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1. The Main Result 

We consider here real functions of x =(xi, * a ,  x,) in W" which are 
periodic of period 21r in each variable, i.e., functions defined on the torus R, 
and on fl we consider the constant coefficient operator 

Let g : R X W -+ W be a C" function periodic in x such that 

(1) gu(x, u)>O for all x , u .  

Our purpose is to find a real C" periodic function u on the torus satisfying 
the first-order differential equation 

(2) A u  + g ( x ,  u )  = 0. 

We shall give necessary and sufficient conditions for a solution to exist. In the 
study of such problems one usually encounters difficulty with small divisors- 
in trying to invert A using Fourier series. It is because of (1) that this 
difficulty can be avoided. Let N ( A )  = { u E L2 I A u  = 0) (to be understood in 
the distribution sense). Let P denote the L z  projection on N ( A ) .  P has the 
important property that Pf 20 when f Z 0  (this follows from the fact that 
~=lim,,+, ( I + A A ) - ~ ) .  Since ~ ( 1 )  = I, P is a contraction in L". Our main 
result is the following. 

THEOREM 1. Equation (2) has a (unique) C" solution i f  and only i f  

( 3 )  there exist constants 6 > 0 ,  A4, such that 

Pg(x, fi)2 6 ,  Pg(x, A4) 5 -6, 

at every point of R. 
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Observe first that since (Au, u ) = O  for every u, it follows easily that R(A) 

Proof: 

and N(A) are orthogonal. 

Necessity. If u is a solution of (2) we have 

P g ( x ,  u )  = 0 .  

g(x, &f) + 6 5 g(x, u )  5 g(x, a) - 6 .  

Pg(x ,  &f) + 6 5 Pg(x, u) s Pg(x, a) - 6 

Let l\;i>sup u, M<inf u ;  then for some S > O  

Therefore, 

by the properties of P mentioned earlier. 
Uniqueness follows from the maximum principle. 

Sufficiency. To prove existence we approximate (2) by 

(2,) - E A U, + EU, + Au, + g( X, U, ) = 0 , E > O ,  

and we show that (2,) has a solution. First we derive an a priori bound for 
the solution of (2,) with the aid of the maximum principle, used in a slightly 
unusual manner. The following lemma plays an essential role. 

LEMMA 1. The set of functions of the form 

A u + { ,  ~ E C - ,  cECmnN(A) ,  

is dense in the space C of continuous functions on R. 

norm by a real finite trigonometric sum 
Proof: If f~ C, we may approximate f arbitrarily closely in the maximum 

Here k = (k l ,  7 * * , k,) represents a multi-index of integers, k * x = C kjxi,  and 
Ik l=C Ikil. Then we have 

f=Av+[ ,  

with 

where 
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Note that since f is real-valued, so are v and [. 

A BOUND ON u,. Using the lemma we write 

g(x, f i )= -Au+ [ + R  

with IRl<$S and [ E  N ( A ) .  From (3) we see that [ + P R  2 6  and hence [ZZS. 
From (2,) we have 

- E Au, + EU, + Au, + g(x, u,) = AV - [ - R + g(x, a) , 
that is 

-&A( U, - V )  + E (  U, - U) +A( U, - V )  + g(x, u,) ., 
= g(x, a)- 5- R + EAV - EU < g(x, Sf), 

provided E is small enough. 
We wish to estimate u, from above. At the point where (u, - u )  take its 

maximum (which we may suppose is positive) we have g(x, u,) C g(x, a), so 
u, I a. Therefore, u, - u S fi+ max lul everywhere and hence in any case 
u, 5 l&$l+2 max IuI. Similarly we obtain an estimate from below and therefore 
Iu,1 S M independent of E. (We can always assume that M >  max (In?/, /MI).) 

Existence. We prove now that (2,) has a solution for E small by a 
standard truncation. Let g(x, u) be a C" bounded function with g,, > O  which 
agrees with g for IuISM. With the aid of the Schauder fixed point theorem 
and standard regularity results for elliptic equations it follows that there exists 
a c" solution u, of 

-EAu, + EU,  +Au, = -g(x, u,) . 
This is because the linear elliptic operator on the left-hand side is invertible. 
By the maximum principle the solution is unique. Since g(x, a) = g(x, fi) and 
g(x, A4) = g(x, M ) ,  assumption (3) holds. Therefore, [us (  5 M and thus u, is 
also a solution of (2,). Using the maximum principle we now obtain bounds 
for all derivatives of u, independent of E. Indeed, if we differentiate (2,) with 
respect to xz we find 

Since g,,(x, u, )Za  > O  and Igx,(x, u,)l is bounded, we obtain a bound for 
max (a/dxi)u, and for min (a/axi)u. If we keep differentiating (2,) we see that 
the Ck norm of u, is bounded independent of E ,  for k = 1,2,  * - * . We may 
therefore let E + 0 through a sequence, and obtain a limit solution u E C" 
concluding the proof of Theorem 1. 
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We illustrate Theorem 1 by two examples. 

