COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XXX, 1-11 (1977)

Some First-Order Nonlinear Equations on a Torus*

H. BRÉZIS AND L. NIRENBERG University of Paris, VI Courant Institute

> Dedicated to Carl Ludwig Siegel on the occasion of his 80th birthday

1. The Main Result

We consider here real functions of $x = (x_1, \dots, x_n)$ in \mathbb{R}^n which are periodic of period 2π in each variable, i.e., functions defined on the torus Ω , and on Ω we consider the constant coefficient operator

$$Au = \sum a^{j} \frac{\partial u}{\partial x_{j}}, \qquad a^{j} \in \mathbb{R}.$$

Let $g: \Omega \times \mathbb{R} \to \mathbb{R}$ be a C^{∞} function periodic in x such that

(1)
$$g_u(x, u) > 0$$
 for all x, u .

Our purpose is to find a real C^{∞} periodic function u on the torus satisfying the first-order differential equation

$$Au + g(x, u) = 0.$$

We shall give necessary and sufficient conditions for a solution to exist. In the study of such problems one usually encounters difficulty with small divisors in trying to invert A using Fourier series. It is because of (1) that this difficulty can be avoided. Let $N(A) = \{u \in L^2 \mid Au = 0\}$ (to be understood in the distribution sense). Let P denote the L^2 projection on N(A). P has the important property that $Pf \ge 0$ when $f \ge 0$ (this follows from the fact that $P = \lim_{\lambda \to +\infty} (I + \lambda A)^{-1}$). Since P(1) = 1, P is a contraction in L^{∞} . Our main result is the following.

THEOREM 1. Equation (2) has a (unique) C^{∞} solution if and only if

(3) there exist constants $\delta > 0$, <u>M</u>, M such that

$$Pg(x, M) \geq \delta$$
, $Pg(x, M) \leq -\delta$,

at every point of Ω .

* The second author was partially supported by the Army Research Office Grant No. DAHCO4-75-G-0149, and by the John Simon Guggenheim Memorial Foundation. Reproduction in whole or in part is permitted for any purpose of the U.S. Government.

1

© 1977 by John Wiley & Sons, Inc.

Observe first that since (Au, u) = 0 for every u, it follows easily that R(A) and N(A) are orthogonal.

Proof: Necessity. If u is a solution of (2) we have

$$Pg(x, u) = 0$$

Let \overline{M} > sup u, \underline{M} < inf u; then for some δ > 0

$$g(x, \underline{M}) + \delta \leq g(x, u) \leq g(x, \overline{M}) - \delta$$
.

Therefore,

$$Pg(x, \underline{M}) + \delta \leq Pg(x, u) \leq Pg(x, \overline{M}) - \delta$$

by the properties of P mentioned earlier.

Uniqueness follows from the maximum principle.

Sufficiency. To prove existence we approximate (2) by

$$(2_{\varepsilon}) \qquad -\varepsilon \Delta u_{\varepsilon} + \varepsilon u_{\varepsilon} + A u_{\varepsilon} + g(x, u_{\varepsilon}) = 0, \qquad \varepsilon > 0,$$

and we show that (2_{ϵ}) has a solution. First we derive an *a priori* bound for the solution of (2_{ϵ}) with the aid of the maximum principle, used in a slightly unusual manner. The following lemma plays an essential role.

LEMMA 1. The set of functions of the form

$$Av + \zeta, \quad v \in C^{\infty}, \quad \zeta \in C^{\infty} \cap N(A),$$

is dense in the space C of continuous functions on Ω .

Proof: If $f \in C$, we may approximate f arbitrarily closely in the maximum norm by a real finite trigonometric sum

$$\tilde{f} = \sum_{|k| \le N} c_k e^{ik \cdot x}$$

Here $k = (k_1, \dots, k_n)$ represents a multi-index of integers, $k \cdot x = \sum k_j x_j$, and $|k| = \sum |k_j|$. Then we have

$$\bar{f} = Av + \zeta,$$

with

$$v = \frac{1}{i} \sum_{k \in J} \frac{c_k}{a \cdot k} e^{ik \cdot x}, \qquad \zeta = \sum_{k \in J'} c_k e^{ik \cdot x},$$

where

$$J = \{k \mid |k| \le N, a \cdot k \ne 0\},\$$

$$J' = \{k \mid |k| \le N, a \cdot k = 0\}.$$

Note that since \tilde{f} is real-valued, so are v and ζ .

