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INTRODUCTION 

THE PROBLEM we study in this paper has its origin in plasma physics. It stems from a model 
describing the equilibrium of a plasma confined in a toroidal cavity (a “Tokamak machine”). For 
a detailed presentation of this model the reader is referred to [l, 21 and also to the appendix 
in [3]. 

Let 51 denote the meridian cross section of the cavity and Oz the axis of toroidal symmetry, 
(a n Oz = Qr). The plasma occupies an unknown region C$, c !A; let Ta = ~?a,, and I- = 20. The 
region sZV = R - Q, is assumed to be vacuous (in particular, there are no external currents in C$,, 
cf. [4]). From the Maxwell equations and the magneto-hydrodynamic theory of macroscopic 
equilibrium in the plasma, one derives the following relations for U, the flux function ofthe meridian 
magnetic field : 

Tu = g(r, u), in QP (0.1) 

Yu = 0, in Qc, (0.2) 

u = 0, on rP, (0.3) 

U # 0, in !Z$, (0.4) 

u is a constant on I- (whose value is unknown), (0.5) 

- s 1 au 
--ddT= I, 

r r c?n 
(0.6) 

where 

in cylindrical coordinates, and c?/dn is the outward normal derivative. 
Thus, problem (O.lHO.6) is a free boundary problem: Given the domain Q, the function gt and 

the constant I > 08, one seeks to determine the region Q, and the function U. 

tActually, the precise form of the function 9 is not known, and this is one of the difficult questions from the physical 
viewpoint. 
IThe condition (0.6) is a normalization. One requires that the total longitudinal current inside the plasma achieve a given 
value. 
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Assuming ;/(r, u) > 0 for LI > 0, and defining g(r. u) = 0 for u < 0, it is easily seen. using the 
maximum principle and (0.6) that the relations (0.1)40.4) can be expressed in the single equation 

Yu = g(r. u) in R. (0.7) 

The problem (O.lH0.6) is thus equivalent to the nonlinear problem (OSH0.7). 
Free boundary problems having some similarities with the one we study here arise in different 

contexts. for example in astrophysics [5], or in the theory of steady vortex rings in an ideal fluid 
[6,7]. (The analogy with problems in hydrodynamics is explained in [Y]). 

The problem and the precise hypotheses are stated in the first section of this paper. In Section 
2. we establish the existence ofa solution by introducing a variational formulation of the problem. 
Another approach to the question of existence, based on a topological degree argument, is pre- 
sented in Section 4. This method requires some a priori estimates which are proved in Section 3. 
If<] is Lipschitz with small Lipschitz constant. we show in Section 5 the uniqueness of the solution. 
Lastly, in Section 6, we present various results and open questions concerning the “model case”. 
where q(r. u) s iu+. 

Problems of the type (0.5)+0.7) have been considered by several authors. Temam [ 31 first proved 
the existence of at least one pair (2. u) solution to a nonlinear eigenvalue problem 

i 

(0.7) hi\ Yu = i&, u) in fi 

(0.5). (0.6) 

subject to the constraint ~,G(.Y. U(X)) du = C, for any given C > 0. where G(x. -_) = Jiy(_x. s) ds. 
under some restrictive hypotheses on 9. In 191. we established the existence of a solution for this 
problem for a prescribed i, > 0, (thus dropping the constraint j,G(x. u(s)) d.u = C). Subsequently, 
several papers have been devoted to the study of different aspects of this type of problem. in the 
framework of the “model case”: 
Existence of solutions: R. Temam [lo], J. P. Puel [ll], 

Uniqueness: R. Temam [IO]. A. Damlamian. J. P. Puel [l l] 
Non uniqueness: D. G. Schaeffer 112, 131. 
Geometric properties of the free boundary: D. Kinderlehrer 1141, D. Kinderlehrer. J. Spruck 
[15] and D. Kinderlehrer. L. Nirenberg and J. Spruck 1161. 
Equivalence of the two variational formulations: A. Damlamian [ 171. 
Behaviour of u as i + + x T. 

THE PROBLEM AND THE HYPOTHESES 

Let Q be a bounded domain of R’ with a smooth boundary F = 22. Let Y be the operator 
defined by: 

with u,~ E C’(G): aij = aji. 2’ is assumed to be uniformly elliptic in a. i.e. there exists a constant 
‘1 > 0 such that 
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We denote by F/?r the outward conormal derivative on T associated with the operator 9: 

i’ 
~ = ; aij cos(n, Xi)&. 
?\’ i,j=l .I 

(n being the outward normal to I-). 
I is a given positive constant. We consider the following problem: 

PROBLEM 1. Find a function u(x) E H’(Q) satisfying 

924 = y(x, 2.4). for x E Q, 

u is a constant on I- (whose value is unknown), 

The function g is assumed to satisfy the following conditions: 

g: a x R --+ [O. + cc) is a continuous function such that 

g(x. z) = 0. VXE~., v’- < 0. 

g(x. =) < B(X, 3% v’u E Ti, Vz. z’ E R such that z < z’ 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 
l im : & =I ~ = 0, 

ZP i+ +r 
uniformly in x E 33, 

for p = N/N - 2 if N > 2, or for at least one p > 1 if N d 2. 

lim 
s 

g(x. z) dx > I. (1.7) 
z++Yc R 

It should be observed that condition (1.7) is almost necessary in order to solve problem 1, in the 
sense that the existence of a solution to Problem 1, together with conditions (1.4), (1.5) imply 

lim 
s 

g(x.z)dx 3 I. 
z++m R 

Indeed, if u is a solution to Problem 1, one has 

lim 
1 

8(x, )= dx 3 
i 

y(x, u(x)) dx = 
s 

_Yudx= - 
z-+x R R R s 

‘i”dT= 1. 
r ?v 

(1.8) 

Remark 1. Suppose y satisfies conditions (1.4) and (1.6): then. for any u E H’(R), g(., IA) E ~.(a). 

Indeed, from (1.4) and (1.6) it follows that there exists a constant C such that 

0 < g(x,z) < c + /ZIP. VXE~, VZER. (1.9) 

For example, in case N > 2, H’(Q) is imbedded in L!*(Q), where l/2* = l/2 - l/N = 1/2p, and 
from (1.9) it follows that g(., U) E C(Q) as soon as u E C*(Q). 

