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Remarks on Nonlinear Ergodic Theory 

H. BRJ~ZIS AND F. E. BROWDER 

Department of Mathematics, University of Chicago, Chicago, Illinois 60637 

The development of general ergodic theory for nonlinear operators was 
begun by Baillon in [l], where he considered a nonexpansive mapping U of a 
Hilbert space H into H, formed the Cesaro means 

n-1 

&(x) = (l/n> c w4, 
j=O 

(1) 

and showed that if &(x0) is bounded for a given x0, then S,(X) converges 
weakly as n -+ + co to a fixed point of U for each x in H. A corresponding 
result (with a simpler proof) for one-parameter semigroups {U(t); t 3 0} is 
given by Baillon [2] and Baillon and BrCzis [4]. For the special case in which U 
is an odd mapping, Baillon showed [3] that S,(x) converges strongly in H. 

In [6], the writers generalized Baillon’s results to more general summation 
methods, 

~44 = 2 %,P(X), (2) 
j=o 

where {Q} is any strongly regular summation method, 

+ +oo for fixed j, (3) 

and showed that if U is a nonexpansive self-map of a Hilbert space H with a 
nontrivial fixed point set, then T,(X) converges weakly for each x to a fixed 
point of U. Simple proofs of Baillon’s result have also been given by Pazy [lo] 
and Tartar. It was also shown [fl that if U satisfies an inequality of the form 

IW4, U(Y)> - (x2 Yl G 4 x II2 - II ww + II Y /I2 - II ~(YN2>~ (4) 

which would follow from the assumption that U is odd, then under a further 
“properness” condition on the summation method {u,,~}, which holds for 
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Cesato means in particular, Tm( ) x converges strongly in H. More recently, 
Bruck [S] has reconstructed the proof of [6] to show that properness is un- 
necessary in the argument. (Another proof using the results of Lorentz on 
almost convergence has been given by Reich [ll].) 

A different extension of Baillon’s original result has been given by Beauzamy 
and Enflo [5] who consider the Banach space 1,) 1 < p < cc, with a weakly 
continuous duality mapping J = 3~)~ , where vP(x) = /I x /jr’, for a given p with 
1 < p < + co and show the weak convergence of yle , where yk: is the minimum 
point of the function, 

k=O 

In the present paper, we give an extension of all these results based on a 
simple and transparent argument. To include the various interesting cases (as 
well as to make the underlying structure of the proof more visible) we state the 
result in a very general form replacing the semigroups Z+ = {n / n > 0} and 
R+ = {t / t real, t > 0} by a general commutative semigroup. 

Let S be a commutative semigroup, i.e., there exists a binary operation on S 
which is both associative and commutative. (This operation we write in the 
additive form (a, b) -+ a + b for a, b E S.) We assume given a o-field F on S 
such that for each A in F, a in S, if 

A,=A+a (6) 

then A, lies in F. We consider measures p of total mass 1 on F. 

Let X be a Banach space, C a closed convex subset of X. By a representation 
of S in terms of nonexpansive self-mappings of C we mean a family {U, ; s E S} 
where each U, is a nonexpansive mapping of C into C, i.e., 

II us@9 - U&)ll G II A” - 24. II (x7 u E C), (7) 
and for each x in C, U,(x) is a strongly F-measurable function on S, while 

Ua+&) = UaW&N (8) 

for all a, b in S and each x in C. 

DEFINITION 1. Let &A ; h E (1} be a family of positive measures of mass 1 
on F indexed on the partially ordered set A. Then the family is said to be 
strongly regular if 

(1) For each a in S, Pi + 1. 

(2) For each a in S, if we set pA,,(A) = pLn(A,) for each A in F, then 

I ~,a(4 - PA(A)I - 0. 
We use - to denote weak convergence, + for strong convergence. 
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THEOREM 1. Let X be a uniformly convex Banach space. Suppose that there 
exists a strictly convex function y: R+ + Rf with y(0) = 0, Y(Y) -+ +60 as 

Y + $00 such that if g(x) = ~(11 x II), then the subgradient T, of g is continuous 
on bounded subsets of X from the weak topology of X to the weak topology of 
its conjugate space X*. 

Let S be a commutative semigroup, (U, ; s E S} a representation of S by non- 

expansive self-mappings of X such that {U,(x,)} is boundedfor some x0 in X. Let x 
be a given element of X, and let 

Then 

(1) For each A, there exists a unique element yA of X for which 

P~YJ = minh(yh Y E Xl. 

(2) y,+ - z, where z is the asymptotic center of the family (U,(x); s E S} and 
is a fixed point of each U, , a E S. 