A BOUND ON u_{ϵ} . Using the lemma we write

$$g(x, \overline{M}) = -Av + \zeta + R$$

with $|R| < \frac{1}{4}\delta$ and $\zeta \in N(A)$. From (3) we see that $\zeta + PR \ge \delta$ and hence $\zeta \ge \frac{3}{4}\delta$. From (2_{ε}) we have

$$-\varepsilon\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon}+Au_{\varepsilon}+g(x,u_{\varepsilon})=Av-\zeta-R+g(x,\overline{M}),$$

that is

$$\begin{aligned} -\varepsilon \Delta (u_{\varepsilon} - v) + \varepsilon (u_{\varepsilon} - v) + A(u_{\varepsilon} - v) + g(x, u_{\varepsilon}) \\ &= g(x, \bar{M}) - \zeta - R + \varepsilon \Delta v - \varepsilon v < g(x, \bar{M}) \,, \end{aligned}$$

provided ε is small enough.

We wish to estimate u_{ε} from above. At the point where $(u_{\varepsilon} - v)$ take its maximum (which we may suppose is positive) we have $g(x, u_{\varepsilon}) < g(x, \overline{M})$, so $u_{\varepsilon} \leq \overline{M}$. Therefore, $u_{\varepsilon} - v \leq \overline{M} + \max |v|$ everywhere and hence in any case $u_{\varepsilon} \leq |\overline{M}| + 2 \max |v|$. Similarly we obtain an estimate from below and therefore $|u_{\varepsilon}| \leq M$ independent of ε . (We can always assume that $M > \max (|\overline{M}|, |\underline{M}|)$.)

Existence. We prove now that (2_{ε}) has a solution for ε small by a standard truncation. Let $\tilde{g}(x, u)$ be a C^{∞} bounded function with $g_u > 0$ which agrees with g for $|u| \leq M$. With the aid of the Schauder fixed point theorem and standard regularity results for elliptic equations it follows that there exists a C^{∞} solution u_{ε} of

$$-\varepsilon\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon}+Au_{\varepsilon}=-\tilde{g}(x,\,u_{\varepsilon})\,.$$

This is because the linear elliptic operator on the left-hand side is invertible. By the maximum principle the solution is unique. Since $\tilde{g}(x, \bar{M}) = g(x, \bar{M})$ and $\tilde{g}(x, \underline{M}) = g(x, \underline{M})$, assumption (3) holds. Therefore, $|u_{\varepsilon}| \leq M$ and thus u_{ε} is also a solution of (2_{ε}) . Using the maximum principle we now obtain bounds for all derivatives of u_{ε} independent of ε . Indeed, if we differentiate (2_{ε}) with respect to x_i we find

$$-\varepsilon\Delta\left(\frac{\partial}{\partial x_i}\,u_\varepsilon\right)+\varepsilon\frac{\partial}{\partial x_i}\,u_\varepsilon+A\left(\frac{\partial}{\partial x_i}\,u_\varepsilon\right)+g_u(x,\,u_\varepsilon)\frac{\partial}{\partial x_i}\,u_\varepsilon=-g_{x_i}(x,\,u_\varepsilon)\;.$$

Since $g_u(x, u_{\varepsilon}) \ge \alpha > 0$ and $|g_{x_i}(x, u_{\varepsilon})|$ is bounded, we obtain a bound for $\max(\partial/\partial x_i)u_{\varepsilon}$ and for $\min(\partial/\partial x_i)u$. If we keep differentiating (2_{ε}) we see that the C^k norm of u_{ε} is bounded independent of ε , for $k = 1, 2, \cdots$. We may therefore let $\varepsilon \to 0$ through a sequence, and obtain a limit solution $u \in C^{\infty}$ concluding the proof of Theorem 1.