Further regularity of a solution u to Problem 1 can of course be achieved by additional regu- 
larity hypotheses on the coefficients of LY’ and on g. For instance, if one assumes aij E C’(Q), and 
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g(x, z) Lipschitzian in z uniformly with respect to x ES~, a standard argument shows that if 
u E H’(Q) then in fact u E C2~2(~), for any x E (0, 1). 

2. EXISTENCE OF SOLUTIONS: A VARIATIONAI- METHOD 

THEOREM 1. Suppose g satisfies conditions (1.4)-( 1.7), then, there exists at least one solution to 
Problem 1. 

Let G:n x R + [0, + ;r3) be the function defined by 

i 

Z 
G(x, Z) = g( x, s) ds. 

0 

G(x. .) is a proper convex function on R. Let G*(x, .) be its convex conjugate function, that is: 

G*(x.,) = sup;;; - G(x,:)j, XEQ. 
ZFR 

LEMMA 2.1. For any 2 > 0. there exists a constant CZ such that G*(x, <) > alli” ~ CZ, VXE~. 
V’,” E R, where r = 1 + l/p and p is the exponent defined in (1.6). 

Proof: By (1.4) and (1.6). for any .Z > 0, there exists ;I constant Cr such that 

g(x. 2) < c, + El$. VXE~. VZER 

Therefore,for any 1: > 0. there exists another constant Cr such that 

G(x. 1) < C’~ + i:l:)r -+“. Vx E a, V’= E R. 

The function_kt(:) = CI + ~1~1 ’ +p is convex, and since G(x, Z) < k,(z), it follows that G*(x, J > 
k:(c). Vx E Q, V’,” E R. It is easily seen that 12: has the form 

where C depends only on p. Since I-: > 0 was arbitrary, we obtain the lemma. The notation r = 1 + 
ljp will be maintained in the following. 

Let S: L’(R) + w2,‘(Qzj be the inverse operator of 9 with homogeneous Dirichlet condition. 

that is. for p E E(0) 

By Sobolev’s theorem. WJ’~‘~(Q) is imbedded in L”(Q). ( r’ = p + l), so that l,Sp p dx is defined for 

any p E L’(0). Let 

K = p E E(Q): 
1 

p 3 0 a.e. in R. S,,‘(x)dx = I] 

K is a closed convex subset of L*(Q). For p E K, define 

J(P) = 
s 

G*(x.p(x)) dx - l/2 Sp(x).p(x) dx 
(1 
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Consider the following variational problem : 

minimize {J(p); g E K]. (2.1) 

The existence result of Theorem 1 is obtained by solving problem (2.1) and then deriving from a 
solution of (2.1) a solution to Problem 1. 

THEOREM 2. There exists a solution p0 E K to problem (2.1). Furthermore, there exists a constant 
8, E R such that 

u0 = Sp, + go is a solution to Problem 1. 

Remark 2. J is not everywhere infinite on K. Indeed, let /j = g(x, 3), where i E R is a constant such 

that Sng(x, 2) dx = I. The existence of such a constant is implied by (1.4) and (1.7), Thus, p E K. 
Since b = G:(x, ?), clearly, G*(x, fi) = 2/i - G(x, f). Therefore, J(b) < + x. 

The first step of the proof is to check that J is bounded from below on K. 

LEMMA 2.2. Let q be defined by l/q = 1 - 1/2p, (1 < q < 2). There exists a constant C such that 
for any p E E(Q), one has 

In the following, we will use the same generic notation C for all various positive constants that 
will be needed. 

Proof of Lemma 2.2. Let u = Sp; we have 

qI/VuIii, d Sp.pdx = 
s s 

up dx d II u IL* /I /-, lIL4) where q > 0. (2.2) 
R R 

and l/2* + l/q = 1. 
By Sobolev’s inequality, there exists a constant C > 0 such that 11 u IlL2* < C 11 Vu 11 ,Az. Using this 

inequality in (2.2) yields I/ u I/ ,A2* d C 11 p II ,_*. 
Therefore, from (2.2) it follows 

0 d s Sp.pdx < Cllpll;q. 
R 

We also observe from (2.2) that JnSp.p dx = 0 if and only if p = 0. 

Proof of Theorem 2. We first check that J is bounded from below on K. Since 1 < q < r, we 
have by Holder’s inequality 

lIPIlL4 d lIPIIiMY~ with l/q = O/r + (1 - 0)/l that is 8 = r/2. 

Thus, for p E K we have 

II p IL G c II p IK (2.3) 
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Combining Lemmas (2.1) and (2.2). and inequality (2.3), we see that 

J(P) 3 E 11 P /I ldr - Cz - C Ij i) II;.?. 

whenceupon, by choosing c[ large enough. we have 

.I(/)) > 11 p II;,,. - c 2 - (‘ > - %. (2.4) 

The second step of the proof is to show that J achieves its minimum on K. Let (p,) be a mini- 
mizing sequence : 

p,, E K and lim J(i),) = Inf(J(p): /IE Ki. 
n --+ * 

BY (2.4). 11 on II,,’ is bounded; we may therefore assume that p, converges weakly in L’(R) to 
some /lo E K. Let un = Spn and u = Sp,. Clearly. ~1,~ converges weakly to u in M/“.‘(Q). Since 
l/2 > l/r - l/N, by Sobolev’s theorem, f@“(fl) is imbedded in H’(Q) with compact injection. 
Hence u,, converges strongly in H’(Q) to u. and consequently, 

lim S/I,, )o,* dx = lim 
n+ +T‘ 

5 i’ cc,,?!! ?!!?dx = 
,I- i I i.,=l 51 

,, ;.x, ]I 
1 I 

i Sp,.o,,dx. (2.5) 
R 

The functional p H {oG*(x, p) dx being convex, is lower semi-continuous for the weak topology 
on L’(R). Thus, 

lim inf 
n-+x .i‘ G*(x, /),J dx 3 

i1 ? 
. 

G*(x. /I<~) dx. 
$1 

(2.6) 

(2.5) and (2.6) show that lim inf J(i),) > J(p,,), whence. J(o,)= min[J(p): p E K). that is. /j0 is a 
n-~’ r 

solution to problem (2.1). 
We now prove that the existence of /I(, leads to a solution of Problem 1. The function z. R ---t 

[O, + ‘z) defined by 

i 

1 

r(0) = ~(s, S/j, + 0) dx, 
<I 

is continuous, monotone increasing. and lim r(O) = 0, lim r(0) > l.by(l.4)and(1.7).There 
0-m I 8+ f-r 

exists h’” E R such that ~(0,) = I. 

