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INTRODUCTION

THE PROBLEM we study in this paper has its origin in plasma physics. It stems from a model
describing the equilibrium of a plasma confined in a toroidal cavity (a “Tokamak machine™). For
a detailed presentation of this model the reader is referred to [1, 2] and also to the appendix
in [3].

Let Q denote the meridian cross section of the cavity and 0Oz the axis of toroidal symmetry,
Qn0z= Q) The plasma occupies an unknown region Q, < Q:letI') = 0Q, andI' = ¢Q. The
region Q = Q — Q_isassumed to be vacuous (in particular, there are no external currents in Q ,
cf. [4]). From the Maxwell equations and the magneto-hydrodynamic theory of macroscopic
equilibrium in the plasma, one derives the following relations for u, the flux function of the meridian
magnetic field:

Lu = ¢g(r, u), in Q, (0.1)
Lu =0, inQ, (0.2)
u=20, onT, (0.3)
u#0, inQ, (0.4)
u is a constant on I (whose value is unknown), (0.5)
- L%%dr =1, (0.6)

where

-~ e 2.
goo (L) 17
ér\r or r 8z%
in cylindrical coordinates, and &/dn is the outward normal derivative.
Thus, problem (0.1}-(0.6) is a free boundary problem: Given the domain Q, the function gt and
the constant / > 0f, one seeks to determine the region Q and the function u.
tActually, the precise form of the function g is not known, and this is one of the difficult questions from the physical
viewpoint.

1The condition (0.6) is a normalization. One requires that the total longitudinal current inside the plasma achieve a given
value.
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416 HENRT BERESTYCKT AND Haim BrEzIS

Assuming ¢(r, u) > 0 for u > 0, and defining g(r,u) = 0 for u < 0, it 1s easily seen, using the
maximum principle and (0.6) that the relations (0.1)-(0.4) can be expressed in the single equation

Pu = glr, u) in Q. (0.7)

The problem (0.11H0.6) is thus equivalent to the nonlinear problem (0.5)+0.7).

Free boundary problems having some similarities with the one we study herc arise in different
contexts, for example in astrophysics [ 5]. or in the theory of steady vortex rings in an ideal fluid
[6.7]. (The analogy with problems in hydrodynamics is explained in [8]).

The problem and the precise hypotheses are stated in the first section of this paper. In Section
2. we establish the existence of a solution by introducing a variational formulation of the problem.
Another approach to the question of existence. based on a topological degree argument, is pre-
sented in Section 4. This method requires some a priori estimates which are proved in Section 3.
If g is Lipschitz with small Lipschitz constant, we show in Section 5 the uniqueness of the solution.
Lastly, in Section 6, we present various results and open questions concerning the “model case”,
where g(r, u) = Ju”.

Problems of the type (0.5)+0.7) have been considered by several authors. Temam [ 3] first proved
the existence of at least one pair (4, u) solution to a nonlinear eigenvalue problem

{ (. Lu = iglr, u) in Q
(0.5), (0.6)

subject to the constraint ‘\QG(x. u(x))dx = C, for any given C > 0, where G(x.z) = Jiﬁ)g(x., ) ds.
under some restrictive hypotheses on g. In [9]. we established the existence of a solution for this
problem for a prescribed 4 > 0, (thus dropping the constraint jQG(x. u(x))dx = C). Subsequently,
several papers have been devoted to the study of different aspects of this type of problem. in the
framework of the “model case™:
Existence of solutions: R. Temam [ 10], J. P. Puel [11],

Uniqueness: R. Temam [10], A. Damlamian. J. P. Puel [11]

Non uniqueness: D. G. Schaeffer [ 12, 13].

Geometric properties of the free boundary: D. Kinderlehrer [14], D. Kinderlehrer, J. Spruck

[15] and D. Kinderlehrer, L. Nirenberg and J. Spruck [16].

Equivalence of the two variational formulations: A. Damlamian [17].

Behaviour of u as 2 — + s¢: T. Gallouet [18].

The main part of the results we present in this paper were announced in [9].

1. THE PROBLEM AND THE HYPOTHESES

Let Q be a bounded domain of R® with a smooth boundary I' = #Q. Let .% be the operator
defined by:

AN Cu
Lyp e o
YLu = Z - (aij(x) ﬁx)‘

with g, € CHQy; a; = a;. & 1s assumed to be uniformly elliptic in Q, i.e. there exists a constant
n > 0 such that

&2, Vxe Q. vée RN

aij(X) é,‘éj 2 n
1

[N
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We denote by ¢/¢v the outward conormal derivative on I” associated with the operator .%:

(1
.

"L)

N (q-
= ) a;cos(nx)
v i,j=1 X

J
(n being the outward normal to I).
I 1s a given positive constant. We consider the following problem:
ProsLEM 1. Find a function u(x) e H*(Q) satisfying
Lu = g(x, u), for xeQ, (1.1)

u is a constant on I' (whose value is unknown), (1.2)

J Adl"—I (1.3)

The function g 1s assumed to satisfy the following conditions:

g:Q x R - [0, + o) is a continuous function such that

gx.2)=0. VxeQ. Vz<O0. (14)
gx.z) € glx,z), VxeQ, Vz.zZeR suchthatz <z (1.5)
lim : g(x;:) =0, uniformly in x e Q, (1.6)

z = +ox Z

forp=N/N—-2if N> 2 orforatleastonep > L if N <2

lim f g(x,z)dx > I. (1.7)
)

= +x

It should be observed that condition (1.7) is almost necessary in order to solve problem 1, in the
sense that the existence of a solution to Problem 1, together with conditions (1.4), (1.5) imply

lim J‘ g(x,z)dx > I
Q

z—=> +aw

Indeed, if u is a solution to Problem 1, one has

lim J g(x,)zdx = J g(x, u(x)) d f Ludx = j ——dF =1 (1.8)
z—= +x JQ Q
Remark 1. Suppose g satisfies conditions (1.4) and (1.6): then, for any ue H'(Q), ¢(-, u) € [}Q).