Before proceeding to the proof of Theorem 1, let us introduce some basic 
considerations which allow us to specify the meaning of the terms used in 
Theorem 1. First of all, we introduce an ordering on S by saying that b 2 a if 
and only if b E S, (or in other words, considering the family {S,} as the base 
of a filter on S). For each a in S, we set 

%(Y) = “,z$J Y(ll Us(x) - Y Ill* 
a 

Since (11 U,(x,,)lI) is bounded and each U, is nonexpansive, the family {U,(x)} is 
bounded for x, II U,(x)li < M (s E S). M oreover, since the space X is uniformly 
convex, the family (U,} has a stationary point, i.e., a point x,, for which 

Udxo) = x0 * (For the basic fixed point theory of nonexpansive maps on uni- 
formly convex spaces, we refer to the detailed discussion in [7].) 

Each 0, is a convex locally Lipschitzian function on X with o,(y) 3 
~(11 y II - M). For b 3 a, 0 < udy) < U,(Y). Hence 

439 = liy 4r) 

exists and is a convex continuous function on X with u(y) > ~(11 y 11 - M). 
Since X is reflexive, the set 

{Yo I 4Yo) = $! u(Y): 

is nonempty. We assert that this set consists of a single element Z, which we call 
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the asymptotic center of (U,(x)}. To prove this, we use the following elementary 
lemma. 

LEMMA 1. Let X be uniformly convex, y  a strictly convex function on X with 

y(O) = 0, MO > 0. Then f or each E > 0, there exists 6, > 0 such that for all u 
and v  in X with /I u /I, 11 v  )/ < MO, and /I u - v  /j > E, 

r(ll Sk + v>llI G h4I 24 II> + WI v II> - 6, * 

Proof of Lemma 1. Since jl u - v [I 2 E, at least one of the pair I] u 11, 11 v II 
must be at least c/2. Hence we may assume that I/ v // < I/ u I/, 42 < 11 u // < M,, . 
By the uniform convexity of X, there exists &(E) > 0 such that if 

then 
II 24 II 3 II v II 2 II u II - h(~) 

Then 
Q II 24 + v II G Q II 24 II + 4 II v II - u+ 

r(Q II u + v II) G tr(ll ZJ II> + WI 0 II> - u4 

for a suitable 6,(c) > 0. 
On the other hand, if II w jl < 11 u I/ - S,(E), then setting r = II u/I, s = 11 v  II, 

we have s < r - S,(E), and by the strict convexity of y 

Y(* II u + 7.~ II) < y(Hr + SN G Mr) + MS> - We Q.E.D. 

If we assume that for two distinct points y,, and yr , 

4rd = 4~~) = “;‘” U(Y), 

and set E = I/ yr - y,, II 3 0, then for y’ = +(ys + yr) and any s in S, 

r(ll us -Y’ II) = r(S II w* - yo’o) + w, - YJI) 

< Mll us - Yo II) + MII us - Yl II) - 6 - 

For s > a,, we may ensure that 

74 us - Yo II> d 4Yd + w, r(ll us - y1 Ii> G 4~~) + PE. 

Hence for such s, 

741 U, - y’ II) d $n a(y) + +S, - 6, < m;ln S(y) - $3,. 

Hence u(y’) < min, u(y) - &S, < min u(y), which is a contradiction. Thus the 
asymptotic center z is well defined. 
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LEMMA 2. Let X be a uniformly convex Banach space, {y,,) a bounded set in X 
indexed on A. Suppose that U is a nonexpansive self-map of X and that 
li(I - U)y, /I ---f 0. Then every weak accumulationpoint of { yA} is ajxedpoint of U. 

Proof of Lemma 2. This is a basic property of nonexpansive maps jn uni- 
formly convex spaces (cf. [7, Theorem 8.41). 

LEMMA 3. Let X be a uniformly convex B-space. For each X, there exists one 
and only one point yA of X such that 

pA( ~5) = minh(y); Y E Xl. 

Proof of Lemma 3. Since pA is a continuous convex function of y in X with 

PA(Y) > jsr(liy II - W dds) = r(llr II - W, 

it follows that pA has at least one minimum point for each A. Moreover, the set of 
possible minimum points (yJ is uniformly bounded since 

and for II y II > 2% r(llr II - M) > PA@). 
To prove the uniqueness of yn , suppose for a given h that for t, + yr , 

IIYI -YoII II E > a 

~dyd = pA(yl) = m;ln PRY). 

Set y’ = +(y,, + yr). Then 

PAY’) = s, r(ll ~$4 - Y’ II) PA ds G ~PA(YO> + +PPA(YI) - 6, 

< min pA(y) - 6, , 

which is a contradiction. Thus y,, is unique. Q.E.D. 