Let ; = g(x, Sp, + O,).< E C(Q) c L*(Q) and thus, : E K. We claim that ; = I’,,. Indeed, let 
11 = $. + :) = ijo + t(, - 0”) E K. Using the convexity of G*(x. .) and the fact that S: L’(0) ---f 
L’(0) is self-adjoin& we derive from .I@,) < J(p): 

. 

i 
G*(x.;) dx - 

j 
G*(x. [I,,) dx - $ 

R 0 i’ 
S(, - {I,).(; - /~“)dx 3 

R i’ 
$I~.(: - I’<,) dx. (2.7) 

51 

Since iG*(x, .) and <1(x. .) are inverse graphs, S~J~ + 0, E iG*(s, {). By the convexity of G*(x, .). 

we then have 

I 
G*(x, :) dx - G*(x, /IJ dx < (Sp, + (I,)(: -- /lo) dx. (2.X) 

R 
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Observing that j,(c - p,J dx = 0, we derive from (2.7) and (2.8) that 

1 
S(i - p,).(; - p,) dx d 0, 

R 

whence 5 = pO. (This fact could also have been obtained as a consequence of a more general result 
of Benilan and Brezis [ 193). Thus, 

/‘” = g(x. SP, + 0,). (2.9) 

Let u0 = Sp, + 8,. From (2.9) it follows that p0 E r?(Q); whence u0 E H2(Q). We have 

,yu, = PO = g(x, u,), in Q 

ug = 0 0’ on I, 

- jr2dr= j/%,,dx= j/odx=i 

Hence, u0 is a solution to Problem 1. 

Remark. Similar methods to the one presented in this section have been used in [5] for a model of 
rotating stars. and in [19,20] for the Thomas-Fermi equation. 

Dual jbrmation of’ the variational problem. Let E denote the space of functions of H’(Q) whose 
trace on I is a constant. Let 

V= UGE: 
i s 

g(x, u) dx = I . 
R I 

Vis endowed with the H ‘($2) topology 
It is easily checked that under conditions (1.4) and (1.7), V is a non-empty subset of H’(R). Let 

u(., .) be the symmetric bilinear form associated with _Y: 

For u E V. define 

a(u, u) = i: r 7 3, 

a.2 cdx. 
i,j=l .R 

" 2xi (7xj 

O(u) = $a(u, u) - 
s 

G(x, u) dx + I u(I). 
R 

We consider the following variational problem: 

minimize {O(u); u 6 Vi. (2.10) 

This minimization problem has been introduced by Temam [lo]. By solving (2.10). he obtained 
another proof of the existence result of Theorem 1, in the framework of the model case, that is, 
when g(x, u) = Au+. In fact, as pointed out by Damlamian [17], the two variational problems (2.1) 
and (2.10) are equivalent, due to the following proposition which is related to a general non 
convex duality principle of Toland [21,22]. 

hoP0.51~10~. (i) min{@(u); u E V} = min(J(p); p E Kf. 

(ii) If @(u,) = min(@(u); u E V}, then p,, = g(x, uO) satisfies J(p,) = min{J(p); p E K). 
(iii) If J(p,) = min{J(p); p E K), then there exists 8, E R such that u,, = Sp, + 8, E V and 

o(u,) = min(O(z4): u E V). 
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Remark. The constant 19, given in (iii) is unique if one assumes g(x, z) to be strictly increasing in 

I > 0. 

Proqf: (a) Let Q E K ; there exists u E V such that O,(u) < J(i)). By (1.4). (1.7) there exists H E R 
such that 

s 
y(x. Sp + 0) dx = 1. Letu=Sp+H; UEV. 

R 

By Young’s inequality. G(x, U) + G*(x. p) 3 u/j, hence, 

@(U) < 1/2(a(u. 24,) + G*(.x, 0) dx - 
s 

up dx + [u(T). 
R 

or 

(b) Let u E I/: there exists II E K such that J(i)) < a(u). 
Let p = g(‘, u); then p E L*(Q) and p E K. By Young’s equality, we have 

G(x, u) + G*(x, 11) = up. 

Thus. 

Let 2’ = u - u(T) and MB = Sp. We have 

Hence, 

Q(u) - J(p) = 1/2(a(c - M’. L: - w)) 3 0. (2.11) 

The proposition obviously results from (a) and (b). 

Construction of a solution by an iteration scheme. The technique used in the preceding proof 
leads to an iteration scheme for solving Problem 1, as well as to another proof (using Schauder’s 
fixed point theorem) for the existence of solution. We assume here that g(x, z) is strictly increasing 
in z > 0. and that (7s1 is smooth. 

Define &A = g(., u); 9 maps I/ into K. 

Since the injection H’(R)4 E”(R) is compact, and .9 maps continuously E”(Q) into L’(R), it 
follows that .9?: V + K is a compact operator (i.e. .‘A is continuous and maps bounded sets of I/ 
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into relatively compact sets of K). Define Y: K -+ I/ by Y’p = Sp + 8, where 0 = 8(p) is uniquely 

determined from 

1 g(x,Sp + 8)ds = I. 

The function p E K H 0(p) E R is continuous. Indeed, by Fatou’s lemma it is easily seen that if 

p, + p in L’(n), then B(p,) is bounded; furthermore, Sp” -+ Sp in E(R) since W2sr(Q) is embedded in 
E(R). Thus, a subsequence of Sp, + Q,) can converge only to Sp + 8(p), which implies d(l),,) -+ 
6(p). Hence, 9 is continuous from K into Wzyr(Q) with compact injection; Y is a compact operator 
from K into I/. 

In the preceding paragraph we have seen that 

@(Y”p) d J(P)> VlpEK (2.12) 

J(9u) d Q(u), VUE v. (2.13) 

In fact, equality holds in (2.12) (resp. (2.13)) if and only if .4ap (resp. u) is a solution to Problem 1. 