Indeed, from (1.4) and (1.6) it follows that there exists a constant C such that
0<glx.z) < C+ |z]P, VxeQ, VzeR. (1.9)

For example, in case N > 2, H(Q) is imbedded in [2*(Q), where 1/2* = 1/2 — 1/N = 1/2p, and
from (1.9) it follows that g(-, u) € I?(Q) as soon as u € [>(Q).

Further regularity of a solution u to Problem 1 can of course be achieved by additional regu-
larity hypotheses on the coefficients of .# and on g. For instance, if one assumes a;eC 2(Q), and
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g(x, z) Lipschitzian in z uniformly with respect to x € Q, a standard argument shows that if
u e H3(Q) then in fact u e C>%Q), for any a (0, ).

2. EXISTENCE OF SOLUTIONS: A VARIATIONAL METHOD
THEOREM 1. Suppose g satisfies conditions (1.4)~(1.7), then, there exists at least one solution to

Problem 1.

Let G:Q x R — [0, + oc) be the function defined by

Gix, z) = J: g(x. s)ds.

0

G(x. ) is a proper convex function on R. Let G*(x, ) be its convex conjugate function, that is:

G*(x,{) = supilz — Glx, )}, xel

ZeR
LemMa 2.1, For any 2 > 0, there exists a constant C_ such that G*(x.) > «[{|" — C,. VxeQ,
v{eR, where r = 1 + 1/p and p is the exponent defined in (1.6).
Proof. By (1.4) and (1.6), for any ¢ > 0, there exists a constant C, such that
g(x.2) < C, + ¢l=”. VxeQ. VzeR.
Therefore, for any ¢ > 0. there exists another constant C, such that
G(x.2) < C, +elz|' 7. vxeQ, VzeR.

The function h(z) = C, + &|z|' 77 is convex, and since G(x, ) < h(z), it follows that G¥*(x,{) >
h*(0). VxeQ, VIeR. Itis easily seen that h* has the form

C

Frfl

r
i}

h¥ () = —C, +

I

where C depends only on p. Since £ > 0 was arbitrary, we obtain the lemma. The notationr = 1 +
1/p will be maintained in the following.
Let S: I(Q) - W2 (Q) be the inverse operator of ¢ with homogeneous Dirichlet condition,

that is, for p € IX(Q)
FE=p InQ,
Sp = é@{
E=0 onT.

By Sobolev’s theorem, W2 "(Q) is imbedded in IZ(Q), (" = p + 1), so that AfQSp.pdx is defined for
any p € (Q). Let

K:{peL’(Q); p = 0ae. in Q, j

Q

p(x)dx = 1}.
K is a closed convex subset of I(Q). For p € K, define
J(p) = J G*(x, p(x))dx — 1/2<J‘

Q Q

Sp(x). p(x) dx).



On a free boundary problem arising in plasma physics 419

Consider the following variational problem:

minimize {J(p); p e K}. (2.1)
The existence result of Theorem 1 is obtained by solving problem (2.1) and then deriving from a
solution of (2.1) a solution to Problem 1.
THEOREM 2. There exists a solution p, € K to problem (2.1). Furthermore, there exists a constant
6, € R such that

u, = Sp, + 0, is a solution to Problem 1.

Remark 2. J 1s not everywhere infinite on K. Indeed, let p = ¢g(x, ), where Z € R is a constant such
that fﬂg(x, z)dx = I. The existence of such a constant is implied by (1.4) and (1.7), Thus, p € K.

Since p = Gl(x, 2), clearly, G*(x, p) = 2p — G(x, ). Therefore, J(p) < + 0.
The first step of the proof is to check that J is bounded from below on K.

LeEMMA 2.2. Let g be defined by 1/g = 1 — 1/2p, (1 < g < 2). There exists a constant C such that
for any p € I4Q), one has

0<J Sp.pdx < C|lp|;s-
Q

In the following, we will use the same generic notation C for all various positive constants that
will be needed.

Proof of Lemma 2.2. Let u = Sp; we have

where n > 0, 2.2)

La>

N[ Vuliz. < J Sp.pdx = J updx < lulya. o
Q Q
and 1/2* + 1/q = 1.
By Sobolev’s inequality, there exists a constant C > 0 such that || u ]}, .. < C|Vu|,.. Using this

inequality in (2.2) yields [u||,.. < C||p||,a-
Therefore, from (2.2) it follows

0 <j Sp.pdx < Cllp|}.
Q

We also observe from (2.2) that fn Sp.pdx = 01if and only if p = Q.

Proof of Theorem 2. We first check that J is bounded from below on K. Since 1 < ¢ < r, we
have by Hoélder’s inequality

p|l® with1/g = 6/r + (1 — 6)/1 that is § = r/2.

]
Lr

lel. < lle

Thus, for p € K we have

v, (23)

< Clp

e
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Combining Lemmas (2.1) and (2.2), and inequality (2.3), we see that

Jp) = a|pll, = €, = Clplfs,-
whenceupon, by choosing « large enough, we have
Jp) = |plp. —C =2 =C> = = (2.4)

The second step of the proof is to show that J achieves its minimum on K. Let (p,) be a mini-

mizing sequence:
p,eK and lim J(p) = Inf{J(p): pe K].

