| \, dt$$

Proof of Lemma 1 We can always assume that $\varphi \ge 0$ and φ is bounded. Set $I = \int_0^1 (1 + |\log t|)^{-r} (\int_t^1 \varphi(s) ds)^r \frac{dt}{t}$; so that integrating by parts

we find

$$I = \frac{1}{(r-1)} \int_0^1 (\int_t^1 \varphi(s) ds)^r d(1 - \log t)^{-r+1}$$

$$= \frac{r}{r-1} \int_{0}^{1} (\int_{t}^{1} \varphi(s) ds)^{r-1} (1 - \log t)^{-r+1} \varphi(t) dt$$

. We deduce from Holder's inequality that

$$I \leq \frac{r}{r-1} \left| \left| (1+\left|\log t\right|)^{-1} \int_{t}^{1} \varphi(s) ds \right| \left| r-1 \atop L^{r}(0,1;\frac{dt}{t}) \right| \left| t\varphi(t) \right| \right| L^{r}(0,1;\frac{dt}{t}) ,$$

and the conclusion follows.

Proof of Theorem 2 concluded By Lemma 1 and (7) we have

$$||(1 + |\log t|)^{-1} u^{**}(t)||_{L^{r}(0,1;\frac{dt}{t})}$$

$$\leq c||f|| ||g|| + c||f|f^*(t)g^*(t)||_{L^r(0,1;\frac{dt}{t})}$$

$$= C||f|| ||g|| + C||t^{1/p} f^{*}(t)t^{1/p} g^{*}(t)||_{L^{r}(0,1;\frac{dt}{t})}$$

$$\leq c||f|| ||g|| + c||f||_{L(p,q_1)} ||g||_{L(p',q_2)}$$

b) The case
$$r = \infty$$
 (i.e. $q_1 = q_2 = \infty$).

By (7) we have, for t < 1,

$$\mathbf{u}^{\star\star}(\mathsf{t}) \leq \mathbf{p} \big| \big| \mathbf{f} \big| \big| \big| \big| \mathbf{g} \big| \big| + \big| \log \, \mathbf{t} \big| \big| \big| \big| \mathbf{f} \big| \big|_{\mathbf{L}(\mathbf{p}, \infty)} \big| \big| \mathbf{g} \big| \big|_{\mathbf{L}(\mathbf{p}^{\star}, \infty)}$$

and therefore

$$| \left| \left| (1 + |\log t|)^{-1} u^{**}(t) \right| \right|_{L^{\infty}(0,1)} \le C | |f| | ||g||.$$

An easy consequence of Theorem 2 is the following:

Theorem 3: Under the assumptions of Theorem 2 we have:

a) if
$$r < \infty$$
, then $e^{\lambda |u|^{r}} \in L^{1}_{loc}$ for every $\lambda > 0$,

b) if $r \leq \infty$, then there exist $\theta > 0$ which depends only on p, q_1, q_2 and C which depends only on m(Q), such that

$$\int_{Q} e^{\theta \left| u \right|^{r}} dx \le C \qquad \forall f, g \quad \text{with} \quad \left| \left| f \right| \right| \le 1 \quad \text{and} \quad \left| \left| g \right| \right| \le 1 \; .$$

Proof of Theorem 3: Since $u^*(t)$ is non increasing we have by Theorem 2

$$|u^{\star}(t)|^{r} \int_{0}^{t} (1 - \log s)^{-r} \frac{ds}{s} \le c ||f||^{r} ||g||^{r}$$
 \(\forall t < 1\).

Therefore

(8)
$$|u^{*}(t)|^{r} \le C(1 + |\log t|) ||f||^{r'} ||g||^{r'}$$
 $\forall t < 1$.

On the other hand

$$\int_{Q} e^{\theta |u|^{r}} dx = \int_{Q}^{m(Q)} e^{\theta |u|^{*}} dt$$

and b) follows easily from (8) by choosing $\theta C < 1$. Next we prove a). Set $\epsilon(t) \approx \int_0^t (1 + \left|\log s\right|)^{-r} \left|u^*(s)\right|^r \frac{ds}{s}$, so that $\epsilon(t) \to 0$ as $t \to 0$. As above we have

$$\left|u^{\star}(t)\right|^{r} \leq C(1 + \left|\log t\right|) \varepsilon(t)^{\frac{1}{r-1}}$$
.