Indeed, from part (a) above, @,(9’4pp) = J(p) holds if and only if G(x, 9~) + G*(x, p) = ,Ypp. This 
is equivalent to p = G:(x, Ypp) = g(x, .Yp). that is, Yp is a solution (cf. the end of the proof of 
Theorem 2). From (2.11) we have 

CD(U) - J(B?u) = l/2(@ - .!Y%l, u - .U9u)). (2.14) 

Hence, Q(u) = J(&) if and only if 11 = .V% (u - Y.% is a constant which has to be zero), 
that is, u is a solution to Problem 1. Indeed, Problem 1 is clearly equivalent to finding a fixed point 
of the mapping @ = 9’9: V -+ V. The fixed points of @ are the images under Y of the fixed 
points of $9 = 99’. % is a compact operator from the closed convex set K into itself. The existence 
of a solution to Problem 1 is thus obtained by Schauder’s fixed point theorem. Indeed, it is a direct 
consequence ofthe next lemma that there exists a constant C > 0 such that % maps the intersection 
of K with the ball of radius C in L’(Q) into itself. 

LEMMA 2.3. For any E > 0, there exists a constant CE > 0 such that 

Proof: Let i = %‘p, i.e. [ = g( ., u), with u = Sp + 0 and i E K. From (1.4) and (1.6). we know 
that for any E > 0, there exists Cr > 0 such that 

0 d g(x.u) < cc + s(U+)p, VXE~., UER. 

Hence, 

II cd.> u) II v+ I(*) G CE + E II u+ II;m+ I!(R)’ (2.15) 

Observe that p(p + 1) = r**(where l/r ** = l/r - 2/N, in the case N > 2). Therefore, by Lemma 
3.1 (see Section 3 below) and by the E estimate [23] for the operator 9’, we have 

lb+ II LP(P + “(R) G c II vu IL’ (Q) c c II p II LyR)’ (2.16) 

The assumption on the regularity of &A was used here for applying the E estimate). 
For (2.15), (2.16), we derive 

II i II LP + ‘(R) G CE + 8 II p II ;yn,. (2.17) 
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Since 1 < r i 2 c p + I. we have, I>> Hiilder’s inequality. 

I/ ?. !I ,,, f(2) G 1’ ” II < ii :‘.,, * l,5L,. 

with l/r = 1 - 0 + O;(p + 1). that is 0 = l/p. Thus. (7.17) yicids 

The preceding construction leads to an algorithm for finding a solution to Problem 1. Let ~1~) 
be any function in V. Define 

jll = ;/Arc,,. If, = .‘I /‘,. 

j’,, = .&.l_ , . ll,, = .‘/ (j),, . etc 

The sequence un satisfies the induction equation 

y~i,, = g(z. un_ ,) in R 

U ,,,I‘ is a constant 

f 
y(.\. IQ ds == I 

. !! 

(2.1X) 

(2.19) 

PKOPOSI 1ION. There exists a subsequence of (~1,~) that converge5 strongly in H’(0) to a solution of 
Problem 1. Furthermore. any convergent subsequence of(u,l) converges to a solution of Problem I. 

Pw$ By (2.12). (2.13). we have 

@(U,) 3 J(i),) 3 @(It,) > 3 @b,,_ ,) 2 &;J,) > @(U,) 2 &J,,+ ,) _, (2.20) 

From (2.4). we see that p, is bounded in L’(Q). 
Since .‘/’ and .# are compact operators, the sequences (u,,) and (,J,,) are relatively compact in 

ti ’ (0) and I:(Q) respectively. [Hence, there exists a subsequence [I,,~ which converges strongly to p 
in L’(R). Then. u,,i = .Y /jnr converges strongly to LI = ,‘/I) in H’(R). Since <D is continuous on H’(R) 
and .I is weakly lower semi-continuous on L’(R), we have from (2.20): 

Q(u) = lim @(u,,) = lim .I(,,,,) 3 J(p). 
,I- + I ,I- + I, 

But, by (2.12) we have 

IHence. @(,Yp) = J(j)), and 11 = -7~ is a solution to Problem I. 

Remurk 1. Using (2.14). we see that 

y 1’ V(un - of,, f , 1 lj &, c + x 
,L = 0 

Renlarli 2. It would be of interest, especially from the numerical viewpoint, to know under what 
conditions is the whole sequence (c/n) convergent to the same solution LI. 
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3. SOME ESTIMATES 

For the topological method WC present in the next section, we require several inequalities. 
In the next three lemmas, it is not necessary to assume that the domain Q has a smooth boundary. 

We recall that 

E = [UE H’(n): ulr is a constant). 

u+ = max(u. 0). and for 1 _= s < N, l/s* = 11s - l/N. and s* > 1 if s 3 N. 

LFMM& 3.1. Suppose g satisfies conditions (1.4). (1.5) and (1.7). Then there exists a constant C such 

that for any u E E with {,g(x. u) dx < I. one has 11 u ’ /lLs* G ~‘(11 VU ljLs + 1). 

PVO@ We argue by contradiction and suppose the existence of a sequence (u,) c t:‘ such that 

Thus, in particular. /I u,’ I/ Ln converges to + X. 
Let 

Ll+ 
I‘ =7--II- n / . . +I1 ’ 

so that /j c,, I/ Ls* = 1, and 

(cf. [24]). By the Sobolev inequality we have 

11 l’n - r,p-) /IL”* < c /I Vl’, III,” .c c:n. 
Hence, /I r,(r) I/ L.>e , < 1 + C/n. Therefore, a subsequence [‘,/I) converges to I E R and 1 f 0 since 
I/ Ill,_,, = 1. Thus, I > 0 and since I converges to I almost cvcrywhere, 11,: and consequently u,, 
converge to + ~8 a.e. in Q. This is a c”i;ntradiction. since by (1.7) and using Fatou’s Lemma, it would 
lead to 

g(.x, u,J dx > I. 

LEMMA 3.2. Suppose .v satisfies conditions (1.4) and (1.6). Then. for any E > 0, there exists a constant 
C, such that for any u E E, one has 

(Cl, depends only on E, g and the measure of Q). 

Prooj: Let y = u(T); we need only to consider the case y < 0. By Sobolev’s imbedding theorem, 
we know that 

I/ I.4 - Y IIL-3 G c II vu l/p 
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(recall that 2p = 2”. when N > 2). Thus 

i’(u+ + 1+‘) dx < C 11 Vu li;r. 
I 

(XEO2:U(X) 5 0). 

By (1.4). (1.6). there exists, for any t: > 0, a constant C,, such that 

g(x, =) d c, + F(Z+)P, Y.xE~, !/‘I’E R. 

Using the same notation Cr for various constants depending on E, we have 

)3’lpg(“, --) d C((z+)2P + I1,lZP) + c,lyJp, 
hence 

~+J(x,z) < I-:(=+ + l#P + C,,. 