By (24), | p, ||, is bounded; we may therefore assume that p, converges weakly in L(Q) to
some p, e K. Let u, = Sp, and u = Sp,,. Clearly, u, converges weakly to u in W?"(Q). Since
1;2 > 1/r — 1/N, by Sobolev’s theorem, W2-"(Q) is imbedded in H'(Q) with compact injection.
Hence u, converges strongly in HYQ) to u, and consequently,

N 2 A
. . u Cu
lim J‘ Sp,.p,dx = lim ) J a, e Ul gy = f Spy-p, dx. (2.5)
Q Q i Q

n— + o n—o 4 i j=1 2 N (’!xi €X;
The functional p +— jQG*(x, p) dx being convex, is lower semi-continuous for the weak topology
on L(Q). Thus,

lim infj G*(x, p,) dx >J G*(x. p,) dx. (2.6)
Q Q

n— +x

(2.5) and (2.6) show that lim infJ(p,) = J(p,). whence. J(p )= min{J(p): p € K|. thatis. p, is a
solution to problem (Z.If. o

We now prove that the existence of p, leads to a solution of Problem 1. The function 7. R —
[0, + o) defined by

>

(0) = J glx, Sp, + 0)dx,
[

is continuous, monotone increasing. and lim  «(0) = 0, lim t(0) > I.by(1.4)and (1.7). There
8- —x #— + o
exists 8, € R such that t(0)) = I.
Let { = g(x,Sp, + 0,). e Q) = L(Q) and thus, (e K. We claim that { = p,. Indeed, let
p=2p, + = p, + 2 — p,)e K. Using the convexity of G*(x. ) and the fact that S: L{Q) -
L (Q) is self-adjoint, we derive from J(p ) < Jip):

J G*(x, J)dx —f G*(x, py) dx — };J S — pg) (= py)dx = J Spo. (& — py)dx. (2.7)
Q Q Q

Q

Since éG*(x, ) and g(x. ) are inverse graphs, Sp, + 0, € 0G*(x,{). By the convexity of G*(x. "),
we then have

J’ G*(x,)dx — J G*(x, py) dx < J‘ (Spy + 0 )L — py)dx. (2.8)
Q Q Q
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Observing that EQ(L_V — po) dx = 0, we derive from (2.7) and (2.8) that

J‘ S(Lj - po)(g - /)()) dx < Ov
Q

whence { = p,. (This fact could also have been obtained as a consequence of a more general result
of Benilan and Brezis [19]). Thus,

po = 9(x.Sp, + 0,). (2.9)
Letu, = Sp, + 0,. From (2.9) it follows that p, € [*(Q); whence u, € H*(Q). We have
Lu, = py = glx, uy), in Q

u, = 0, onT,

Ou,
- ‘:‘dr: Sjuodx: pOdXZI.
r cv Q Q

Hence, u,, is a solution to Problem 1.

Remark. Similar methods to the one presented in this section have been used in [ 5] for a model of
rotating stars, and in [19,20] for the Thomas—Fermi equation.

Dual formation of the variational problem. Let E denote the space of functions of H'(Q) whose

trace on I' is a constant. Let
V= {ueE;f g(x,u)dx = I}.
Q

Vis endowed with the H }(Q) topology
It is easily checked that under conditions (1.4) and (1.7), V is a non-empty subset of H'(Q). Let
a(., .) be the symmetric bilinear form associated with .#:

N A 1
alu,v) = Y f a,..(7u~ %de.
Lj=1da 0 0X;
For u e V. define
D(u) = Jalu, u) — f G(x, u)dx + Tu(I).

Q

We consider the following variational problem:
minimize {P(u); ue V}. (2.10)

This minimization problem has been introduced by Temam [ 10]. By solving (2.10). he obtained
another proof of the existence result of Theorem 1, in the framework of the model case, that is,
when g(x, u) = Au™.In fact, as pointed out by Damlamian [ 17], the two variational problems (2.1)
and (2.10) are equivalent, due to the following proposition which is related to a general non
convex duality principle of Toland [21,22].

PROPOSITION. (i) min{®(u);ue V} = min{J(p); pe K}.

(i) If ®(uy) = min Qu); ue V}, then p, = g(x, u,) satisfies J(p,) = min{J(p); pe K}.

(i) If J(p,) = min{J(p); p € K}, then there exists 8, € R such that u, = Sp, + 6,V and
P(u,) = min{d(u): ue V}.
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Remark. The constant 0 given in (iii) is unique if one assumes g(x, z) to be strictly increasing in
z > 0.

Proof. (a) Let p e K: there exists u e V such that ®(u) < J(p). By (1.4). (1.7), there exists 0 R
such that

J‘g(x.Sp+9)dx:1. Letu=Sp+60; uel.
Q
By Young’s inequality, G(x, u) + G*(x, p) = up, hence,

D(u) < 1/2(a(u, u)) + j

Q

G*(x, p)dx — J up dx + Iu(I),
Q

or

d(u) < 1/2<J Sp.p dx) + J G*(x,p)dx — J (Sp + O pdx + 16 = J(p).
Q Q Q

(b) Let ue V: there exists p € K such that J(p) < ®(u).
Let p = g(-, u); then p e L(Q)and p € K. By Young’s equality, we have

G(x, u) + G*(x, p) = up.
Thus,

D) — J(p) = 1/2<J‘ Sp.p dx> — f up dx + Iu(T) + 1/2{a(u, u)).
Q o

Letr = u — w(I') and w = Sp. We have

-—j updx + Il = —J vpdx = —al(v.w).
Q Q

Hence,
D(u) — Jip) = 12(alv — w,. v — w)) = 0. (2.11)

The proposition obviously results from (a) and (b).

Construction of a solution by an iteration scheme. The technique used in the preceding proof
leads to an iteration scheme for solving Problem 1, as well as to another proof (using Schauder’s
fixed point theorem) for the existence of solution. We assume here that g(x, z) is strictly increasing
in z > 0, and that éQ is smooth.

Define Zu = g(.. u); A maps V into K.

Since the injection HY(Q)S IP(Q) is compact, and # maps continuously I#(Q) into [7(Q), it
follows that #: V — K is a compact operator (i.e. Z is continuous and maps bounded sets of V
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into relatively compact sets of K). Define ¥: K — V by &¥p = Sp + 0, where 8 = 0(p) is uniquely
determined from

J g(x,Sp + 8)dx = I.
o

The function p € K — 6(p) € R is continuous. Indeed, by Fatou’s lemma it is easily seen that if
p, — pin L(Q), then 6(p ) is bounded ; furthermore, Sp, — Sp in I#(€) since W2 (Q)is embedded in
I7(Q). Thus, a subsequence of Sp, + 6(p,) can converge only to Sp + 6(p), which implies 6(p,) —
6(p). Hence, & is continuous from K into W "(Q) with compact injection; ¥ is a compact operator
from K into V.