LEMMA 4. Let X be a Banach space, {U, ; s E S> a representation of S by 
nonexpansive maps of X into X, and let {CL,+ ; h E A> be a strongly regular family of 
positive measures of mass 1. Then for each a in S, x in X, 

(4 ~~PAVJ~YA)) - P,~YA>> G 0. 

lb) IIYA - U~YA II - 0. 
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Proof of Lemma 4. Proof of (a): We observe that 

The first integral may be written in the form 

where Ml = sups r(ll U,(x) - yn II). 
For the second integral, 

4 < M,,dS\Sa) + 0, 

where M, = sups ~(11 U,(x) - U,(YA)II). 
Hence 

PAW~(YA>) - PAY,) G 4 I /-~.a - PA I P) + MdWa), 

from which it follows that 

liifih(UcdYn) - Ph(Yd G 0. 

Proof of (b). Consider a value of A such that I\yA - U,(yA)lI 3 E. Set 
w = 4(yA + U&)). Then 

PAW G MY*) + MU,(YJ) - 6, * 

For h > A, , 

Hence for such A, 

This is impossible. Hence for X 3 A., 11 y,, - U,(yA)!i < c. Q.E.D. 



NONLINEAR ERGODIC THEORY 171 

Proof of Theorem 1 concluded. Since yA is the minimum point of p, , we 
know that for each v in X, 

Thus yA satisfies the implicit equation 

(If J, is the identity map of a Hilbert space, this gives us the simpler explicit 
formula 

YA = s s U&4 d4, (10) 

which generalizes the special case of the strongly regular averaging process.) 
To show that the bounded directed set {y,,} in X converges weakly to a, it 

suffices to show that each weak accumulation point w of { yh} must coincide with Z. 
By Lemma 4, // yA - UG(y,)l\ + 0. Hence by Lemma 2, w must be a fixed point 
of each U, (a E S). It follows that for t 2 s, t = s + a, 

Hence 

r(ll UN - w II) = 24 UJJ&) - UCP II) 
G All Us@) - w II). 

If w # Z, then o(w) - U(Z) = E > 0. For h 3 A,, 

~44 = s s r(ll us(x) - w II) cL&W 3 44 - 6. 

On the other hand 

for h > A, . Thus for such h 

i.e., 
“(W) < PA(W) + s G f&J) - Ph(4 + 44 + 287 

E = u(w) - o(z) < PA(W) - PA(Z) + 2s. 
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Suppose t = E - 26 > 0. Then for h > A, 

However, 

where 

r(ll U,(x) - w II) - r(ll U&> - z II> G U%w&) - 43 z - 4, 
hence 

For h in a cofinal set A, of A, A, - w - 0. Hence U,(x) - yA - U,(x) - w 
uniformly in s. Since J, is uniformly continuous on bounded sets from the weak 
topology of X to the weak topology of X*, it follows that 

(JWP - YAh x - 4 + (J(Ud4 - 4, z - 4 

uniformly in s. Therefore, 

0 = lim s (JWs(‘4 - YA , z - eu> p&q a- f > 0, s 
which is a contradiction. 

Thus w = z and the proof of Theorem 1 is complete. Q.E.D. 

Remark. The outstanding class of uniformly convex Banach spaces X for 
which the hypotheses of Theorem 1 are valid are the &-spaces with 1 < p < + co. 
For each such space, the function y,(r) = rp has the corresponding subgradient 

J,, = ag, , with g,(x) = r,(ll x II) given by 

x = (x1 ) x2 ,...} E Iv 

J&4 = {P I xj I’-’ w&)1 E 4 

and J,, is uniformly continuous on bounded sets from the weak topology of 1, 
to the weak topology of I, . 

Our basic result on strong convergence is established only in Hilbert spaces. 
We give it only in the formally simplest case of S = Z+ where it sharpens the 
result of [8]. 

THEOREM 2. Let H be a Hilbert space, {xj> a sequence in H such that for each m, 

Cxj 7 xn+i) converges as j -+ + 00, the convergence being uniform for m >, 0. Let 
{a,j} be a strongly regular summation method. 
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If yn = CT=,, a,,jxj , then ym converges strongly in H to the asymptotic center 

of the sequence {xi}. 

Proof of Theorem 2. Let z be the asymptotic center of the sequence (xj}. We 
divide the proof into two stages: (a) yn - z; (b) yfi --f a. 

Proof of (a). Let E > 0 be given. By hypothesis, for each m 3 0, there 
exist f(m) and an integer j, such that for j 3 j, , 

I&j , xj+d - 4Wl < E. 

Fix one such value ofj. Then for each n 

implies that 

5-l 
(Xj ) YJ = z. txi , ankxk) + go an,&5 , %+k) 

j Cxj , YJ - i. a,,i+k@) 1 < M 2 a,,k + 6. 
k=O 

Furthermore, 

where the right-hand side approaches E as n --+ +c.o. Thus 

Let {y,$} be a weakly convergent subsequence of {y,J with weak limit w. 
Then for large j, j 

I(%, 4 - (xj, > 41 < 26 
i.e., 

Hence 

(x5,4-+7 (j-t+=)>. 