Thus, from (3.1) and (3.3) we derive 

/?//p.Ilg(.,&’ G (-://vul/;? + C>, 

which yields the inequality of the Lemma. 

(3.1) 

(3.2) 

(3.3) 

LEMMA 3.3. Suppose g satisfies conditions (1.4) and (1.6), then, for any E > 0, there exists a constant 
Ct such that for any u E H’(R), one has 

I/ g( . . u) /I I.CLL’,, G (F: /I us+ lILzr, + CJ. 11 g(.. U) ii:; ‘jp, 

(where 1/(2p) + 1/2p = 1). 

Proof: Since 1 < (2~)’ < 2. HGlder’s inequality gives 

11 u(., 4 /lLlrrJjr G l/d.. u) ii;L. 11 CA.> 14) 11y, 

with 012 + (1 - H);l = 1/(2p)‘. that is fl = l/p. 

From (3.2) we derive 

// Y(.. 4 llL2 G Eliu+ ll:21T + CF. 

Therefore 

/Ig(.,u)Jl$ G ++lI,>L,> + C,, 

which leads to the inequality of the lemma. 

Remark 1. Let A c (0, + a) be a compact interval, A = [A, A]. Suppose lim lj,g(x, z) dx > I. 
=-+I, 

Let g,(x, 2) = (1 - I) g(x. 3) + tz+. f E [O. 11. It is easily seen that the results of lemmas 3.1. 3.2 
and 3.3 remain valid if g is replaced by the function Ag,, and this, in a untform sense with respect to 

r E [0, l] and 1, E A. That is, the various constants. the existence of which Lemmas 3.1-3.3 assert. 
can be chosen independently off E [0, l] and of ,I E A. It just suffices to observe that ig, satisfies 
(1.4H.17). Furthermore. (1.6) and (1.7) hold uniformly with respect to t E [0, l] and E, E A: For 
any e > 0, there exists a constant CE such that i.g,(u, :) < Ed + Cc, Vx E a, Vx E R and 
V’t E [0, 11, Vi, E A. There exists I’ > I and A E R such that ; 3 A implies Jni,g,(x, z) dt > I’, ,fbr al/ 
t E [0, l] and all 1, E A. 

Combining the preceding lemmas, it is easy to show that all solutions of Problem 1 are (I 
priori bounded: 
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LEMMA 3.4. Under conditions (1.4H1.7) for g, there exists a constant C such that for any solution 
u to Problem 1, one has j/ u 11 Hl d C. Hence, the solutions of Problem 1 are a priori bounded in 
W2’p(Q) as well, for all p > 1. 

Proof: By (1.Q one has I/ g(., u) lILI = I. D enote y = u(T). From (1.1)-(1.3), one derives 

r II vu llf2 G s J%u.(u - y)dx = s .4(x, 4 u+ dx + Y 
R R s !“dI-, 

r ?v 

that is 

YI II vu 1122 + Yl d s g(x, u) u ‘dx. 
R 

(3.4) 

By Lemma 3.2 we have 

Y 3 --E I/ vu II;* - cc. 

By Lemmas 3.1 and 3.3 we have, 

and 

II d? 4 IILIW I d EIIVuIiL2 + CE 

II u+ II LZP d C(llVulI,, + 1). 

Hence, by Holder’s inequality 

s dx,u).u+ dx d EIIVU~I$ + ce. 
R 

(3.5) 

From (3.4) we then have (v] - 2~) I/ Vu // 2 

Hence, by Lemma 3.2, y 3 

L2 d CE. Choosing E sufficiently small yields: I/ Vu IIL2 G C. 

J y 1 < C. Therefore, I/ u I/ 
- Cand by (3.5). sng(x, u). u+ dx < C. Thus, by (3.4) y G C which yields 

bounded for all p > 1. 
H, d C. A standard bootstrap argument then shows that I/ u /I wz p is 

Remark 2. Let A = [A, ;Z] c (0, + co); assume that lim snlg(x, z) dx > I. Let g,(x, z) - 

(1 - t)g(x,z) + tz+, 
z++m 

t E [0, 11. By using Remark 1 above and the preceding proof, it is easily 
checked that the same a priori estimate holds if g is replaced by the function Ikgt, uniformly in 
/z E A and t E [0, 11, (that is, the constant C can be chosen independently of 3, E A and t E [0, 11). 
This version of Lemma 3.4 will be used in the next section. 

4. EXISTENCE OF SOLUTIONS: A TOPOLOGICAL METHOD 

We now consider a non linear eigenvalue problem obtained from Problem 1 by allowing the 
right hand side in (1.1) to depend on a parameter i, > 0. 



PRORLEM 2. Find 14 E H’(Q) satisfying 

Y’u = R(](.Y. II). in 0. (4.1) 

II,~. IS a conslanl (4.1) 

* ^ 
II 

-1 dl- = I. 
., c-1, 

(3.3) 

WC suppose g satisfies conditions ( I .4)--( 1 .h). Condition ( I .7). however. will be replaced in this 
section b\; the following assumption: 

b’e define i* b> 

I 
~ = lim 

i* 
q(.x, :) (1-Y. so Ihat 0 < i,* < +“‘. 

_ + , ,) 

l’heorcm I shows Ihe existence of at least one solution to Problem 2 for any X > i*. In this 
section. we establish Ihe following result. which is more precise. 

TIIEOREM 3. (i) Suppose q satisfies conditions ( I A-( 1.6) and (4.4). Then, for any compacl interval 
.I c: (i”. + x ). there exists a connected component % , of solutions (i. U) to Problem 2 in ti*. 

7 ) x E such that the projection of %,, on (i*, t x) covers A. 
(ii) If. in addition, 7.” = 0 and qr. ;) IS Lipschitz continuous in z E K. uniformly with respect lo 

I E 0. then thcro exists a connecred component % of solutions (I,. u) to Problem 2 in Rt x E 
whose projection on R + covers all of R+. 

f+of. The main idea in the proofofthis theorem is to show that Problem 2 and a problem where 

q(.~. LI) = l/i are homotopic. Then, we use a topological degree argument to establish an existence 
rc\;uIt fcr the latter problem. 

I[ is easily checked that II is the unique solution to the problem 

(4.5) 
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Clearly. L. = p(Q) + ~?(a) is a compact linear self-adjoint operator, and there exists a constant 
C such that 

II L.f‘ llw G c II f l/P yj E L?(sz). (4.6) 

Let pL1 < 11~ denote the first two characteristic values of L; we denote by i., the first eigenvalue 
of the homogeneous Dirichlet problem in Q: 

_Yr = %c, in R, 

clr = 0. 

