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Section 1 - Introduction:

A classical theorem of Sobolev, see e.g. [N] or [S], asserts that if

f and all k th order derivatives of £ are in Lp(Rd) and
1_1_k
a2 p d
then f is in Lq provided kp < d and so q < ®°, Also if
o

kp > 4, f is in L. In case kp = d and p>1, it is well
. 0
known that f need not be in L .

Recently two variants of the limiting case kp = 4 have been discovered,
and it has turned out that these results have had various applications. See
e.g. [BGl, [H), [M], [ST], [T]), and references cited there.

. k

These theorems are expressed in terms of the spaces Wp. If k is an

integer, wg is the space of functions £ in P such that all

derivatives of £ up to order k are in Lp, and the norm of a

function is expressed by the formula

Helly, = {fel® + » 0% Pyax} P .
la] <k
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Copyright © 1980 by Marcel Dekker, Inc.




21:27 18 February 2011

[BIUS Jussieu/Paris 6] At

Downl oaded By:

774 BREZIS AND WAINGER

Trudinger [T) obtained the following theorem:

kK -
Theorem A: If f e wp and kp = d, then exp(cd k[uld/(d 1)) is
’
locally integrable for some small constant cd K’ and
'
d/(a-1)
sup j. exp{cd,k{u{ Jdx <@

[l <1 Ixl<a

Trudinger claims that the power 4/(d - 1) is the best possible power.
Iif k =1, this is in fact correct. However, if k is strictly greater
than one, Strichartz ([ST] has pointed out that the power a/(a - 1) may be
replaced by the larger power p/(p - 1). See also Hedberg [H]. It has also
been pointed out to us by E. M. Stein that the ccrrect power is obtained in [z
in the framework of one dimensional fractionalintegration.

A second type of li@iting case of Sobolev's inequalities was discovered

by Brezis and Gallouet [B.G.]. They found Theorem B.

Theorem B: Suppose fe W;, '|f|[l 5 <1 and d=2. Then
RE— '

[1el ], <cly + logl/

2
+
Qa Hf[(z’z)}
for some absolute constant C.
Theorems A and B raise two questions. Theorem B raises the guestion as to
what is the general form of the theorem. Our first theorem will assert that

in any number, d, of dimensions
v

] 1
Ilgl], < c@ + log /P e e

provided £ is in Wi for some & and g with faq > d,

|}fl]k < 1 with kp=d, and 1 <p < ®  Theorem 1 will actually
p =
p

hold even if k and L are non-integral,

Theorem A raises the gquestion as to why Trudinger did not obtain the

optimal power that Strichartz later obtained. Now Trudinger reduced the case
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k >1 to thecase k=1 by using a result of Sobolev , Namely if f
is in W; k > 2, pk = 4, then £ is in Wé. (Strichartz on the
other hand uses a direct argument.) However, if f is in w:, then £
is actually in a space better than wé, namely, the first derivatives are
in the Lorentz space L(d,p), at least if p > 1, see e.g. [SW]. (We

shall give the precise definition later.) Thus one might ask whether functions,
£, having first derivatives in L{a&,p) satisfy the condition that

exp{clflp/(p_l)} is locally integrable. Essentially, we are asking whether

exp cff wk}®/ P g incegrable if £ is in L(d,p) where k 1is in

L(d/(d¢ - 1},%), and k is suitably small at infinity.

Thus we might ask more generally whether f € L(ql'pl) and
ge L(qz,pz) with % + % =1 and g suitably restricted at infinity
a1 2
imply explclf noq[r} with 1,1
P P,
Theorem 3. Theorem 3 itself is a limiting case of an inequality of O'Neil
1 1
and Stein [0]. Their result concerns the case — + PN > 1.
1 2

. This will be the content of

LRIad

Section 2: General Form of Theorem B

In Theorem 1 below we consider also derivatives of fractional order,

; k
that is spaces wp . where k is any positive number. We shall prove the

following theorem:

Theorem 1: Let £ e Wi(Rd) with g >4, 1 <q<= and let

xp = 4, 1 <p <o  If HfHklpjl, then
1 A
Hell, <c @+ 106F (1 + Helly o} -

Remark 1: The case p=1, k=4 is known. This is in a fact a part of

{G}. We thank Bob Turner for pointing out to us that ,trivially if
d
0t 4

83& ...Bxl

is integrable, f is bounded.

Remark 2: Let Y(r) be in c:[o,m) with the further condition that

Y(r) be 1 near 1t = O.
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776
Set

1

loqk——?;———E)
x]“+ 8
uglx) = Ti/p (=]
{log g)
Then by considering the functions ué(x) one can show the power
'
1/p in Theorem 1 is sharp and in fact no estimate of the form.