(ym, 4 = f a,Axj, 4 ---f 7 (m+ +a). 
j=o 

Let {ym,} converge weakly in H to w, . Then 

(w19 w) = 7 = (w, w) = (WI, WI). 

Hence 11 w /[ = 11 wI 11, (wI , w) = 11 w 11 * (j wr (1, and by the sharp form of the 
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Schwarz inequality, w = wr . Hence yn converges weakly to an element w of H. 
Moreover, (xj, w) -+ [( w \I2 as j + +cc. Hence 

II xj - w II2 = II xj II2 - 2(x, , 4 + II w II2 - 5(O) - II w II2 
asj++oo.ForanyuinH, 

11 xj - u ((2 = /I xj - w 112 + 11 w - u (12 + 2(x, - w, w - 24). 

Thus 

f 4L.j II xj - u 11’ = f %,j{ll xj - w (1’ + (1 W - u 11”) + 2(m - W, W - U). 
j=O j=O 

Since U(U) 3 limCT=, u,,~ (( xj - u /j2, it follows that 

u(u) 2 u(w) + II w - ZJ. 112, 

since (yn - w, w - 
To prove strong 

defined by 

U) ---f 0. Thus w is the asymptotic center of the sequence {xj}. 
convergence we introduce the summation method {b,,,} 

b 7x.0 

b n.r =2f a,,ja,d+, for 721. 
j=O 

We assert that {b,,,} is a strongly regular summation method when (a,J is. 
Indeed 

since 

< 20, + I bn,, - Lo I - 0 as n-+cc. 
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We note that 

Let E > 0 be given; we choose m so that (x,,, , w) < )I w 11s + E, and also 

I(%, %+A - &)I < E 

for j > m and all T >, 0. In particular, for j > m and all r > 0, 

I(Xi 3 %+A - (*m 9 %+,)I < 26 

We find with M = Sup I xi 1, 

+ C 4t.j II *, /I2 + Ma C ai.j + E 
jam i<m 
m m 

<2CCa a. (x 12.3 n.3+7 m I %ntr ) 
j=O +=l 

+f & II *m II2 + 4M2 C 1 a,,ja,,j+, + 2M2 C a:,? + E 
j=O ion r=l j<m 

= %a, 
( 5 WX,i, + 4M2 C 1 an,jun.j+T + 2M2 1 & . 

9-O j<m r=l j<m 

Clearly the last two terms approach zero as n --+ + cc (for fixed m). 

We apply now the result of the previous discussion to the strongly regular 
summation method (b,,,} and we deduce that for each m 

( 
*, , go b,,p,+,) -+ (xm (4 as n - +a. 

(We use here the shifted sequence {x~,,} instead of {x,.}; is satisfies the same 
property as {x,.) and has the same asymptotic center.) 

Finally, we conclude that 

Ii IlYn II2 < @WI 3 4 + E 

e II w II2 + 2E. 

Since e > 0 is arbitrary, and since y,, - w, it follows that ye -+ w. Q.E.D. 

607/q/2-6 
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To apply Theorem 2, we note that if U is a nonexpansive mapping on H 
which satisfies the inequality (4) with U(0) = 0 and if we set xi = U(X) for a 
fixed x in H, then 

l@i+r+1 9 xi+l) - CXj+r 9 xj)l G c{ll xj /I2 - II xj+l II2 + II Xj+r /I2 - II xj+T+l II”}. 

Summing in j from k to s - 1, k < s, we see that 

I(%+T > xs) - (Xk,, > Xk)l G 411 Xk /I2 - II xs II2 + II %+7 II2 - II x,+7 II”>. 

Since II xi /Ia decreases to a limit [,, as j increases, it follows that 

I@ S+T 1 x,> - (xk.s 7 xk)l < 2c{11 xk /I2 - if,> - 0 

as k + + co uniformly in s and T. Hence (xi , xj+,.) converges uniformly in r 
and Theorem 2 is applicable. 

COROLLARY. Suppose U is a nonexpansive map of H into H with U(0) = 0 
such that (4) holds. Then for any strongly regular {a,,,}, 

where w is the asymptotic center of { U(x)}. 

If U is odd and nonexpansive, 

i.e., 

II w - w4112 < II fJ. - ?J II2 
II w4 + UWl12 G II 24 + 0 /12, 

(44 w - (f4 4 6 II fJ II2 - II wa” + II fj II2 - II wJ)II”, 
(f4 4 - bw~ w4 G II u II2 - II Wl12 + II 0 II2 - II Wll”. 

Hence the inequality (4) holds and the corollary is applicable to every odd U. 
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