In the preceding paragraph we have seen that

O(Fp) < Jp), VpeKk, (2.12)
J(Ru) < O(u), YueV. (2.13)

In fact, equality holds in (2.12) (resp. (2.13)) if and only if .%p (resp. u) is a solution to Problem 1.
Indeed, from part (a) above, ®(¥p) = J(p) holds if and only if G(x, #p) + G*(x, p) = Fpp. This
is equivalent to p = G(x, ¥p) = g(x, Fp). that is, ¥p is a solution (cf. the end of the proof of
Theorem 2). From (2.11) we have

D) — J(Ru) = 1/2Aau — SRu, u — FRu)). (2.14)

Hence, ®(u) = J(#u) if and only if u = P%u (u — FRu is a constant which has to be zero),
that is, u is a solution to Problem 1. Indeed, Problem 1 is clearly equivalent to finding a fixed point
of the mapping & = SRV — V. The fixed points of % are the images under & of the fixed
points of ¢ = #5. % is a compact operator from the closed convex set K into itself. The existence
of a solution to Problem 1 is thus obtained by Schauder’s fixed point theorem. Indeed, it is a direct
consequence of the next lemma that there exists a constant C > 0such that ¢ maps the intersection
of K with the ball of radius C in () into itself.

Lemma 2.3. For any ¢ > 0, there exists a constant C_ > 0 such that

I€p

ey < el el + Cr VpeK.

Proof. Let { = €p,ie. { = g(.,u), with u = Sp + 6 and { € K. From (1.4) and (1.6), we know
that for any ¢ > 0, there exists C_ > 0 such that

0<glxou) <C, + eu'), vxeQ, ueR.
Hence,

lg(-s u) “LPH(Q»< C, +efu® Trie+ 1) (2.15)

Observe that p(p + 1) = r**(where 1/r** = 1/r — 2/N,inthecase N > 2). Therefore, by Lemma
3.1 (see Section 3 below) and by the I¥ estimate [23] for the operator .#, we have

e (2.16)

The assumption on the regularity of 0Q was used here for applying the I? estimate).
For (2.15), (2.16), we derive

*

H u Lptp + 1)) <C “ Vu “Lr* @ <C H D

(s (2.17)

p
Lp+1Q) < Cs + 8”9 Lr(Q)”
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Since | < r < 2 < p + 1, we have, by Holder’s inequality,

< 11 —UH

e < - iy

with 1/r =1 — 0 + 6/(p + 1). thatis 8 = 1/p. Thus, (2.17) yiclds
H " H 1.7(€2) < Cz: + & H I H Lren:
The preceding construction leads to an algorithm for finding a solution to Problem 1. Let u
be any function in V. Define
pp= Ay uyp = py,

T (2.18)

P, = Au U, = p...ete. ..

n—1*
The sequence u, satisfies the induction equation
(94 — - :
Fu, = glx.u, ) nQ

Uy, 1S a constant (2.19)
[ glx.u)dx = 1.
JO

ProposITION. There exists a subsequence of (u,) that converges strongly in H'(Q) to a solution of
Problem 1. Furthermore. any convergent subsequence of (u,) converges to a solution of Problem 1.

Proof. By (2.12), (2.13), we have

Dluyy =z Jp)=20u)z...20u,_)=JNp)=z®u)=Jp,,. )= .. (2.20)

n—1
From (2.4). we see that p, is bounded in L(Q).

Since " and # are compact operators, the sequences (u,) and (p,} are relatively compact in
H'(Q) and I'(Q) respectively. Hence, there exists a subsequence p,, which converges strongly to p
in I2(Q2). Then. u, = Yp, converges strongly to u = % p in HY(€). Since @ is continuous on H }(Q)
and J is weakly lower semi-continuous on [X(Q), we have from (2.20):

Q) = Iim Dy) = lim Jp,) = J(p).
n— 4 =t o
But. by (2.12) we have
Dluy = DS p) < J(p).

Hence, ®(¥p) = J(p), and u = #p is a solution to Problem I.
Remark 1. Using (2.14). we see that

-
z ‘ V(ll" - ”,, + 1 ) H i3(52) < + .
=0

Remark 2. It would be of interest, especially from the numerical viewpoint, to know under what
conditions is the whole sequence (v ) convergent to the same solution u.

n
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3. SOME ESTIMATES

For the topological method we present in the next section, we require several inequalities.
Inthenextthreelemmas,itis not necessary to assume that the domain Q has a smooth boundary.
We recall that
E = {ue H(Q): U is a constant;.

+

u" = max(u.0), andforl <s< N, l/s*=1/s—1/N, and s*>1 if s=N.

Lrmwva 2.1, Suppose g satisfies conditions (1.4). (1.5) 'md (1.7). Then there Lxm‘m a constant C such
that for any u e E with [, g(x. u)dx < 1. one has ||u" {|,.. < C(| V. +

Proof. We argue by contradiction and suppose the existence of a sequence () — E such that

J‘ gx,u)dx < I  and  u | >a(|Vu,|,. + 1)
Q
Thus, in particular. |u ||, .. converges to + oc.
Let
,

T Ty T

so that |, ||, = 1. and
19, I < Dkl g
) |
(cf. [24]). By the Sobolev inequality we have
v, — v (D), < e < Cin

v(D)||,» < 1 + C/n. Therefore, a subsequence v, {I') converges to le Rand [ # 0 since
e = 1 Thus I > 0 and since v, converges to [ almost’ everywhere, u? and consequently u,
converge to + ¢ a.e.in Q. Thisisa contradlctlon since by (1.7) and using Fatou s Lemma, it woul
lead to

I > lim infj‘ g(x, unj) dx > L.
a

ajot w0

LemMma 3.2. Suppose v satisfies conditions (1.4) and (1.6). Then, for any ¢ > 0, there exists a constant
C, such that for any u € E, one has

lg( ) |12 u(T) > —&l| Va2 — C,.

£

(C, depends only on &, g and the measure of Q).