We illustrate Theorem 1 by two examples.

EXAMPLE 1. Assume a^1, a^2, \dots, a^n are linearly independent over the rationals (i.e., $a \cdot k = 0$ with $k \in \mathbb{Z}^n$ implies k = 0). Then (2) has a solution if and only if there exist \underline{M} and \overline{M} such that

$$\int_{\Omega} g(x, \overline{M}) \, dx > 0 \quad \text{and} \quad \int_{\Omega} g(x, \underline{M}) \, dx < 0 \, .$$

Indeed, in this case, N(A) is reduced to constant functions so that Pf is the average of f over Ω .

EXAMPLE 2. Suppose n=2, $a^1 = a^2 = 1$. Then (2) has a solution if and only if there exist \underline{M} , \overline{M} , $\delta > 0$ such that, for all $r \in [0, 2\pi]$,

$$\int_0^{2\pi} g(r+s, s, \bar{M}) \, ds \geq \delta \,, \qquad \int_0^{2\pi} g(r+s, s, \underline{M}) \, ds \leq -\delta \,.$$

In this case, N(A) consists of all functions of the form $\phi(x_1-x_2)$, $\phi \in L^2$. Here, characteristics of A are closed curves (on the torus) and in fact (2) can be solved along the characteristics.

It was pointed out to us by Jürgen Moser that Theorem 1 yields the existence of a C^{∞} invariant *n*-dimensional torus in \mathbb{R}^{n+1} : $(x, y), x \in \mathbb{R}^{n}, y \in \mathbb{R}^{1}$,

$$\dot{x}^{j} = a^{j}, \qquad j = 1, \cdots, n,$$

 $\dot{y} = -g(x, y), \qquad y \in \mathbb{R}^{1},$

with g as in the theorem. The torus is given by y = u(x), where u is our solution. Many authors have studied perturbation problems of the following form: Given a flow with an invariant surface, does there exist a neighbouring invariant surface for a slightly perturbed flow? If it does, how smooth is it? (See for instance Fenichel [4].) Our result gives some information in a nonperturbation problem but for a very special flow.

Remark. Since the operators A and Bu = g(x, u) are monotone, one could try to use the results of [2], [3]. They lead indeed to the fact that $\operatorname{Int}_{L^2} R(A+B) = \operatorname{Int}_{L^2} [R(A)+R(B)]$. However, in most cases, R(A)+R(B) has empty interior in L^2 . Consider Example 2 with g independent of x, continuous, nondecreasing, |g| bounded; set $g_{\pm} = \lim_{u \to \pm \infty} g(u)$. Suppose that

 $f(x) \in R(A+B)$; then one has necessarily, for every $r \in [0, 2\pi]$,

$$g_{-} \leq \frac{1}{2\pi} \int_{0}^{2\pi} f(r+s, s) \, ds \leq g_{+}$$

But the set of all such f has empty interior in L^2 .

2. Generalizations

1. It is clear from the proof that Theorem 1 is valid if we replace $A = \sum a^i \partial/\partial x_i$ by any constant coefficient operator

$$A = -\sum a^{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum a^i \frac{\partial}{\partial x_i}$$

with

$$\sum a^{ij}\xi_i\xi_j \ge 0$$
 for all $\xi \in \mathbb{R}^n$.

2. Instead of assuming g is C^{∞} and $g_u > 0$, assume that g is continuous in (x, u) and nondecreasing in u.

THEOREM 2. Assume g is continuous in (x, u) and nondecreasing in u. If (3) holds, then (2) has at least one solution $u \in L^{\infty}$.

By a solution of (2) we now mean a function $u \in L^{\infty}$ such that $Au \in L^{\infty}$ (in the distribution sense) and (2) holds a.e.