Given $\lambda > 0$ we write

$$\int_{Q} e^{\lambda |\mathbf{u}|^{\mathbf{r}'}} d\mathbf{x} = \int_{0}^{m(Q)} e^{\lambda |\mathbf{u}'|^{\mathbf{r}'}} d\mathbf{t} = \int_{0}^{t_{0}} + \int_{t_{0}}^{m(Q)}$$

and we choose $t_0 < m(Q)$ so that $\lambda \in \varepsilon(t_0)^{\frac{1}{r-1}} < 1$.

Section 4: Some corollaries

Our results here will be of two types, namely:

- 4.1. Results "dual" to Theorem 2
- 4.2. Embedding of Sobolev spaces into spaces of functions which are "almost" lipschitz.

4.1. Results "dual" to Theorem 2

Corollary 4 Let $1 \le p \le \infty$, $1 \le q \le \infty$, $1 \le r \le \infty$. Assume $f \in L(p,q) \cap L^1$ and g is such that $|g|(1 + \log^+ g)^{1/r} \in L^1$. Assume $\frac{1}{q} + \frac{1}{r} \le 1$ and set $\frac{1}{s} = \frac{1}{q} + \frac{1}{r}$. Then $u = f \bullet g \in L(p,s)$.

Example Assume $d \geq 3$, $u \in L^1_{loc}(\mathbb{R}^d)$, $\Delta u = g$ and $|g|(1 + \log^+ g)^{\frac{d-2}{d}} \in L^1_{loc}(\mathbb{R}^d)$. Indeed, one uses Corollary 4 with $p = r = s = \frac{d}{d-2}$, $q = \infty$, and $\widehat{f}(\xi) = \frac{1}{1 + |\xi|^2}$.

Proof of Corollary 4 We use a duality argument. Assume for example $||f||_{L(p,q)} + ||f||_{L^1} \leq 1. \quad \text{Let} \quad \varphi \in L(p',s') - \text{the dual space of} \quad L(p,s) - \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{$

with $||\varphi||_{L(p',s')} \leq 1$. We have

$$\int \mathbf{u} \boldsymbol{\varphi} \, d\mathbf{x} = \int g \mathbf{v} \, d\mathbf{x} \le \int_0^\infty g^* \, \mathbf{v}^* \, d\mathbf{t}$$

where $v = f * \varphi$ (f(x) = f(-x)). From (8) we deduce that

$$|v^*(t)|^r \le C(1 + |\log t|)$$
 for $0 < t < 1$

On the other hand $v \in L(p',s')$ (since $\varphi \in L(p',s')$ and $f \in L^1$); thus $v^*(t) \leq \frac{1}{t^{1/p'}}$ and in particular $\int_1^\infty g^* \ v^* \ dt \leq C ||g||_{L^1}$. Finally we estimate $\int_0^1 g^* \ v^* \ dt$ using Young's inequality:

$$ab \le e^{bb} + Ca(1 + log^+a)^{1/r}$$
 $\forall a, b \ge 0$

where C depends only on θ and r. Thus

$$g^* v^* \le e^{\theta |v^*|^T} + C g^* (1 + \log^+ g^*)^{1/T}$$

and the conclusion follows since

$$\int_{0}^{1} g^{*} (1 + \log^{+} g^{*})^{1/r} \leq \int |g| (1 + \log^{+} |g|)^{1/r} .$$

4.2. Embeddings of Sobolev spaces into spaces of functions which are "almost" Lipschitz

Our main result is the following

Corollary 5 Assume $u \in W_p^{k+1}(\mathbb{R}^d)$ with $kp = d, 1 . Then for every <math>x,y \in \mathbb{R}^d$

$$|u(x) - u(y)| \le C ||u||_{W_{p}^{k+1}} |x - y| [1 + |log|x - y|]|^{1/p}$$

where C depends only on k and p.

The proof of Corollary 5 follows Morrey's technique. We first prove the following

Lemma 2 Assume $f \in W_p^k(\mathbb{R}^d)$ and kp = d, with 1 . Then

$$\int\limits_{Q} \left| f(x) \right| \mathrm{d}x \leq c \left| \left| f \right| \right|_{W_{D}^{k}} m(Q) \left[1 + \left| \log m(Q) \right| \right]^{1/p},$$

for every Q with finite measure; C depends only on k and p.