Proof. Let y = w(I"); we need only to consider the case y < 0. By Sobolev’s imbedding theorem,
we know that

2 < C| Vul.,
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(recall that 2p = 2* when N > 2). Thus

wh + [y dx < C|Vu . (3.1)

{xeQ:u(x) = 0}.
By (1.4). (1.6), there exists, for any « > 0, a constant C, such that
gix,z) < C, + e(z7)P, VYxel, VzeR. (3.2)
Using the same notation C, for various constants depending on ¢, we have

[yPgx, 2) < e((z1)2 + [7*) + C 7).
hence
lplPglx,zy < ez" + [y)*? + C,. (3.3)

Thus, from (3.1) and (3.3) we derive
i-y’l’. H(J(’ M) HL' < %“ Vu“ig + C;z’
which yields the inequality of the Lemma.

LeMMAa 3.3. Suppose g satisfies conditions (1.4) and (1.6), then, for any ¢ > 0, there exists a constant
C, such that for any u € H'(Q), one has

[t ene < (w2 + C)-[lgla 17

(where 1/2py + 1/2p = 1).
Proof. Since 1 < (2p) < 2. Hoélder’s inequality gives
1901 [ < [lglaw)7a- | gCw [[L7"
with /2 + (1 — 8)/1 = 1/(2p). thatis 6 = 1/p.
From (3.2) we derive
gt w2 < efu™| L + C.

Therefore
gt w9, <efu’|,.. + C,

which leads to the inequality of the lemma.

Remark 1. Let A < (0, + o) be a compact interval, A = [4, 4]. Suppose lim A,\'Qg(x, z)dx > I
z— +m

Let g(x.2) = (1 — 0)g(x.z) + tz". 1€[0.1]. It is easily seen that the results of lemmas 3.1. 3.2
and 3.3 remain valid if g is replaced by the function ig,, and this, in a uniform sense with respect to
te[0, 1] and A e A. That is, the various constants. the existence of which Lemmas 3.1--3.3 assert,
can be chosen independently of t € [0, 1] and of 4 € A. It just suffices to observe that ig, satisfies
(1.4)+.17). Furthermore, (1.6) and (1.7} hold uniformly with respect to 1[0, 1] and A€ A: For
any ¢ > 0, there exists a constant C, such that Ag(x.,z) <e&(z7) + C, VxeQ, VxeR and
Vte[0,1],Vie A Thereexists I' > [ and A € R such that z = A4 implies jg}bgt(x, z)dt = I', for all
te[0,1]and all L€ A.

Combining the preceding lemmas, it is easy to show that all solutions of Problem 1 are a
priori bounded:
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LemMa 3.4. Under conditions (1.4)-(1.7) for g, there exists a constant C such that for any solution
u to Problem 1, one has | u||,, < C. Hence. the solutions of Problem 1 are a priori bounded in
W2:7(Q) as well, for all p > 1.

Proof. By (1.8), one has || g(.,u)||,, = I. Denote y = w(I). From (1.1)(1.3), one derives

e
gl uyu™ dx + yj Tu dr,
Loy

Q

n|Vu|i. < j PLu.(u— y)dx = f
Q
that is
n||Vul|;. + I < f glx, w) utdx. (3.4)
Q

By Lemma 3.2 we have

y> —e|Vu|2, - C.

£

By Lemmas 3.1 and 3.3 we have,

“ gl., u)“uzm' < 3” Vu HLZ + Cz

and
H”+||L2p < C(H Vu ”L2 + 1)

Hence, by Holder’s inequality

j gx, w).u* dx < ¢ Vu|Z + C,. (3.5)
Q

From (3.4), we then have (7 — 2¢) | Vu |7, < C,. Choosing ¢ sufficiently small yields: | Vu|,, < C.
Hence, by Lemma 3.2,y > — Candby(3.5), ‘[Qg(x, u).u’ dx < C.Thus, by (3.4)y < Cwhichyields
|7l < C. Therefore, |[u],, < C. A standard bootstrap argument then shows that |u],. , is
bounded for all p > 1.

Remark 2. Let A =[4,4] = (0, +o0); assume that lim jnllg(x, z2)dx > L. Let g/(x,z) —

z—~++w
(1 =) g(x,2) + tz*, te[0,1]. By using Remark 1 above and the preceding proof, it is easily
checked that the same a priori estimate holds if g is replaced by the function Ag,, uniformly in
AeAand t [0, 1], (that is, the constant C can be chosen independently of 1€ A and t € [0, 1]).
This version of Lemma 3.4 will be used in the next section.

4. EXISTENCE OF SOLUTIONS: A TOPOLOGICAL METHOD

We now consider a non linear eigenvalue problem obtained from Problem 1 by allowing the
right hand side in (1.1) to depend on a parameter ;. > 0.
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PROBLEM 2. Find u e H*(Q) satislying

Y'u = Ag(x.u). in Q, 4.1)

i is a constant 4.2
T Cu

) Mar = (4.3)
Ji oV

We suppose g satisfies conditions (1.4)-(1.60). Condition (1.7), however, will be replaced in this
section by the following assumption:

g #0. i4.4)
We define 2* by
! 0 .
o = lim gix.o)ydx, sothat 0 < 2* <

- Tt L0

+oon

Theorem 1 shows the existence of at Ieast one solution to Problem 2 for any . > 2* In this
section, we establish the following result. which is more precise.

THEOREM 3. (1) Suppose g satisfies conditions (1.4)+1.6) and (4.4). Then, for any compact interval
A < (A%, + ). there cxists a connected component %', of solutions (£, u) to Problem 2 in (2%,
») x E such that the projection of %, on (#*. + ) covers A.

(1) If.in addition, /* = O and g{x. 2)1s Lipschitz continuous in = € R, uniformly with respect to
~x e Q. then there exists a connected component % of solutions (4. u) to Problem 2 in R* x E
whose projection on R* covers all of R™.

Proof. The mainidea in the proof of this theorem is to show that Problem 2 and a problem where
g(x.u) = nu* are homotopic. Then, we use a topological degree argument to establish an existence
result for the latter problem.