Indeed, we solve (2_{ϵ}) as above (here $u_{\epsilon} \in W^{2,p}$ for every $p < \infty$) and we get the bound $|u_{\epsilon}| \leq M$ with the aid of Stampacchia's form of the maximum principle (cf. [5], Chapter 8). Thus we can find a sequence $\epsilon_{j} \to 0$ such that $u_{\epsilon_{i}} \to u$ in weak* L^{∞} . Multiplying (2_{ϵ}) by Au_{ϵ} and integrating over Ω leads to

$$\int_{\Omega} (|Au_{\varepsilon}|^2 + g(x, u_{\varepsilon}) \cdot Au_{\varepsilon}) dx = 0.$$

Therefore, Au_{ϵ} remains bounded in L^2 and $Au_{\epsilon_1} \rightarrow Au$ weakly in L^2 .

Now we pass to the limit in (2_e) using Minty's device (cf. [1]): Let us denote by B_e the operator

$$B_{\varepsilon}v = -\varepsilon\Delta v + \varepsilon v + Av + g(x, v).$$

For $v \in C^2$, we have

$$\int_{\Omega} (B_{\varepsilon} u_{\varepsilon} - B_{\varepsilon} v)(u_{\varepsilon} - v) \, dx \ge 0 \, ,$$

that is

$$\int_{\Omega} B_{\varepsilon} v(u_{\varepsilon}-v) \, dx \leq 0 \, .$$

As $\varepsilon \to 0$ we have for every $v \in C^2$

(4)
$$\int_{\Omega} (Av + g(x, v))(u - v) dx \leq 0.$$

By a density argument (via convolution by smooth functions) we see that (4) holds for every $v \in L^{\infty}$ such that $Av \in L^2$. In particular, we can insert v = u - tw in (4) where t > 0 and $w \in C^2$; dividing by t and letting $t \to 0$ we find

$$\int_{\Omega} (Au + g(x, u)) w \, dx \leq 0 \quad \text{for all} \quad w \in C^2 \,,$$

and consequently Au + g(x, u) = 0.

In general, uniqueness does not hold; however if u and \hat{u} are two solutions of (2), we have $u - \hat{u} \in N(A)$ and $g(x, u) = g(x, \hat{u})$. This is because $\int_{\Omega} (g(x, u) - g(x, \hat{u}))(u - \hat{u}) dx = 0$ -which implies $g(x, u) = g(x, \hat{u})$ a.e.

3. We can even solve (2) for some functions g which are discontinuous in u. For simplicity we consider only equations of the form

(5)
$$Au + \beta(u) \ni f(x)$$
,

where β is a maximal monotone graph in R and $f \in C$. By a solution of (5) we mean a function $u \in L^{\infty}$ such that $Au \in L^{\infty}$ and (5) holds a.e. Let $R(\beta)$ be the range of β and set $\beta_{-} = \inf R(\beta)$ (possibly $\beta_{-} = -\infty$), $\beta_{+} = \sup R(\beta)$ (possibly $\beta_{+} = +\infty$).

THEOREM 3. Suppose $f \in C$ and assume there is $\delta > 0$ such that

$$(6) \qquad \qquad \beta_- + \delta \leq Pf \leq \beta_+ - \delta \,.$$

Then (5) has at least one solution. Furthermore the difference of two solutions lies in N(A).

Proof: Existence. Let β_{λ} be the Yosida approximation of β (see for example Proposition 2.6 in [1]). Since β_{λ} is continuous, we apply Theorem 2 to $g(x, u) = \beta_{\lambda}(u) - f$. This is because $R(\beta_{\lambda}) = R(\beta)$, so that $\lim_{u \to \pm \infty} \beta_{\lambda}(u) = \beta_{\pm}$, and thus condition (3) follows from (6) for suitable constants \underline{M} , \overline{M} . Therefore there exists a solution $u_{\lambda} \in L^{\infty}$ of

(7)
$$Au_{\lambda} + \beta_{\lambda}(u_{\lambda}) = f.$$

We note that

$$|\beta_{\lambda}(u_{\lambda})| \leq ||f||_{L^{\infty}}.$$

6

Indeed if u_{λ} were a C^1 function, we could apply the maximum principle to (7): at a point where u_{λ} achieves its maximum, $\beta_{\lambda}(u_{\lambda})$ also achieves its maximum and there we have $\beta_{\lambda}(u_{\lambda}) = f$. this argument can be made rigorous by approximating β_{λ} by smooth functions to which Theorem 1 applies; passing to the limit we obtain a solution of (7) satisfying (8). Thus any solution of (7) satisfies (8) in virtue of the fact that the difference of two solutions lies in N(A).