EXAMPLE 1. Assume a', a2 , .  - . , a" are linearly independent over the 
rationals (i.e., a - k = 0 with k E 2" implies k = 0). Then (2) has a solution if 
and only if there exist M and %f such that 

Indeed, in this case, N(A) is reduced to constant functions so that Pf is the 
average of f over a. 

EXAMPLE 2. Suppose n = 2, a' = a'= 1. Then (2) has a solution if and 
only if there exist M, I%, S > O  such that, for all r E [ O ,  2 ~ 1 ,  

g ( r + s, s, a) ds z S , J, g ( r + s, s, g) ds 5 - S . J, 
In this case, N(A) consists of all functions of the form 4(x1-x2), +EL'. 
Here, characteristics of A are closed curves (on the torus) and in fact (2) can 
be solved along the characteristics. 

It was pointed out to us by Jiirgen Moser that Theorem 1 yields the 
existence of a C" invariant n-dimensional torus in R"+' : (x, y) ,  x E R", 
Y ER1 ,  

j =  1,  * a ,  n, 1' = aj ,  

Y = -gb ,  Y) 9 Y ER' , 

with g as in the theorem. The torus is given by y=u(x),  where u is our 
solution. Many authors have studied perturbation problems of the following 
form: Given a flow with an invariant surface, does there exist a neighbouring 
invariant surface for a slightly perturbed flow? If it does, how smooth is it? 
(See for instance Fenichel [4].) Our result gives some information in a 
nonperturbation problem but for a very special flow. 

Remark. Since the operators A and Bu = g(x, u )  are monotone, one 
could try to use the results of [2], [3]. They lead indeed to the fact that 
IntLz R(A + B) = IntLz [ R ( A )  + R(B)]. However, in most cases, R ( A )  + R ( B )  
has empty interior in L2.  Consider Example 2 with g independent of x, 
continuous, nondecreasing, lgl bounded; set g, = lim,,,, g(u).  Suppose that 
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f(x) E R ( A  + B ) ;  then one has necessarily, for every r E LO, 2 ~ 1 ,  

g - 5 -  I l rn f ( r+  s, s )  ds S g+ . 
2T 0 

But the set of all such f has empty interior in L2. 

2. Generalizations 
1. It is clear from the proof that Theorem 1 is valid if we replace 

A =C aidlaxi by any constant coefficient operator 

with 

2. Instead of assuming g is C" and g, >0, assume that g is continuous in 
(x, u )  and nondecreasing in u. 

Assume g is continuous in (x, u )  and nondecreasing in u. If 
( 3 )  holds, then (2) has at least one solution u E L". 

By a solution of (2) we now mean a function u E L" such that A u  EL" (in 
the distribution sense) and (2) holds a.e. 

Indeed, we solve (2,) as above (here u. E W2*' for every p <a) and we get 
the bound lu,JSA4 with the aid of Stampacchia's form of the maximum 
principle (cf. [ S ] ,  Chapter 8). Thus we can find a sequence sj + 0 such that 
u,, - u in weak* L". Multiplying (2,) by Au, and integrating over leads to 

THEOREM 2. 

(IAu,I2+g(x, u,) * Au,)  dx = O .  b 
Therefore, Au,  remains bounded in Lz and A u , , - A U  weakly in L2. 

denote by B, the operator 
Now we pass to the limit in (2,) using Minty's device (cf. [l]): Let us 

B,u = -&Au + .W + A v  + g ( x ,  U) . 
For v E C2, we have 

(B,u, - B,u)( a, - u )  dx 2 0 ,  

that is 

B , u ( u , - u ) d x S O .  
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As E 0 we have for every u E C2 

(4) 

By a density argument (via convolution by smooth functions) we see that (4) 
holds for every u e L m  such that A ~ E L ' .  In particular, we can insert 
u = u - tw in (4) where t > 0 and w E C2; dividing by t and letting t + O  we find 

(Au + g(x, u) )w  dx 5 0 for all w E C2 , 

and consequently Au + g(x, u )  = 0. 
In general, uniqueness does not hold; however if u and z'i are two 

solutions of ( 2 ) ,  we have u -  li EN(A)  and g(x, u )  = g(x, a). This is because 
r 