A. Formulation of Problem 2 as an abstract functional equation
By the Lux-Milgram thecorem. for any f e I2(Q), there exists a unique u € E. which we denote
1 = L. such that

™

atu, @) + J up dx = [ fopdy. Veelk.
Q JQ
It is easily checked that u is the unique solution to the problem
Yu+u=f inQ,
ue k (4.5)
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Clearly, L = I2(Q) — I?(€) is a compact linear self-adjoint operator, and there exists a constant

C such that
LS g < C| Sl Y e Q. (4.6)

Let u, < p, denote the first two characteristic values of L.; we denote by 4, the first eigenvalue
of the homogeneous Dirichlet problem in Q:

v = Av, 1nQ,
(4.7)
U = 0.
The following information about x, and yu, will be useful:
LEMMA 4.1. (i) u, = 1; p, is simple and the associated eigenfunctions are the constants.
(i) u, > 72, + L.
Proof. Let v = pLe with g < 4, + 1. This means that
Yr=(u-—1rv, inQ,
ve E; wedenotey = (), (4.8)

T
J dr =o.
r v

Obviously, if v # 0, then u > 1. It is also easy to show that ker(/-L) = ker(I-L)? is the subspace
of constant functions on Q. so that y, = 1 is simple. Suppose now 1 < y < /4, + 1. From (4.8)
and the variational characterization of 4, [25], we have

j Lov — y)dx = (u — I)J e — y)dx = 4, J(u — 2 dx.
Q Q

Observing that fg vdx = 0, we derive

(n — I)J vidx = 72, j vrdx + 2,79,
o Q

where | Q| is the measure of Q. This inequality implies y = 0. If # # 0, we also have u = i+ L
But then v is an eigenfunction of (4.7) associated to 4, and since jQ vdx = 0, necessarily r = 0. a
contradiction.

From condition (1.6), it follows that the operator u — g(., u) acting from H'() into [*(Q) is
continuous, bounded, and even compact (¢f. Section 2, Dual variational formulation). Therefore,
Ru = L{g(., u)) is well defined for any u e H Q) and R: E — E is a compact (non linear) operator.

Let w, denote the unique solution of the problem

Fwy +w, =0, inQ,
w, € E, (4.9)
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(w, Is given by w, = rw with a suitable choice of t € R, where w is the solution of the Dirichlet
problem: ¥w + w = 0 in Q, and wir=1).
Clearly, Problem 2 is equivalent to the functional equation

uek, u=/Ru+ Lu+ w,. (4.10)

B. Computation of the topological degree
Let® (4, u) = ARu + Lu + w,. Wedenote by B_.the ballin E. centered at the origin of radius C.
Let A < (4*, + oo); by the a priori estimate of Lemma 3.4 (¢f. also Remark 2), we know that there

exists a constant C > 0 (depending on A) such that u = ® (4, u) and Ze A imply |[ul|,, < C.
Hence the topological degreet d(I — ®(2,.). B,., 0) is well defined and independent of £ € A.

LemMa 4.2, d(I — @ (4, .), B..0) = —1. VieA.

Proof. For t € [0. 1], we define
@A u) = A[(1 —t)Ru + tL(u")] + Lu + w,,
and consider the equation
u= O u), 4.11)

which is equivalent to

with g (x,u) = (1 — 0)g(x,u) + tu™. When t = 0, (4.11) reduces to (4.10). that is Problem 2, while
for t = 1, (4.11) 1s equivalent to

Lu=iu", inQ,
ue k. (4.12)

Cu
dr = 1.
8vd I

By Remark 2 after Lemma 3.4, the constant C can be chosen so that u = @4, u) and A€ A,
t€[0,1], always imply [ul|,. < C. Hence, the topological degree d(I — ®(2,.), B.,0) is well
defined for all 1€ A and ¢ € [0, 1]. Clearly, this degree is independent of 2 € A and t € [0, 1]. Thus,

d(I — ®(%,.), B..0) = d(I — ® (%..). B,.,0). (4.13)

Again by Lemma 3.4, Remark 2, there exists a constant C, such that u = ® (s,4), and ¢ in
between A and 4, imply |Ju|,, < C,. Hence, using the excision and homotopy invariance pro-
perties of the degree, we see that

d(I — ®'(4,.), B). 0 = d(I — ®,(A,..), B, 0). (4.14)

tef [26]. The definitions and properties of the topological degree can also be found e.g. in [27].
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Forze[0, 1],let y,: E —» E be the compact operator defined by ¥ (u) = (4, + 1) Lu + t4 L{u") +
Wo, (Where u™ = max(—u, 0)); thus yy, = @(4,, .). In the next lemma, we show that y, is an admis-
sible homotopy for computing the right hand side degree in (4.14).

LeMMA 4.3. Let v, be the unique eigenfunction of (4.7), associated with 1, such that afr((?vl /
¢v)dIC = I. For any t € [0, 1], v, is the unique solution of the equation u — ¥ (u) = 0.

Proof. The relation u = (1) is equivalent to:

FLu=Au+ Atu, inQ (4.15)
ucE; wedenotey = u(l),
- J Mar— 1.
r oV
By Green’s formula, we have
J (v, %u — ufv)dx = i‘tj u v, dx = —ylL
Q Q

Hence, ; €0, so that u* € H)(Q) (¢f. [24]). Multiply the first equation in (4.15) by u™ to obtain

au*.u*) = Alf (u*)? dx. (4.16)

Q

By the variational characterization of A, as the first eigenvalue of (4.7) (cf. [25]), it follows from
(4.16) that u* = kv, k > 0. Since from (4.15) we also have

I:J gudx:)vl‘[ utdx — 4,1 —t)f u” dx,
Q Q Q

necessarily k # 0, whence u = kv ,since v, > 0in Q. Then, I = kllfgvl dx shows that k = 1, or
u=uv,.