CLAIM. $|u_{\lambda}| \leq C$ independent of λ .

We shall obtain such an upper bound for u_{λ} —a similar argument yields a lower bound.

Case I. $\beta_+ = +\infty$. It can be easily seen that there exist C and $\lambda_0 > 0$ such that $\beta_{\lambda}(u) > \max |f|$ for u > C and $0 < \lambda < \lambda_0$. Hence $u_{\lambda} \leq C$ for $0 < \lambda < \lambda_0$.

Case II. $\beta_+ < \infty$. It can be easily seen that there exist C and $\lambda_0 > 0$ such that $\beta_{\lambda}(u) > \beta_+ - \frac{1}{2}\delta$ for u > C and $0 < \lambda < \lambda_0$. By Lemma 1 we write $f = Av + \zeta + R$ with $v, \zeta \in C^{\infty}$, $\zeta \in N(A)$ and $|R| < \frac{1}{4}\delta$. From (6) we find $\zeta + PR \leq \beta_+ - \delta$ so that $\zeta \geq \beta_+ - \frac{3}{4}\delta$. By (7) we obtain

$$A(u_{\lambda}-v)+\beta_{\lambda}(u_{\lambda})=\zeta+R\leq\beta_{+}-\frac{1}{2}\delta.$$

Again with the aid of the maximum principle—which can be justified as above—we find that $u_{\lambda} \leq |C| + 2 \max |v|$ for $0 < \lambda < \lambda_0$.

PASSAGE TO THE LIMIT. We make use of the following lemma (an easy consequence of Proposition 2.5 in [1]).

LEMMA. Suppose $u_{\lambda_i} \rightarrow u$ weakly in L^2 , $\beta_{\lambda_i}(u_{\lambda_i}) \rightarrow h$ weakly in L^2 and $\overline{\lim_{j \rightarrow \infty}} \int_{\Omega} \beta_{\lambda_j}(u_{\lambda_j}) \cdot (u_{\lambda_j} - u) \, dx \leq 0$. Then $h \in \beta(u)$ a.e.

In our case there is some sequence $\lambda_j \to 0$ such that $u_{\lambda_j} \to u$ in weak* L^{∞} , $Au_{\lambda_j} \to Au$ in weak* L^{∞} , and thus $\beta_{\lambda_j}(u_{\lambda_j}) \to f - Au$ in weak* L^{∞} . On the other hand,

$$\int_{\Omega} \beta_{\lambda_j}(u_{\lambda_j})(u_{\lambda_j}-u) \, dx = \int_{\Omega} (f-Au_{\lambda_j})(u_{\lambda_j}-u) \, dx$$
$$= \int_{\Omega} (f-Au)(u_{\lambda_j}-u) \, dx \to 0 \, .$$

Therefore the lemma applies and $f - Au \in \beta(u)$.

UNIQUENESS MODULO N(A). We shall use the following

LEMMA 2. Let $u \in L^2$ be such that $Au \in L^2$. Then Au = 0 a.e. on the set where u = 0.

Proof: We may work locally and thus consider the case where $A = \partial/\partial x_1$. For almost all values of $x' = (x_2, \dots, x_n)$ it reduces by Fubini to the one-dimensional case—which is well known (see for example [5], Appendix I).