L '
[lull, <& log /P (Hu)ll'q+ L o+
is possible.

Proof of Theorem 1: We write
£ = [PEFBooE/RIdE

v [ E 2 perm

i

fl(X) + fZ(X) f

where $ € C ¢ =1 near the origin, o+ v =1, and R > 2 is a

0

positive constant to be determined later. We shall prove two facts

i) e ll < ctog Ry /P
L
and
C
ii) e il < =gl for some n>0
2 1 Rn 2,q

We then finish the proof by taking R = max (2, HfH"l'/; ).
'
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we first prove 1)

e ke

l[eiE-x(l REPENCR $(E/R)
(1+lg]5

fl(X) =
= g(x) * KR(X)

where g(x) € LF,  and [lq[{Lp = ![f‘{k,p <1, and

~ 0 (E/R)
K_(5) = — &R
R 1+ g|Hk?

Thus it suffices to show HKR(x)]I o' < C(log R)l/p , R > 2.
L
KR(x) = LR(x) * Gk(x)
where
LR(x) = RdL(Rx)
and
£© = s

c - ¢, x|
rhus L is in  LY@ERD N &Y ana G (x} < 1 2

Let X{t) be the characteristic function of the unit interval, and set

1
G (¥ =G Cax(]xlrn

2
G (x) = G (x) (1 - x(|x|r)

x € (see [S], p. 132 ).
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778
So K_(x}) = L_{x) * G(l)(x) + L_(x) * Gz(x) One checks that
R R X R k )
Pogoll o= ljell , <c
R Ll Ll
d/p
e eal] o< ea®?
R Lp
|\Gi(x)ll T T Sl
l—
L
and
/p’

2 1
s, ol le| < C(log R)

Conclusion i) now follows from Young's inequality.

We turn now to ii}:

igex o 2.2/2 ‘“’ri')
0 = [ R )
a+lg]
Define g(x) so that
S = foa s jgih? .

By hypothesis g is in L.

c
l IKR(X) ‘ l v <
g R"

where
£
w(R)

R (g = ————r
R 1+ lE‘Z)Q/Z

Thus, we wish to show for some n>a,
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If 1=1, o> d; so clearly

C
Hrgeall < ~—
R L RR - d
Suppose now qg > 1, fe] q' < oy we may assume L < d.
3
4(=2
2\(g) . 1 *(R)
R 2,8/2 2 8/2
@+ eg[dHY a -« |glHt?
So
KR(x) = h(x) - h * LR(X) ’
where
7~
1
h(g) = -
2 -
a+ |gf y 2
L_(x) = RoL(Rx) ,
R
and
ey = ¢ .
Thus K (x) = [t - acx - Y1, (y)dy
<, - ¢, x|
As in ([S], p. 132, we see Ih(x) | e 2
x4t
argument shows
c - ¢, lx|
I e e T
EY Tk
Since g > 4, we see h is in 2 and

Slae = = neo ) ax < cly/®

779

Then note that

a similar
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for some CS > 0. It then follows by Minkowski's inequality that

HKR(x)Hq- < ca/m’, for some n > O.

Section 3: Convolution inequalities in Lorentz spaces for the limiting cases.

We first recall the definition of the Lorentz spaces L(p,q).

measurable function on Rd we set
A(s) = meas {x ¢ B%; {£(a) ] > s} for
* .
£ (t) = inf {s > 0; A(s) < t} for
* <
(f is the decreasing rearrangement of £),

*

t
£ *(t) =1 ff*(s)ds,
t 0o

* * &
so that £ (t) < £ (t) and £ is also non-increasing.

and 1 <gq<<, the Lorentz space L(p,q) is defined as
* dt
Lip,q) = {f ; /P ¢ ) € 130, —t—)}

Qr equivalently,

L) = (£ P £ (0 e 130, = dt—t} :

L{p,g) is provided with the norm

1/q
) el & [1£2P £ ]

L(p.,q)
(for an expository presentation of L{p,q) spaces, see e.g.
In particular we recall that

LP

P

L(p,p) = and L(p,®) =M

s >0,

t >0

For

Given a

1l <p< =

(s.W.] or (H1).
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(Mp denotes the weak LY space or Marcinkiewicz space). It is clear from
(1) that

* *k
(2) £(t) < £ (&) < Ye > 0.