Proof of Lemma 4.2. By the preceding lemma, the Leray—Schauder index i(I — y,, v,, 0) is well
defined and independent of ¢ € [0, 1]. Thus,
d(I — @ (%,,.), B.,0) = il — y,0,,0). (4.17)

Letu = v + v ;onehasu — (1) = v — (4, + 1) Lv. Thus, by translating the index computation
to 0, we obtain

i(I — W 0,,0) = il — (2, + 1)L,0,0) = (= 1), (4.18)

where § denotes the sum of the multiplicities of the characteristic values of L in (0, 1, + 1),
(¢f. [26]). Hence, by Lemma 4.1, § = 1, which yields Lemma 4.2.

C. Proof of Theorem 3

Since d(I — ®y(4,.) B, 0) # 0, A€ A, by a theorem of Leray-Schauder [26], there exists a
connected component ¥, of solutions to Problem 2 in (4*, + c0) x E whose projection on
(A*, 4+ 00) covers A.
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The second part in Theorem 3 is a simple consequence of part (i). Indeed, suppose that
lglx.2) — glx. 2) < K|z — 2|, Vxe . .2 eR

Choose a 2 such that 0 < 2, < 2%/K, where i, = 4% + 1 is the second characteristic value of L.
Then, the function 4,g satisfies the assumption of Theorem 4 in section 5 below. Therefore the
solution to Problem 2 corresponding to 4 = /4, is unique; we call it u,. Let % be the connected
component of the set of solutions to Problem 2 in R* x E which contains (4, u,). Clearly, for any
compactinterval A < (0, + o) such that /e A, the component A must contain (/, u,,) and there-
fore coincides with 6. Hence, the projection of € on R™ covers all of R™.
S. A UNIQUENESS RESULT
Let 2% < /% denote the two first eigenvalues of the problem
Yr =, in O,

ve k. (5.1)
f Cdr = o.
r (&t

Thus, by Lemma 4.1, 2% = 0 < 4, < 2% = pu, — 1. A¥is characterized by the following inequality
(cf. e.g. [28]):

alw.w) = A% wf\fz Vwe E such that J wdx = 0. (5.2)
Q
Equality holds in (5.2) if and only if w is an eigenfunction of (5.1) associated with 2%,

The main result of this section is the following uniqueness result.

THEOREM 4. Suppose g: Q@ x R — R is continuous and satisfies the following two conditions:
(1) 3Ax e Q such that g(x. 2} < y(X, 2, V2 0< - < 2.
(i) |g(x.2) — glx. 20| < K|z — =’ VxeQ, Vo .z e R, with 0 < K < 2% Then, there exists
at most one solution to Problem 1.
Proof. Under the above hypotheses one has
lg(x, 2} — glx, 2P < Klg(x, 2) — g(x, =)z — 2'). VxeQ, V-, e R.

Let v and @ be two solutions of Problem 1. The preceding observation leads to

I
alu — i,y — i) = ( Py — d)y.(u — o) dx 21&"‘(](" u)y — g, ). (5.3)

v Q

Let u =t + w, it = i + W be the decompositions of u and i along E = R@ E |, where E, =
iwe E: fﬂw dx = O}, thatist. i€ R:w, weE .(tand are the respective averages of u and & in
Q). From (5.2), one has

L%

iw - W“iz <alw— W, w— W) = alu — . u — i). (5.4)
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Since J"n_‘l’(u — &) dx = 0, we observe that
alu — i, u — i) = J Llu — a).(u — d)dx = f [g(x,u) — g(x.@)][w — W] dx. (5.5)
Q Q

Combining (5.4) and (5.5) yields

1
[w =] < 55 law) =gl D,
A3

Thus, from (5.5) we derive

1
alu — 4, u — ) < * lg..w) — g, D} (5.6)
Y2

Comparing (5.3) and (5.6) yields g(x, u) = g(x, &), which implies « — # is a constant, whence u = 4.

Remarks. (1) In the model case considered in the next section, where g(x, 1) has the form u™*,
Temam [ 10] and Puel and Damlamian [11] have established the uniqueness of the solution to
Problem 1 for 0 < /. < 4,, 4, being the second eigenvalue of the homogeneous Dirichlet problem
(4.7). It would be of interest to know whether the result of Theorem 4 can be extended by letting
the Lipschitz constant K satisfy 0 < K < 4,.Itshould be noted that onealwayshas A, < A% < 4,,
(cf- [18]). Indeed, let v, and v, be two eigenfunctions of (4.7) respectively associated to 4, and 2,.
Let w = tv, + 1,. te R being chosen such that [ w dx = 0. Applying the characterization (5.2),
one has

alw.w) = tralv,.v,) + alv,, v,) = 25| v |17 + | vsllra)-

Since 2% > 2, and a(v,, v,) = 4| v, ;j”,z = 1.2,onederives A, | v, |2, = A%| v, ||}, whence /5 < 7,
(2) Those results about uniqueness are related to the more general Works of Ambrosetti and
Prodi [29], Berger and Podolak [30] and Fucik [31].

6. SOME ADDITIONAIL. REMARKS ON THE MODEL CASE

The following equations constitute a simple model for problems of type 1 or 2.

ProBLEM 3.
—Au = /iut, inQ,

uek,

J‘~dl"-1

Here, ¢./cn is the outward normal derivative on I

A. Condition for the existence of a free boundary

Let (2, u) be a solutjon to Problem 3. Let Q = {xeQ:u(x) >0} and [, = Q_.T' is called
the free boundary. If w(T') > 0, then by the maximum principle, u(x) > 0 in Q, and hence there is
no free boundary. On the other hand, if (") < 0, then there exists a free boundary since u™ # 0
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(indeed, ~\'Qlﬁ dx > 0). We denote by 4, the first eigenvalue of the homogeneous Dirichlet problem
in Q:
—Av = Zr, nQ,
6.1)
U = 0,
and by v, the unique eigenfunction associated with 1,, that satisfies —frté t,/én)dl’ = I. The
existence of a free boundary is determined by the position of 4 with respect to 4,.

