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LET Sz BE a domain in R2 with compact smooth boundary I (Sz could be for example a bounded 
domain or an exterior domain). Consider the equation 

i; - Au + klul*u = 0 in R x [0, co) 

u(x, t) = 0 in I x [0, co) 
I 

(1) 

4x2 0) = u,(x), 1 
where u(x, t) is a complex valued function and k E R is a constant. Problem (1) which occurs in 
nonlinear optics when R = R* has been extensively studied in this case (see [l-3, 5,8]), but we 
are not aware of any known result when Sz # R*. 

Our main result is the following: 

THEOREM 1. Let u0 E H*(Q) n H$2). Assume that one of the following conditions holds 
(a) either k 2 0, 
(b) or k < 0 and IklJIu,(x)1* dx < 4. 

Then there exists a unique solution of (1) such that 

u E C([O, co); H*(Q)) n C’([O, 00); LZ(fl)). 

The proof of Theorem 1 relies on several lemmas. The first lemma is of interest for its own sake; 
it is a new interpolation-embedding inequality. 

In what follows we denote by C various constants depending only on R. 

LEMMA 2. We have 

Ilull L” d c(1 + dlog(l + lIUlIH2)j (2) 
for every u E H*(Q) with jlullH, < 1. 

Proqf It is well known that an HZ function on R can be extended by an HZ function on R*. 

Sponsored in part by the United States Army under Contract No. DAAG29-75-C-0024. 

677 



678 H. BREZISANDT.GALLOUET 

More precisely one can construct an extension operator P such that: 

P is a bounded operator from H’(R) into H1(R2) 

P is a bounded operator from H2(0) into H2(R2) 

Pu,, = 24 for every u E H’(R). 

;&,u E H’(0) with IIuIjH , < 1. Let v = Pu and denote by fi the Fourier transform of u. We clearly 

I((1 + 151)QR2) < c (3) 

l/(1 + ltl’)q LZ(R2) d WH2(R) (4) 

II4 L”lR) G II4 L”lR2) d CII’IIL’(R2)’ (5) 

For R > 0 we write 

II% = s 
l<l<R 

I;(<)1 d5 + it,>, /;(<)I d5 

by Cauchy-Schwarz, (3) and (4). A straightforward computation leads to 

ljcllL1 d C[log(l + R)]” + Clj&,(l + R)-’ 

by every R 3 0. We obtain (2) by choosing R = I/u IlH2. 

LEMMA 3. We have 

I/ Iu12& < +ll$ llujlH2 for every u E H’(fl). (6) 

Proof of Lemma 3. Let D denote any first order differential operator. For u E H2 we have 

ID2()u12u)I d C(~U~~\D~UI + I+uj2), 

and so 

lll”12ullH~ d wt44H~ + wL”II#&4~ 
On the other hand an inequality of GagliardoNirenberg (see [S]) implies that 

ll&‘.4 d cllUll;-“~IUll;K 

Combining (7) and (8) we obtain (6). 

(7) 

(8) 

Finally we recall the following well known result essentially due to Segal [7] : 

LEMMA 4. Assume H is a Hilbert space and A: D(A) c H + H is an m-accretive linear operator. 
Assume F is a mapping from D(A) into itself which is Lipschitz on every bounded set of D(A). 
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Then for every u0 E D(A), there exists a unique solution u of the equation 

du 
s + Au = Fu 

u(0) = u. J 
defined for t E [0, T’,,,) such that 

u E Cl([O, T,,J; H) n C([O, T&J; D(A)) 

with the additional property that 

either T max = 00 

or Tmax < co and lim Ilu(t)II + I[Au(t)ll = 0~. 
rt Tm.x 1 

Proof of Theorem 1. We apply Lemma 4 in H = E(Q) to Au = iAu, D(A) = H2(R) n H#J), 
Fu = ikl~(~u. We shall show that T,,, = cc by proving that Ilu(t)JI,, remains bounded on every 
finite time interval. 

First we multiply (1) by zi and consider the imaginary part. This leads to 

IIU(% = ll%llL~~ 
Next we multiply (1) by &i/i3 and consider the real part. This leads to 

$ 
s 

(Vu(x, t)(’ dx + f lu(x, t)(” dx = E, 
s 

where 

(9) 

(IO) 

E, = $ 
s 

IVu,(x)12 dx + ; lu,(x)l” dx. 
R s Cl 

We claim that Ilu(t)l remains bounded for t > 0. Indeed, this is clear when k > 0. While if 
k < 0 we have 

s lkl \Vu(x, t)12 < 2 
s 

lu(x, t)14 dx + 2E,. 

On the other hand an inequality of Gagliardo and Nirenberg ([6]) shows that* 

* In order to obtain the constant i one proceeds as follows. For cp E Com(Rz) we have 

Thus 

Choosing rp = 1~1~ leads to 

(11) 
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=$ 
s s 

Iuo12 dx \Vul’ dx. 

Combining (1 l), (12) and assumption (b) in Theorem 1 we see that 

Ilu(t)ll fp G c 
where C is independent of t. 

We now denote by S(t) the L! isometry group generated by -A. From (1) we have 

and so 

u(t) = S(t)u, + ik 
s 
’ S(t - s) lu(s)l%(s) ds 
0 

Thus 

Au(t) = S(t)Au, + ik 
s 

‘S(t - s)A [MU/’ u(s)] ds. 
0 

IkN)II.z < I(&& + Ikl : ~~N-~4~)~24~)l~/~~ ds. 
s 

Lemma 3 implies that 

II‘#(s)12 44111~2 G +Nlltm JI4~$p. 

From Lemma 2 and estimate (13) we deduce that 

ll”(~k- < c(1 + Jlog(l + ljU<S,IIH2)). 

Hence (14) leads to 

IIu@)II Hz G C + C 1 lb(4ll& + log(l + ll~(4ll~J-j ds. s 
We denote by G(t) the RHS in (15); thus 

G’(t) = ‘$@$,z[l + log(1 + Ilu(t)l < CG(t)[l + log(1 + G(t))]. 

Consequently 

;log[l + log@ + G(t))] < C 

(12) 

(13) 

(14) 

(15) 

and we find an estimate for I(u(t))(,, of the form 

Ilu(t H2 < eaeD’ 

for some constants a and p. Therefore I(u(t)(I H2 remains bounded on every finite time interval 
and so we must have T,,, = co. 
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Remarks. (1) The proof of Theorem 1 leads to an estimate of the form Ilu(t)l < a eS’. We do 
not know whether I[u(t)llLz remains actually bounded as t -+ co. 

(2) When k < 0 and IkljIu,12 > 4, it is known (see [4] and [2]) if R = R2 that the solution of 
(1) corresponding to some intial conditions may blow up in finite time. A similar phenomenon 
presumably occurs when R # R2. 
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