The following information about pr and pLz will be useful: 

(4.7) 

LEMMA 4.1. (i) 1-1, = 1; pl is simple and the associated eigenfunctions are the constants. 

(ii) p2 > i, + 1. 

Proqf: Let P = ,UIX with p < i,, + 1. This means that 

Yc=(p-- 1)~. inQ, 

AGE: we denote 7 = L.(T), (4.8) 

Obviously, if c + 0, then p > 1. It is also easy to show that ker(l-L) = ker(Z-L)’ is the subspace 
of constant functions on Q. so that p, = 1 is simple. Suppose now 1 < p < i., + 1. From (4.8) 
and the variational characterization of i, [25], we have 

j 
Yu(, - ~)dx = (,u - 1) 

j 
v(c - y) dx 3 I,, 

j 
(1, - ;s)’ dx. 

R 

Observing that j, L’ dx = 0. we derive 

(/I - 1) jnr2dx .: 1 j c2 dx + ;,$/Ql. 
R 

where 1~1 is the measure of Q. This inequality implies y = O.If~fO,wealsohave~=~_, + 1. 
But then II is an eigenfunction of (4.7) associated to I&r, and since j, c dx = 0, necessarily I’ = 0. a 
contradiction. 

From condition (1.6) it follows that the operator u -+ g(., U) acting from H’(Q) into L’(Q) is 
continuous, bounded, and even compact (c/I Section 2, Dual variational formulation). Therefore, 
Ru = L(g( ., u)) is well defined for any 11 E H’(R) and R: E + E is a compact (non linear) operator. 

Let M”~ denote the unique solution of the problem 

.Yw, + w0 = 0, in Q, 

w0 E E, (4.9) 
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(M’~ is given by M’~ = TV: with a suitable choice of t E R, where w is the solution of the Dirichlet 
problem: 94~~ + M’ = 0 in R, and w,,_ = 1). 

Clearly, Problem 2 is equivalent to the functional equation 

II E E, u = 2Ru + Lu + wo. (4.10) 

B. Computation cf the topological degrer 

Let @,(I., U) = ?.Ru + Lu + wo. We denote by B, the ball in E. centered at the origin ofradius C. 
Let A c (>&*. + cc): by the a priori estimate of Lemma 3.4 (cj. also Remark 2) we know that there 

@&lb, u) and i, E A imply 11 u /IHI < C. 
defined and independent of 3, E A. 

exists a constant C > 0 (depending on A) such that u = 
Hence the topological degree? d(l - @,,(3,, .), B,., 0) is well 

LEMMA 4.2. tl(Z - m&R, .), B,, 0) = - 1. vi. E A. 

Proof: For t E [O. 11, we define 

Q$i,. u) = i$(l - t) Ru + tL(u+)] 

and consider the equation 

11 = @,,(2, u). 

which is equivalent to 

+ Lu + wo. 

(4.11) 

Iru = i,g,(x, u), in R. 

u E E. 

- 

with g,(x, u) = (1 - t) g(x, u) + tu+. When t = 0. (4.11) reduces to (4.10). that is Problem 2, while 
for t = 1, (4.11) i\ equivalent to 

924 = r,u+. in Q, 

u E E. (4.12) 

By Remark 2 after Lemma 3.4, the constant C can be chosen so that u = @,,(n, u) and i, E A, 

t E [0, 11. always imply I/ u 11 HI < C. Hence, the topological degree d(Z - @,(I,, .), B,, 0) is well 
defined for all /1 E A and t E [0, 11. Clearly, this degree is independent of 3, E A and t E [0, 11. Thus, 

d(1 - CD&, .), B,, 0) = d(1 - @,,(I,, .), B,, 0). (4.13) 

Again by Lemma 3.4, Remark 2, there exists a constant C, such that u = @‘,(a,#), and 0 in 

between 2 and ir, imply I/uI~~~ < C,. Hence, using the excision and homotopy invariance pro- 
perties of the degree, we see that 

d(l - @(/1,, .), B,), 0 = d(I - @,(A,, .), BcI, 0). 

tcf. [Xl. The definitions and properties of the topological degree can also he found e.g. in [T]. 

(4.14) 
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Fort E [0, 11, let $,: E + E be the compact operator defined by $,(u) = (Ai + 1) Lu + tA,L(u-) + 

w,,, (where u- = max( - u, 0)); thus II/, = @(A,, .). In the next lemma, we show that $, is an admis- 

sible homotopy for computing the right hand side degree in (4.14). 

LEMMA 4.3. Let 11~ be the unique eigenfunction of (4.7) associated with A,, such that -~,(c?v,/ 
?v) dI = 1. For any t E [0, 11, ui is the unique solution of the equation u - $,(u) = 0. 

Proof. The relation u = It/,(u) is equivalent to: 

lipu = A,u + A,tu-, in Sz 

UGE; we denote y = u(I), 

- 
s 

i‘“dI-=I. 
r zv 

(4.15) 

By Green’s formula, we have 

s 
(~~9% - uYu,)dx = iit 

Cl s 
u-vi dx = -yZ. 

R 

Hence, ;‘< 0, so that u+ E HA(Q) (c$ [24]). Multiply the first equation in (4.15) by uf to obtain 

u(u+, u’) = A 1 
s 

(u+)’ dx. (4.16) 
R 

By the variational characterization of A1 as the first eigenvalue of (4.7) (cf. [25]), it follows from 
(4.16) that u+ = ku,, k 3 0. Since from (4.15) we also have 

I= 
s 

91;~~ dx = ?,, u+ dx - I,,(1 - t) u- dx, 
R s R s R 

necessarily k # 0, whence u = ku,, since ui > 0 in 0. Then, I = kA,.f,u, dx shows that k = 1, or 
u = ui. 

Proof of Lemma 4.2. By the preceding lemma, the Leray-Schauder index i(Z - $,, ul, 0) is well 
defined and independent oft E [0, 11. Thus, 

d(l - @,,(1,, .), B,,, 0) = i(Z - $0, U,‘O). (4.17) 

Let u = u + ui ; one has u - $Ju) = u - (IL1 + 1) Lv. Thus, by translating the index computation 
to 0, we obtain 

i(Z - $@U1,O) = i(Z - (A, + l)L,O,O) = (-l)P, (4.18) 

where /3 denotes the sum of the multiplicities of the characteristic values of L in (0, Ai + l), 
(cf: [26]). Hence, by Lemma 4.1, /3 = 1, which yields Lemma 4.2. 