PRrRoOPOSITION 1. Let (2. u) be a solution to Problem 3.
(i) If0 <A< 4, then u(x) = u(l) > 0, VxeQ.
(iy HAi=24,, thenv =1,

(iii) ¥ 2 > A, then «(I') < O: there is a free boundary.

Proof. We denote y = w(I).
(i) Suppose 0 < 4 < 7, and y < 0. Then (¢f. [24]) u™ € H}(€). Using the variational characteri-
zation of /., we have

A J. (uy dx < J |Vu*2dx = /IJ‘ (u*)? dx (6.2)
Q a o

Since equality must hold in (6.2), we derive that u® = Cv,, C > 0. Hence, v = Cv, which implies
y = 0, a contradiction. Thus, for0 < 2 < A, wehavey > 0andu = u". If0 < /. < /,,since 4 is
not an eigenvalue of (6.1), y # 0; therefore y > 0.

(ii) Suppose 4 = 4, and y > 0. By Green’s formula one has

-yl = J (uAv, — v,Au)dx = f (Au"v, — Aur)dx = 0,
Q Q

thus y < 0. Now, if 4 > 4,, we have y < 0. Indeed y = 0 would imply that u is a positive eigen-
function of (6.1) associated to A > Z,, which is impossible.

(iii) Let 4 = #,. From what precedes, we know that y = 0. Hence, u is an eigenfunction of (6.1).
The fact that 4, is simple then shows that u = v,.

Remark. The conditions for the existence of a free boundary in the more general Problems 1 or 2
are not yet clear.

B. The question of uniqueness

Two interesting examples of non uniqueness in Problem 3 have been given by Schaeffer [ 12,
13]. The problem of uniqueness remains open however when the domain Q is assumed to have
some geometrical properties. We mention in particular the question of knowing whether the
solution is unique in the case of a convex domain Q. The nature of the set of solutions needs to be
clarified. Does the non uniqueness correspond to bifurcation points or to separate branches?. In
the particular case when Q is a ball in RY, Gallouét [18] has shown that the variational solution
is unique and is radial. Furthermore, there is no other radial solution, and no bifurcation can
occur from the branch of radial solutions*.

Another important aspect of this problem which remains open. concerns the study of the stability
of the solutions.

+ Actually, using a recent result of Gidas, Wei-Ming Ni and Nirenberg [32], we know that the solution to problem 3 is
unique (and thus radial), when §2 is a ball centered at the origin.
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APPENDIX (added in proofs)

CONNECTEDNESS OF Q, FOR VARIATIONAL SOLUTIONS

Under an additional convexity hypothesis on the nonlinear term g(x, -), we prove in this appendix that the “plasma

______ ” .

Io mnes e ko leaoon Gonem o e 4 s am < onlatma tlan raminti i al Al

I'cgiun Q = {x e Q; u(x) > G} is connected when  is a solution of pr oblem ! obtained by S01ving i€ variationai prooi€in
(2.1) or (2.10). Since these two problems are equivalent, we will work with the formulation (2.10). We assume the following:

The function s — g(x, s) is of class C? and strictly convex in s € (0, + o0), for any fixed x € Q. (A.1)

Proposition. Suppose ¢ satisfies conditions (1.4){1.7) and (A.1). Then, if u is a solution of (2.10), the region Qp = {xeQ;
u(x) > 0} is connected.

Remark. This proposition complements a preceding result of [15] establishing the connectedness of Q2 in the particular
case when g(x, u) = Au". The same method can also be adapted to generalize the results in [ 6, 7] concerning connectedness
in the context of the free boundary problem arising in vortex rings theory.

Proof of Proposition. We:lsein idea similar to that of [ 15]. Suppose A and B are two distinct components Opr: AB<=Q,
A+ . B# P and AnB = Then,u>0in AU Band u =0o0ndA v B,
For a, 8 > 0, define w = w(a, f) by setting
au in A
w=< fuin B (A2)
uinQ — (4 B).

Thus, we E (for u = 0 on 84 and 6B) and w|r = u . The condition w € K reads:
f g(x, oy dx + J g(x, puy dx = j; g(x, u) dx (A.3)
A B B

From (A.3), the conditions w € K is clearly seen to be equivalent to f = ¢(a), where ¢ is a monotone, strictly decreasing
function, from an interval [0, a*] onto an interval [0, *] such that @(0) = f*> 1 and @(a*) = 0, a* > 1. Observe that
¢(1) = 1. Furthermore, using hypothesis (A.1) and the implicit function theorem one sees that ¢ is of class C2. Denote
w = w(a) the function constructed in (A.2) when choosing f = ¢(a). Thus, w(a) € K,Vae [0,a*] and 1 < a*; in particular,
w(l) = u.

Define

D(a) = J(w(a)) — J(w),

and let

A . dp O dx

mip) = i YZ]‘“ al.ja_)}:(E
for wcQ and ¢ e H *(Q). Then,
D(a) = 3 — m () + L [(a)® — 1]mfu)
- J {G(x,am) — G(x,u)}dx — J [G{x. olam) — G(x, u)} dx.
4 B
Hence,
glx, anudx + @'(a) {playmylu) —J gix. plauu dx}.

B

D'(a) = am (u) — J

A

D"(1) = J {g(x,u) — g'(x, wpuju dx + (p'(l)zf {g(x, u) — g'(x, wpuju dx
4 B

Observe that

mA(u) = J y(x, wu dx. l
* (A4

mg(u) = L g(x, u)u dx. J
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Indeed, since u = 0 on ¢4 and (B. (A.4) obtains from multiplying the equation ¥ = gix, ) by u and integrating by parts
on A and B respectively. Using (A.4) we derive D(1) = D'(1) = 0 and

D'(1) = J {glx,u) — g'(x,wpuu dx + (p’(l)zJ {g(x,u) — g'(x,u)u}u dx
A B
From hypothesis (A.1), it follows that g(x,u) — ¢'(x,u)u < Ofor xe .1 B.
Hence, D(1) = D'(1) = 0 and D"(1) < 0 which contradicts the fact that D(z) > 0; Va (since u is a solution of (2.10)). This
concludes the proof of the proposition.
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