J (g(x, u) -  g(x, ii))(u - a )  dx = 0- which implies g(x, u )  = g(x, 12) a.e. 
n 

3. We can even solve (2) for some functions g which are discontinuous in 
u. For simplicity we consider only equations of the form 

( 5 )  Au+P(u)3f(x) 7 

where p is a maximal monotone graph in R and f E C. By a solution of (5) we 
mean a function U E L "  such that A ~ E L "  and (5) holds a.e. Let R ( P )  be the 
range of p and set p- = inf R(P)  (possibly p- = -a), p+ = sup R(P)  (possibly 
p+ = +a). 

THEOREM 3. Suppose f E C and assume there is 6 > 0 such that 

(6)  

Then ( 5 )  has at least one solution. Furthermore the difference of two solutions 
lies in N(A). 

Proof: Existence. Let PA be the Yosida approximation of p (see for 
example Proposition 2.6 in [l]). Since PA is continuous, we apply Theorem 2 
to g(x, u )  = /?A(U)-f. This is because R(&)  = R(P) ,  so that lim,,,, &(u)_= 
&, and thus condition (3) follows from (6)  for suitable constants A4, M. 
Therefore there exists a solution uA EL" of 

(7) AuA+PA(uA)=f. 

We note that 

(8) IPA(uA)l5 IlfllL- . 

p- + s 5 Pf s p+ - s . 
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Indeed if uA were a C' function, we could apply the maximum principle to 
(7): at a point where uA achieves its maximum, P A ( u A )  also achieves its 
maximum and there we have PA(uA) = f. this argument can be made rigorous 
by approximating PA by smooth functions to. which Theorem 1 applies; 
passing to the limit we obtain a solution of (7) satisfying (8). Thus any 
solution of (7) satisfies (8) in virtue of the fact that the difference of two 
solutions lies in N(A). 

CLAIM. I uAl 5 C independent of A. 

We shall obtain such an upper bound for uA-a similar argument yields a 
lower bound. 

Case I. P+ = +m. It can be easily seen that there exist C and A. > 0 such that 
PA(u)>maxIfl for u > C  and O < A < A o .  Hence u A S C  for O < A < A o .  

Case 11. p+ < 00. It can be easily seen that there exist C and A,> 0 such 
that P A ( ~ ) > P + - + 6  for u > C  and O < A < A o .  By Lemma 1 we write 
f =  A u + l + R  with u, L E  C", [ E N ( A )  and IRl<iS. From (6) we find 
[+PRSP+-S so that lZp+-$S. By (7) we obtain 

A ( u A  - U) + PA ( u A )  = 5 + R 5 P+ - $6. 

Again with the aid of the maximum principle-which can be justified as 
above-we find that uA 5 (CI + 2 max 1 1 1 1  for 0 < A < A. . 

PASSAGE TO THE LIMIT. We make use of the following lemma (an easy 
consequence of Proposition 2.5 in [l]). 

LEMMA. 
r 

Suppose U A ! - U  weakly in L2 ,  PAi (~ ,+ , ) -h  weakly in L2 and 

In our case there is some sequence Aj + 0 such that uAI - u in weak* L", 
AuA, - Au in weak* L", and thus P A , ( u A , ) -  f -Au in weak* L". On the 
other hand, 

= (f-Au)(uA, - U )  dx  0 .  

Therefore the lemma applies and f -  Au E P ( u ) .  
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UNIQUENESS MODULO N(A).  We shall use the following 

LEMMA 2. Let U E L ~  be such that AueL2.  Then Au=O a.e. on the set 
where u = O .  

Proof: We may work locally and thus consider the case where A =a/&, . 
For almost all values of x '=(x2 ,  * - * ,  x,) it reduces by Fubini to the 
one-dimensional case-which is well known (see for exampIe [ 5 ] ,  Appendix 

Suppose u and ii are two solutions of (5 ) .  The monotonicity of p implies 
that [ ( f - A u ) - ( f - A i i ) ] ( u - i i ) B O  a.e., that is (Au-Aii)(u-C)SO a.e. 
Since, on the other hand, 

1). 

la (Au -A i ) (u  - 12) dx = 0 

we conclude that (Au-Aii)(u-ii)=O a.e. By Lemma 2 it follows that 
Au=Aii a.e. Theorem 3 is proved. 

We illustrate Theorem 3 by two examples. 