Proof of Lemma 2 We have

$$\int_{Q} |f(x)| dx = \int_{0}^{m(Q)} f^{*}(t) dt .$$

Assume first m(Q) < 1; we deduce from (8) that

$$f^{*}(t) \le C||f||_{W_{D}^{k}}[1 + |\log t|]^{1/p'}$$
 for $0 < t < 1$.

The conclusion follows easily since

$$\int_{0}^{m(Q)} [1 + |\log t|]^{1/p} dt = \int_{0}^{1} [1 + |\log s m(Q)|]^{1/p} m(Q) ds$$

$$\leq Cm(Q) [1 + |\log m(Q)|]^{1/p}.$$

When m(Q) > 1 we write

$$\int_{0}^{m(Q)} f^{*}(t) dt = \int_{0}^{1} f^{*}(t) dt + \int_{1}^{m(Q)} f^{*}(t) dt$$

$$\leq c ||f||_{W_{p}^{k}} + m(Q) f^{*}(1) \leq c m(Q) ||f||_{W_{p}^{k}}.$$

<u>Proof of Corollary 5</u> Let Q be a cube in \mathbb{R}^d with side $\rho = |x - y|$ containing x and y. Let $z \in Q$; we have

$$u(z) - u(x) = \int_0^1 \nabla u(tz + (1 - t)x)(z - x)dt$$

and so

(9)
$$|u(z) - u(x)| \leq \sqrt{d} \rho \int_0^1 |\nabla u(tz + (1 - t)x)| dt$$

Integrating (9) with respect to z over Q we find

$$\left|\overline{u}-u(x)\right| \leq \frac{\sqrt{d}}{\rho^{d-1}} \int\limits_{Q} dz \int\limits_{0}^{1} \!\!\left| \nabla u(tz+(1-t)x)\right| dt$$

where $\frac{1}{u} = \frac{1}{m(Q)} \int_{Q} u(z) dz$. Thus, if we set $\zeta = tz + (1 - t)x$ we obtain

$$\left|\overline{u} - u(x)\right| \leq \frac{\sqrt{d}}{\rho^{d-1}} \int_0^1 \frac{dt}{t^d} \int_{tQ^+(1-t)\,x} \left| \nabla u\left(\zeta\right) \right| d\zeta \ .$$

From Lemma 2 we deduce that

$$\int\limits_{\mathsf{t}Q^+(1-\mathsf{t})\,\times} |\mathsf{Vu}(\mathsf{t})\,|\,\mathsf{d}\mathsf{t}\, \leq \mathsf{C}\|\,|\mathsf{u}|\,|_{W^{k+1}_p} \mathsf{t}^{d_pd}[1\,+\,|\log\,\mathsf{t}^{d_pd}|\,]^{1/p'}\ .$$

Therefore

$$|\overline{u} - u(x)| \le C||u||_{W_{p}^{k+1}} \rho \int_{0}^{1} [1 + |\log t\rho|]^{1/p} dt$$

$$\le C||u||_{W_{p}^{k+1}} \rho [1 + |\log \rho|]^{1/p}.$$

The same estimate holds if we replace x by y and the conclusion follows.

ACKNOWLEDGMENT

The first author was partly sponsored by the United States Army under Contract DAAG 29-75-C-0024 and the second author by an N.S.F. Grant.

References

- [B.-G.] H. Brezis T. Gallouet, Nonlinear Schrödinger evolution equations, to appear J. Nonlinear Analysis
- [G] E. Gagliardo, Proprieta di alcune classi di funzioni in più variabili, Ricerche di Mat. Napoli 7 (1958), pp. 102-137.
- [HE] Hedberg, On certain convolution inequalities, Proc. A.M.S. 36 (1972), pp. 505-510.
- [H] R. Hunt, On L(p,q) spaces, L'Ens. Math. 12 (1966) p. 250-276.
- [M] J. Moser, A sharp form of an Inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), pp. 1077-1092.
- [N] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa 13 (1959), pp. 116-162.
- [0] R. O'Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), pp. 129-142.
- [S] E. Stein, <u>Singular integrals and differentiability properties of functions</u>, Princeton Univ. Press (1970).

- [ST] R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequality, Indiana U. Math. J. 21 (1972), pp. 841-842.
- [S.W] E. Stein G. Weiss, <u>Introduction to Fourier analysis on euclidean spaces</u>, Princeton Univ. Press (1971).
- [T] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), pp. 473-483.
- [Z] A. Zygmund, Trigonometric Series, Vol. 2, Cambridge University Press (1959).

University of Paris VI.

University of Wisconsin, Madison.

Received January 1980