ﬁ; HfHL(PIq)

A result of O'Neil and Stein (see [0]) asserts that if fe L(pl,ql) and

. 1
g€ L(pz,qz) with L + = >1, then u=£f * ge L(p,,q,) .
P, P, 373
; 1 1
with 5.5 Lo 1 and 9 2 1  is any number such that 1 < Ly L
P3 P P . BTH 9
Qur main result deals with the limiting case where é + é = 1. We
1 2
shall actually obtain a result slightly sharper than Theorem 3 promised in
the introduction, and then deduce Theorem 3 from it.
Theorem 2. Let l<p<‘ﬁ,1iqli~=,liq2§_w be such that ql+é~<1
1 2
’
and set 11,1 . Assume f € Lip,q,) and g€ L(p ,q Nt so
roq q 1 2

that u=f s+ g is defined(l). Then

*
u {t) x dat
T+ Jlogel ¢ & L)
")
and ||z I < cllgl] tlgld + Hall
LETios T Tprg,1, 88 < Lipig) Ly L

where (o] depends only on P, ql and q,-

1
Remark If f € L(p,ql) and g € L(p .qz) with % +% > 1, then

1
( )Note that f + g need not be defined if we assume only f € Lip,® and

ge€ Lip ,»).
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pProof of Theorem 2 For simplicity we set el = gl and

Lip,q;}
Hall = llgl!

+ . isti i :
L' a,) |]g]|Ll Wwe shall distinguish two cases:

a) r < @
b) r== (i.e. 4 =9, = ®) .

2

a) The case r <o
We shall make use of the following interesting inequality due to O'Neil (see

{0}, Theorem 1.7):

* % * % *k (X)* *
(3 W) <€ £ (g (0 + [£ (s)g (s)ds, Yt > 0.
t

Note that the integral on the right hand side of (3) is finite since we have

* * % 1
@ r@ese sl
s 1
* * % 1
(5) g (s) <gq (s) < —= [{q}| ' ,
S.l/p L(p ,q2)
* 1
(6) g (s) 27 Hg”Ll .

It follows easily from (3), ‘4), (5) and (6) that for t <1
*% l* *
N w o) <pilel] lall + [ (s1g tsras .
t

In order to finish we shall need the following logarithmic variant of Hardy's

inequality

Lemma 1 Assume te(t) € Lr(O,l;‘—it—t-). Then

.

-1 r

a + liog £h ft\a(s)dsll e ae, ST Heew) ], at,
* It ’ 4

proof of Lemma 1 We can always assume that ¢ > 0 and ¥ is bounded.

1 _ 1
Set I = f(l + [10g £ 7T ¢ f¢ (s)yas)® % ; so that integrating by parts
[s t
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we find
1 1 x -r+l
R Rt j(;(];w(s)ds) a(l - log t)
r 1 r-1 ~r+l
= .g({ws)ds) @ - 109 © o (t)ae

. We deduce from Holder's inequality that

1
1 <=5 llas|eg et fw(s)dsl[';l
t

| [to ety ||
g, Lr(o,l,dt—t) ¢

v

and the conclusion follows.

Proof of Theorem 2 concluded By Lemma 1 and (7) we have

[l + [1og t[)-l u“(t)[[ . at
L (O:l:‘t—‘)

<cllel] Hall + clie £ g ]} a
L7(0,1;—)
t
- cllell sl » el e gy
L™ (0,1;—)
t
<cligl] fiall + clle]]

L(Prql)llg“L(p'qu)
b) The case r=o (i,e. q, = q, = ),

By (7) we have, for ¢t < 1,

*% -
W <allel] all + lrog el Tlelly o llslly o o,

and therefore

~]1 *%
s g ep™ ™ o) [ L= < cllel] Igl].

An easy consequence of Theorem 2 is the following:

783
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Theorem 3: Under the assumptions of Theorem 2 we have:
r
a) if r < «, then e)‘iu{ € Lioc for every A >0,
b) if r < @, then there exist 6 >0 which depends only on  p, 44,
and o which depends only on m(Q), such that
eluir v .
fe dx < ¢ £,9 with ||£]] <1 anda |lof} =12
Q
*
Proof of Theorem 3: Since u (t) is non increasing we have by Theorem 2
* r t -r ds r
' )17 [ @ - 109 97 & < ol [ 1" {ls]] Vi<l .
0
Therefore
* r' r' ):I
@ o] < ca+ jregeh (g7 gl Ve <1

on the other hand

r' m(Q) « p'
fe9|u| dax = feelu i dat
Q 0

and b) follows easily from (8) by choosing 6C < 1. Next we prove

t
Set e(t) = f(l + |1log s’)_r ]u*(s) ‘r §S_S_ , so that e(t) + 0
¢}

As above we have

1
* ' _
(W) ]T <ca+ |log thew ™t .
Given A >0 we write
* ! t
K m{Q} o ;r 0 n(Q)
Son we [ w0
Q 0 Q tO
L
and we choose to < m(Q) so that AC e(to)r_l < 1.

as

a).

t » 0.
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Section 4: Some corollaries

Our results here will be of two types, namely:

4.1. Results "dual" to Theorem 2
4.2. Embedding of Sobolev spaces into spaces of functions which are "almost"

lipschitz.