Suppose u and \hat{u} are two solutions of (5). The monotonicity of β implies that $[(f-Au)-(f-A\hat{u})](u-\hat{u}) \ge 0$ a.e., that is $(Au-A\hat{u})(u-\hat{u}) \le 0$ a.e. Since, on the other hand,

$$\int_{\Omega} (Au - A\hat{u})(u - \hat{u}) \, dx = 0$$

we conclude that $(Au - A\hat{u})(u - \hat{u}) = 0$ a.e. By Lemma 2 it follows that $Au = A\hat{u}$ a.e. Theorem 3 is proved.

We illustrate Theorem 3 by two examples.

EXAMPLE 1. Let β be a C^{∞} function on (a, b) with $\beta' > 0$, $\lim_{t \downarrow a} \beta(t) = -\infty$, and $\lim_{t \uparrow b} \beta(t) = +\infty$. Then, for every $f \in C^{\infty}$, there is a unique C^{∞} solution of

$$Au + \beta(u) = f$$
.

Indeed, existence and uniqueness of an L^{∞} solution follows from Theorem 3. Since $|\beta(u)| \leq \max |f|$, we may apply Theorem 1 to a truncation of β and infer that $u \in C^{\infty}$.

EXAMPLE 2. This is concerned with solving a variational inequality.

COROLLARY. Assume $f \in C$ and that a^i are linearly independent over the rationals. If $\int_{\Omega} f \, dx < 0$, there exists a unique solution $u \in L^{\infty}$ of the variational inequality

(9) $u \ge 0$, $Au - f \ge 0$, u(Au - f) = 0 a.e. on Ω ,

with $Au \in L^{\infty}$.

Proof: Observe that (9) is equivalent to the equation

$$Au + \beta(u) \ni f$$
,

where β is the graph given by

$$\beta(u) = \begin{cases} 0 & \text{if } u > 0, \\ (-\infty, 0] & \text{if } u = 0. \end{cases}$$

Existence follows from Theorem 3. To prove uniqueness, suppose u and \hat{u} are solutions. By Theorem 3, $u - \hat{u}$ is a constant c. If $c \neq 0$ say c > 0, we have $u \ge c$, and therefore Au = f—which contradicts the assumption $\int f < 0$. Thus c = 0.

Remark. The condition $\int_{\Omega} f dx < 0$ cannot be dropped in general. It is easy to find a continuous function f such that $\int_{\Omega} f dx = 0$ and for which (9) has no solution $u \in L^{\infty}$ with $Au \in L^{\infty}$. If a solution did exist, we would have $0 = \int_{\Omega} (Au - f) dx$ and hence Au = f a.e. We now describe a continuous function f for which Au = f has no solution $u \in L^{\infty}$: Let $\{k^i\}$ be a sequence of multi-indices $k^j = (k_1^j, \dots, k_n^j)$ of integers such that

 $|a \cdot k^j| \leq \frac{1}{j^3}, \qquad j=1,2,\cdots.$

Set

$$f=\sum_{j}j(a\cdot k^{j})e^{ik^{j}\cdot x}.$$

Since

$$\sum j |a \cdot k^j| < \infty$$
,

the function f is continuous. On the other hand, the distribution solution (unique up to an additive constant) of Au = f is

$$u = \frac{1}{i} \sum_{j} j e^{ik^{j} \cdot x}$$

which is not in L^{∞} .

However if $f \in C^{\infty}$, and the coefficients a^i satisfy, for some positive constants C, σ ,

$$|a \cdot k| \ge C |k|^{-\sigma}$$
 for $k \ne 0$,

then the necessary and sufficient condition for (9) to have a solution is $\int f dx \leq 0$. Necessity is clear; for sufficiency the only case that has to be considered is the case $\int f dx = 0$. In this case, (9) has a (nonunique) solution in C^{∞} , namely, writing f as a Fourier series

$$f=\sum_{k\neq 0}c_ke^{ik\cdot x},$$

the function

$$u = \text{large constant} + \frac{1}{i} \sum_{k \neq 0} \frac{c_k}{a \cdot k} e^{ik \cdot x}$$

is such a solution.

4. (Added in proofs). We now present an existence theorem for

(2')
$$Au + g(u) = f(x), \qquad A = \sum a^{j} \frac{\partial}{\partial x^{j}},$$

in which g is not required to be monotone. We wish to express our thanks to H. Amann for useful discussions.