C. Proof of Theorem 3 
Since d(l - @,,(A, .) B,, 0) # 0, 1, E A, by a theorem of Leray-Schauder [26], there exists a 

connected component %?* of solutions to Problem 2 in (A*, + 03) x E whose projection on 

(A*, + co) covers A. 



The second part in Theorem 3 is a simple consequence of part (i). Indeed, suppose that 

lyl.~,:) - &.I’)/ d K/Z -- ~‘1, VXE~. VZZ’ER. 

,. 1 Choose d 1.” such that 0 < /.. ( i,T/K, where ;I~ = i.T + 1 is the second characteristic value of L. 
Then. the function i,,y satisfies the assumption of Theorem 4 in section 5 below. Therefore the 
solution to Problem 2 corresponding to i = A0 is unique: we call it uO. Let W be the connected 
component of the set of solutions to Problem 2 in RS Y E which contains (A,, u”). Clearly, for any 
compact interval A c (0. + x ) such that i, E A, the component A must contain (A,, 14,) and there- 
fore coincides with ‘TV. Hence. the projection of % on R+ covers all of R+. 

5. A UNIQUENESS RESUL7 

Let i_T < 1.; denote the two first eigenvalues of the problem 

Yr = 3X. in R, 

Thus, by Lemma4.1. itiT = 0 < i,, < >_T = ,u, - I. I,, ‘T is characterized by the following inequality 
(cf. e.g. [?S]): 

U(W. W) 3 A; 11 w /I fL2, VW E E such that 
J 

w dx = 0. 
I! 

(5.2) 

Equality holds in (5.2) if and only if w is an eigenfunction of (5.1) associated with AT. 
The main result of this section is the following uniqueness result. 

THEOREM 4. Suppose ,q: 0 x R + R is continuous and satisfies the following two conditions: 
(i) 3.~ E Q such that g/(-u, 1) < g(.?, z’). vr, Z’. 0s: < ,I’. 
(ii) Is(.‘c. z) - <~(.Y.z’)I < KIz -- 1’1. VX E G. V:. r’ E R, with 0 _= K < i*. Then, there exists ?. 

at most one solution to Problem 1. 

Proof: Under the above hypotheses one has 

/ y(.u, --I - Y(.K I’) I2 < K(g(u, z) - qu, 3’))(1 - -_‘j, V’xEQ. Vr. z’ E R. 

Let u and ti be two solutions of Problem 1. The preceding observation leads to 

(I(21 - fi, li - Li) = 
1 dR 

Y(u - 4.t~ - fi) d.x 3 k i, (I( ., U) - LJ( ., ii) // $. 

Let II = f + \I’. z’i = I + G be the decompositions of u and li along E = R@ E,, 
(\VE E; ~~~wd.x = 01. that is t, icR: W. G E E I .([ and i are the respective averages 
Q). From (5.2). one has 

(5.3) 

where E, = 
ofuandCin 

(5.4) 
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Since j’oY’(u - li) dx = 0, we observe that 

u(u - t. U - a) = 
I 

=Y(u - li).(u - fi) dx = [g(x, U) - g(s. i()] [W - $1 dx. (5.5) 
R s R 

Combining (5.4) and (5.5) yields 

/Iu) - \?/iL2 < $g(..u) - y(.,ti)l/,. 

Thus, from (5.5) we derive 

U(U - li. 11 - ti) < ; /I g(., u) - g(., 2i) II&. (5.6) 
‘2 

CompariAg (5.3) and (5.6) yields g(x. u) = g(x, G), which implies u - ti is a constant, whence u = 6. 

Remarks. (1) In the model case considered in the next section, where g(x, U) has the form 3.u+, 
Temam [lo] and Puel and Damlamian [ 1 l] have established the uniqueness of the solution to 
Problem 1 for 0 < 3, < AZ, i,, being the second eigenvalue of the homogeneous Dirichlet problem 
(4.7). It would be of interest to know whether the result of Theorem 4 can be extended by letting 
the Lipschitz constant K satisfy 0 < K < i2. It should be noted that one always has %, < nT < i,,. 
(c;f [18]). Indeed, let u1 and u2 be two eigenfunctions of (4.7) respectively associated to 3,, and JL2. 
Let w = tc, + r2, TV R being chosen such that i,w dx = 0. Applying the characterization (5.2), 

one has 
a(W. WI) = t%(o,. G,) + U(UZ’ rl) 3 ;.;(t” 1) I’1 I\;* + )/ L’z I/;*,. 

Since ;$ > 3-i and a(~,, ~7~) = Ri 11 ci 11t2, i = 1.2, one derives ,?2 11 c2 II& > 2: /I u2 /I$, whence 1: < i.,. 
(2) Those results about uniqueness are related to the more general works of Ambrosetti and 

Prodi [29], Berger and Podolak [30] and Fucik [31]. 

6. SOME ADDITIONAl. REMARKS ON THE MODEL CASE 

The following equations constitute a simple model for problems of type 1 or 2. 

PROBLEM 3. 

-AU = 3,u+, inn, 

UEE, 

Here, i?./& is the outward normal derivative on I. 

A. Condition for the existence of’ a ,j+ee boundary 
Let (n, u) be a solutjon to Problem 3. Let Qp = (x E Q: u(x) > O> and Ip = ?Qp.Ip is called 

the free boundary. If u(I) > 0, then by the maximum principle, u(x) > 0 in Q, and hence there is 
no free boundary. On the other hand, if u(I) < 0, then there exists a free boundary since U+ $ 0 
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(indeed. j,u’ dx > 0). We denote by %, the first eigenvalue of the homogeneous Dirichlet problem 
in Q: 

- AV = i.r, in Q, 
(6.1) 

1’ - 0, lr - 

and by I‘, the unique eigenfunction associated with ;i,, that satisfies -j&S r1 c’n) df = I. The 
existence of a free boundary is determined by the position of A with respect to i I. 

PROPOSITION 1. Let (I., u) be a solution to Problem 3. 
(i) If 0 < /I < J,, then u(x) 3 u(T) > 0, vu E a. 
(ii) If i, = jbl, then II = 1: I. 
(iii) If 3. > IL1, then u(T) < 0: there is a free boundary. 