4,1. Results "dual" to Theorem 2

Corollary 4 Let 1 <p<e® 1<g<w® 1<r<w Assume fé€ L(p,@N Lt

, +
and g is such that ]ql(l + log g)l/r € Ll. Assume q£+ %i 1 and set
1 1 1
—= =+ =, = € ’ .
s at: Then u feag L(p,s)
d-2
1 d + d
Example Assume d > 3, ue L) (R"), fu =g and lgl1 + 1og" g) €L .
Then ue€ Li{:-z(lld) . [Indeed, one uses Corollary 4 with p=r =3s = 3%2_
~ 1
g=, and f(§ = )
1+]E]

Proof of Corollary 4 We use a duality argument. Assume for example

NE

L} L}
+ [1£]] 1 21. Let ¢ € L(p ,s) - the dual space of L(p,s) -
L

L(p,q)
with IIWHL(p',s') < 1. We have
f\wdx =fgv dx ifwg* v¥oae
0
v v
where v =f 2y (£(x) = £(-x)). From (8) we deduce that

[v*(e)]F < c@ + |1og t]) for 0<t<1.

On the other hand v € L{p',s’) {since v e ip',s') and fe¢ Ll);

thus v*(t) f_—]—j—pr and in particular f g‘t v* ac < CHgH - Finally
t L

we estimate fl g* v* dat using Young's inequality:
o]

X + 1l/r

ab:eeb + Ca(l + log a) Va,b:o

(R7) .
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where C depends only on 8 and r. Thus

9 IV*Ir 1/r

gt vt <e +Cg*@ + log Y

and the conclusion follows since

1

[das logt ¢MYF < flgfa + 10g¥|gh M .
()

BREZIS AND WAINGER

4.2, Embeddings of Sobolev spaces into spaces of functions which are "almost"

Lipschitz

Our main result is the following

k+l

Corollary 5 Assume uew (]Rd) with kp =4, 1 <p < =, Then for

P

d
every %,y € R

lua - win | < cffull Ix - vl + Jreglx - y|]1
Wt
P

where C depends onlyon k and p .
The proof of Corollary 5 follows Morrey's technique.

following

l/p'

We first prove the

Lermma 2 Assume fe vfg(zzd) and kp = 4, with 1l <p<m=, Then

Slemo lax < cllg]| , m@ 11 + [1og m(@ |12/P
0 W

P

for every Q with finite measure; c depends only on

proof of Lenma 2 We have

@,
flewfax = [ £fwae .
o] 0

k and p.
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Assume first m{Q) < 1; we deduce from (8) that
* 1 '
£(t) < cllg]] 11+ |log £]1 /® for 0<t<1.
W
1%
The conclusion follows easily since
m(Q) v 1l .
S+ l10g €)1MP ar = [ 11 4+ f109 s mi) 1P migras
[} 0
SomiQ) 1 + jlog m(gy |1MP |
when m(Q) > 1 we write
m(Q) 1, m(Q)
J e = frwae+ [ foae
° o} 1
*
:CIlfIlwk +m@f @ <cm@ el .
P wP
Proof of Corollary 5 Let Q be a cube in R  with side p = |x - y]
containing x and vy. Let 2z € Q; we have
1
w(z) - ux = Tultz + (1 - )% (z - wat
0
and so
1
(9 lu(z) - u@ | < /@p [ |Vutz + 1 - 1w |ac  «
¢}
Integrating (9) with respect to z over Q@ we find
- v !
19 - ua| <555 [az [ vtz + @ - oxae
4 Q 0
- 1 N
where u = m_(QT f u(z)dz . Thus, if we set L=tz + (1 -~ t)x we obtain
Q
- A fa
o - ua| < =1 S —df vute) |az .
p 0t to+(1l-t)x
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From Lemma 2 we deduce that

1]
[ (veia :CHqu};ﬂtdpd[l + |10g t38]: /P
e+ (1-t)x P

Therefore

1
5 - we | <cliul] ,,, 0 f 11+ 109 to[32P 2

0

wk+
p

s ellulf ot + 109 ol1*/®
p

The same estimate holds if we replace x by Yy and the conclusion follows.
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