THEOREM 2'. Let $g \in C(\mathbb{R})$ be locally of bounded variation; let $f \in C(\Omega)$. Assume that, for some $\delta > 0$,

$$\lim_{u\to\infty} g(u) + \delta \leq Pf \leq \lim_{u\to+\infty} g(u) - \delta.$$

Then there exists a solution $u \in L^{\infty}$ of (2').

Proof: We first construct super and sub solutions $\bar{u} \ge \underline{u}$, i.e., functions satisfying

$$A\overline{u} + g(\overline{u}) - f \ge 0 \ge A\underline{u} + g(\underline{u}) - f.$$

To this end let M be such that

$$g(u) \ge \lim_{u \to +\infty} g(u) - \frac{1}{4}\delta$$
 for $u \ge M$.

10

By Lemma 1 we may write

$$f = A\overline{u} + \zeta + R$$
 for $\overline{u} \in C^{\infty}, \zeta \in C^{\infty} \cap N(A), |R| < \frac{1}{4}\delta$.

By adding a large constant to \bar{u} we may always suppose that $\bar{u} \ge M$. We have $Pf = P\zeta + PR = \zeta + PR$ and consequently $\zeta \le \underline{\lim}_{u \to +\infty} g(u) - \frac{3}{4}\delta$. Hence $A\bar{u} + g(\bar{u}) - f = -\zeta - R + g(\bar{u}) \ge 0$. Similarly we construct \underline{u} which we may always take to satisfy $\underline{u} \le \bar{u}$.

Now we use a monotone iteration scheme. Let $g_1, g_2 \in C(R)$ be nondecreasing, bounded functions such that $g = g_1 - g_2$ on $[\min \underline{u}, \max \overline{u}]$. We shall solve

$$u = (I + g_1 + A)^{-1} (f + u + g_2(u)) \equiv Tu$$

using the fact that T is order preserving (note that $I + g_1 + A$ is invertible in L^2 : A is maximal monotone, g_1 is monotone continuous and thus $A + g_1$ is maximal monotone). Since \underline{u} , \overline{u} are sub and super solutions we see easily that $\underline{u} \leq T\underline{u}$, $\overline{u} \geq T\overline{u}$. Consequently the sequences $u_n = T^n(\underline{u})$, $v_n = T^n(\overline{u})$ satisfy $u_n \leq v_n$, $u_n \nearrow$, $v_n \searrow$. Hence both sequences u_n , v_n converge to functions \underline{u} , \overline{u} in $\underline{u} \leq \underline{u} \leq \overline{u} \leq \overline{u}$ and \underline{u} and \overline{u} are generalized solutions of (2').

The argument may be extended also to g(x, u) under appropriate assumptions.

Remark. In the proof of Theorem 1, in particular in our derivation of an upper bound for the solution of (2_{ϵ}) , we decomposed $g(x, \overline{M}) = -Av + \zeta + R$. For ϵ sufficiently small, the function

$$\bar{u} = M + v + \max|v|$$

is in fact a super solution of (2_{ε}) .

Bibliography

- [1] Brézis, H., Opérateurs maximaux monotones, Lecture Notes, No. 5, North-Holland, 1973.
- [2] Brézis, H., and Haraux, A., Image d'une somme d'opérateurs monotones et applications, Israel Jour. Math., Vol. 23, 1976, pp. 165-186.
- [3] Brézis, H., and Nirenberg, L., Characterization of the range of some nonlinear operators and applications to boundary value problems, Annali della Scuola Norm. di Pisa, to appear.
- [4] Fenichel, N., Persistence and smoothness of invariant manifolds of flows, Indiana Univ. Math. Jour., Vol. 21, 1971, pp. 193-226.
- [5] Stampacchia, G., Equations Elliptiques du Second Ordre à Coefficients Discontinus, Sém. de Math. Sup., Les Presses de l'Univ. de Montréal, 1965.

Received October, 1976.