Prooj: We denote y = u(T). 
(i) Suppose 0 < I < i, and y < 0. Then (cj: [24]) u + E H,!,(Q). Using the variational characteri- 

zation of %,, we have 

(6.2) 

Since equality must hold in (6.2). we derive that U+ = Cr,, C > 0. Hence. u = CV,, which implies 
‘J = 0, a contradiction. Thus, for 0 < 3. < I,. we have 1~ 3 0 and u = 14~. If 0 < i < i,, since i, is 
not an eigenvalue of (6.1) 5’ # 0; therefore 1’ > 0. 

(ii) Suppose 1, 3 i., and 1’ > 0. By Green’s formula one has 

- )‘I ZzX 
i 

(uA[:, - r,AU)d.x = 
s 

(;,u + c, - IL,ur:,)dx 3 0. 
$1 $1 

thus 7 d 0. Now, if i > jkl. we have ;’ < 0. Indeed 7 = 0 would imply that u is a positive eigen- 

function of (6.1) associated to i > i.,, which is impossible. 
(iii) Let i, = i,,. From what precedes, we know that y = 0. Hence. u is an eigenfunction of(6.1). 

The fact that IL, is simple then shows that II = rl. 

Remark. The conditions for the existence of a free boundary in the more general Problems 1 or 2 
are not yet clear. 

B. The question qf’ uniqueness 
Two interesting examples of non uniqueness in Problem 3 have been given by Schaeffer 112, 

131. The problem of uniqueness remains open however when the domain Q is assumed to have 
some geometrical properties. We mention in particular the question of knowing whether the 
solution is unique in the case of a convex domain R. The nature of the set of solutions needs to be 
clarified. Does the non uniqueness correspond to bifurcation points or to separate branches?. In 
the particular case when fi is a ball in RN, Gallouet [lS] has shown that the variational solution 
is unique and is radial. Furthermore. there is no other radial solution, and no bifurcation can 
occur from the branch of radial solutions?. 

Anot her important aspect of this problem which remains open, concerns the study of the stability 
of the solutions. 

t Actually, using a recent result of Gidas, Wei-Ming Ni and Nirenberg [32], we know that the solution to problem 3 is 
unique (and thus radial), when G? is a ball centered at the origin. 
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APPENDIX (added in proofs) 

CONNECTEDNESS OF RP FOR VARIATIONAL SOLUTIONS 

Under an additional convexity hypothesis on the nonlinear term g(x, .), we prove in this appendix that the “plasma 
region” QP = {x E Q; u(x) > 0) is connected when u is a solution of problem 1 obtained by solving the variational problem 
(2.1) or (2.10). Since these two problems are equivalent, we will work with the formulation (2.10). We assume the following: 

The function s I+ g(x, s) is of class C* and strictly convex in s E (0, + co), for any fixed x E Q. (A.1) 

Proposition. Suppose g satisfies conditions (1.4H1.7) and (A.l). Then, if II is a solution of (2.10) the region QP = {x E R; 
u(x) > 0) is connected. 

Remark. This proposition complements a preceding result of [15] establishing the connectedness of RP in the particular 

case when g(x, u) = Au+. The same method can also be adapted to generalize the results in [6,7] concerning connectedness 
in the context of the free boundary problem arising in vortex rings theory. 

Proof of Proposition. We use an idea similar to that of [ 151. Suppose A and B are two distinct components ofRD: A, B c Rp, 
Afa. B#@,and .%nB=@.Then,u>OinAuBandu=OonaAu~B, 

For a, p > 0, define w = ~(a, B) by setting 

i 

au in A 

w = Buin B (A.3 
II in R - (A u B). 

Thus, w E E (for u = 0 on dA and 8B) and w,r = u,r. The condition IV t K reads: 

s 
g(x, au) dx + 

A s 
g(x, Pa) dx = 

B I 
g(x, u) dx 

l-1 8 
(A.3) 

From (A.3), the conditions w E K is clearly seen to be equivalent to B = cp(a), where cp is a monotone. strictly decreasing 
function, from an interval [0, a*] onto an interval [0, p*] such that ~(0) = B * > 1 and cp(a*) = 0, a* > 1. Observe that 
~(1) = 1. Furthermore, using hypothesis (A.l) and the implicit function theorem one sees that rp is of class C’. Denote 
w = w(a) the function constructed in (A.2) when choosing B = rp(a).Thus, w(a) E K,Vae [0, a*] and 1 < a*; in particular, 
w(l) = u. 

Define 
D(a) = +(a)) - J(u), 

and let 

for ocR and cp EH ‘(Cl). Then, 

D(l) = $[s’ - I]m,(u) + i [q(a)’ - I]m,(ul 

- 
s 

{ G(x, au) - G(x, u)}dx - 
s 

[~(r. (P(%)u) - c;(x. u); d-x 
A B 

Hence, 

D(a) = am,(u) - &. U)LI dx + @(a) (Mm,(u) - g(x, cp(c++ dx; 
A R 

Observe that 

D”(1) = 
s 

A {g(x. u) - g’(x, .)~}a dx + &(I)’ 
s 

{g(x, u) - g’(x, .)u}u dx 
B 

: 

m,(u) = s y(s, u)u dx. 
A 

m,(u) = g(x, u)u dx. 
! 

(A.4) 
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Indeed. since u = 0 on iA and ?B. (A.4) obtains from mult~pl~~n~ the equation y’,, = g(x, u) by u and integratmg by parts 
on A and B respectively. Usmg (A.4) we derive D(l) = D I I) = 0 and 

D”(1) = 
I 

(g(x,u) - g’(x,u)u;u dx + q’(l)* 
J 

{gk u) - g’k ub j u dx 
A B 

From hypothesis (A.]), it follows that g(x. u) - g’(x. u)u < 0 for x E .-I i_ 8. 
Hence, D(1) = D’(1) = 0 and D”(1) < 0 which contradicts the fact that D(a) > 0; Va (smce u 1s a solution of(2.10)). This 

concludes the proof of the proposition. 

I. 

2. 

i. 

4. 

> 

6. 
7. 

8. 

9 

IO. 

I I. 

I?. 

I i. 
13. 
15. 

IO. 
17. 

IS. 

19. 
‘0. 
‘I. 
9-I 

2.3. 

‘4. 

2. 
76. 
27. 
2x 
29. 

30. 

31. 
32. 