EXAMPLE 1. Let p be a C" function on (a ,  b)  with p ' > O ,  l imfrap(t)= 
-w, and lim,Tb P ( t )  = +w. Then, for every f~ C, there is a unique C" solution 
of 

Au + p( u )  = f . 

Indeed, existence and uniqueness of an L" solution follows from Theorem 3. 
Since Ip (u ) lS  max I f l ,  we may apply Theorem 1 to a truncation of p and infer 
that u E C". 

EXAMPLE 2. This is concerned with solving a variational inequality. 

COROLLARY. Assume f E C and that a i  are linearly independent over the 

f dx < 0, there exists a unique solution u E L" of the variational rationals. If 

inequality 

(9 )  u Z 0 ,  A u - f 2 0 ,  u(Au-f)=O a.e. on a ,  
with Au E L". 

Proof: Observe that (9) is equivalent to the equation 
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where /3 is the graph given by 

if u > O ,  

(-t.,O] if u = O .  

Existence follows from Theorem 3. To prove uniqueness, suppose u and ij 
are solutions. By Theorem 3, u - C is a constant c. If c #  0 say c > 0, we have 

u 2 c, and therefore Au = f-which contradicts the assumption < 0. Thus 

c = 0. 
If 

Remark.  The condition f dx  < 0 cannot be dropped in general. It is 

easy to find a continuous function f such that f d x  = 0 and for which (9) 

has no solution U E L "  with AuEL". If a solution did exist, we would have 

O =  (Au-f) d x  and hence Au=f  a.e. We now describe a continuous 

function f for which Au = f has no solution u E L": Let { k'} be a sequence of 
multi-indices k' = ( k ] ;  , - * * , k;) of integers such that 

b 
b 

b 

Set 

Since 

the function f is continuous. On the other hand, the distribution solution 
(unique up to an additive constant) of Au = f is 

which is not in L". 

constants C, u, 
However if f c  C", and the coefficients a' satisfy, for some positive 

( a -  k ( Z C I k ( - "  for k # 0 ,  
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then the necessary and sufficient condition for (9) to have a solution is 

f dx SO. Necessity is clear; for sufficiency the only case that has to be 

f d x  = 0. In this case, (9) has a (nonunique) solution 

I 
considered is the case 

in C”, namely, writing f as a Fourier series 
I 

f = c Ckeik-, 
k 20 

the function 
ck e i k . x  u = large constant +: C - 

1 k z o a .  k 

is such a solution. 

4. (Added in proofs). We now present an existence theorem for 

in which g is not required to be monotone. We wish to express our thanks to 
H. Amann for useful discussions. 

THEOREM 2’. Let gE C ( R )  be locally of bounded variation; let f E C(i2). 
Assume that, for some S > 0, 

lim g(u)+CsSPfS .m g ( u ) - 6 .  
u-+m u---m 

Then there exists a solution u E La of (2’). 

Proof: We first construct super and sub solutions Liz&, i.e., functions 
satisfying 

A 2  + g(Li) - f Z 0 Z A g +  g(g)  - f .  

To this end let M be such that 
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By Lemma 1 we may write 

By adding a large constant to ii we may always suppose that ii h M. We have 
Pf = P l +  PR = 5 + PR and consequently l S lh,,+, g( u )  -sS. Hence 
Aii + g (  6 )  - f = -6 - R + g( ii) 2 0. Similarly we construct u which we may 
always take to satisfy _u S ii. 

Now we use a monotone iteration scheme. Let gl ,  g2 E C(R) be nondec- 
reasing, bounded functions such that g = g ,  - g ,  on [min _u, max 273. We shall 
solve 

u = (I+ gl + A)-'(f+ u + gz(u)) = Tu 

3 

using the fact that T is order preserving (note that I+ gl + A  is invertible in 
L2: A is maximal monotone, gl is monotone continuous and thus A+gl  is 
maximal monotone). Since _u, ii are sub and super solutions we see easily that 
- u 9 T', ii 2 Tii. Consequently the sequences u, = T"(u), u, = T"(ii) satisfy 
u, S u n ,  u , f ,  v,L. Hence both sequences u,, u, converge to functions u, ii 
in g 5 _u 5 ii 5 ii and g and ii are generalized solutions of (2'). 

The argument may be extended also to g(x, u )  under appropriate assump- 
tions. 

Remark. In the proof of Theorem 1, in particular in our derivation of an 
upper bound for the solution of ( 2 E ) ,  we decomposed g(x,I%)=-Au+l+R. 
For E sufficiently small, the function 

ii = I%+ u +max (ul 

is in fact a super solution of ( 2 E ) .  
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