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Let Q be a ovfinite measure space with measure denoted by dx. A non
linear integral equation of Hammerstein type on iî is an equation of the 
form 

(1) u(x) + ! k(x, y)f(y9 u(y)) dy = v(x) (x e Q), 
•/a 

where we seek a real-valued function u on Q which satisfies the relation 
(1) for a given kernel k(x,y), nonlinear function ƒ (y, w), and a given 
inhomogeneous term v. If u and v are r-vector functions with real com
ponents for an integer r> l , one speaks of a system of Hammerstein 
equations where ƒ is a function from Q x Rr into Rr

9 and for each x and y 
in Çl, k(x, y) is a linear transformation on Rr. 

In two recent papers [1], [2], we have presented new methods of ob
taining solutions of Hammerstein equations using techniques from the 
theory of monotone mappings between Banach spaces. In the present note, 
we present some new general results on the existence of solutions of 
Hammerstein equations and systems for the case in which the linear 
transformation defined by the kernel k(x, y) is compact and in which, 
therefore, the methods of the theory of compact mappings in Banach 
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spaces can be applied. The hypotheses of these existence theorems are 
drastically weaker than those of previously published results (cf. [3], [4] 
for extended discussions of results on Hammerstein equations obtained 
by compact operator methods). 

We begin by transforming the Hammerstein equation or system into 
an equivalent functional equation in an appropriate Banach space. For 
the Hammerstein equations, we assume throughout that A: is a measurable 
function on QxQ and that f(y, u) satisfies the Carathéodory condition. 
For the system, we assume similar conditions for the corresponding 
(rxr)-matrix and r-vector functions. We introduce the operators 

(2) (Ku)(x) = f k(x, y)u(y) dy {x e Q), 

(3) (Fv)(x)=f(x,v(x)) (xeO). 

We impose one of the following sets of hypotheses: 
(Hv) : For a given p with 1 <p < oo, 

(a) AT is a compact linear mapping from LV\Q) to LV{Q). 
(b) For each v in L»(Q), Fv lies in Z/(ft). 

(H00): (a) À'is a compact linear mapping of /^(Q) into L°°(Q). 
(b) For each R>0, there exists a function gR in /^(Q) such that 

\f(y,u)\^gR(y) on Q for \u\^R. 

THEOREM 1. Suppose that the hypothesis (H00) is satisfied for a single 
Hammerstein equation, and that there exist a constant R0>0 and ip in 
L1^) such that [ƒ(ƒ, u)—tp(y)]u^0for \u\^R0,yin Cl. Then the Hammer
stein equation (1) has a solution u in L™(Q)for each v in L°°(D). 

THEOREM 2. Suppose meas(£i)< + oo, the hypothesis (Hp) is satisfied 
for a single Hammerstein equation for a given p, 1 <p< oo, and that there 
exist a constant R0>0 and ip in LV\Q) such that [ƒ(ƒ, u)—yj(y)]u^0 for 
\u\^RQ, y in Q. Then the Hammerstein equation (1) has a solution u in 
L*(0)for each v in L9(Q). 

THEOREM 3. Suppose that the hypothesis (H^) is satisfied for a system of 
Hammerstein equations, and that there exist constants R0>0, c>0 and 
xp in L\Q) such that (f(y, w)-?(ƒ)) * u^c\f{y, u)-y>(y)\ • \u\ for \u\>R0 

and y in Q. Then the Hammerstein system (1) has a solution u in U°(Q)for 
eachvinU°{Q). 

THEOREM 4. Suppose that meas(Q)< + oo and the hypothesis (H ,̂) is 
satisfied for a system of Hammerstein equations, and that there exist con
stants R0>0, c>0 and an element %p ofLp\Q) such that 

(f(y, w) - vOO) -u^c \f(y, u) - vOOl • \u\ 
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for M ̂ l*o and y in Q.. Then the Hammerstein equation (1) has a solution 
u in Lp(Q)for each v in LP(Q). 

We remark that the dot product on the left side of the inequalities in the 
hypotheses of Theorems 3 and 4 refers to the inner product in the Euclidean 
space Rr. 

To simplify and normalize the proofs of Theorems 1 to 4, let us note 
first that the Hammerstein equation (1) is equivalent to the modified 
equation: 

(4) n(x) + ! k(x9 y)Uy9 u(y)) dy = v±(x) (x e Û) 

with 

(5) fi(y,u)=f(y9u)-f(y)9 

(6) t̂ öO = v(y) - (Ky>)(y). 

After this formal change, the inequalities in the hypotheses of the respective 
theorems have t/>(y)=0. We shall assume this henceforward in the argu
ment. Second, let us observe that in the case of the scalar equation con
sidered in Theorems 1 and 2, the hypothesis ƒ (y9 w)w^0 for |«|^i?0 

implies that f(y9 u)u^\f(y9 u)\ • \u\9 i.e., that the type of hypotheses 
imposed in Theorems 3 and 4 for systems holds for scalar equations with 
c= 1 if the apparently weaker hypotheses of Theorems 1 and 2 are imposed. 
Thus, Theorems 1 and 2 follow from Theorems 3 and 4 for systems 
respectively. 

LEMMA 1. Under the hypothesis of (H^), F is a continuous mapping of 
Lp(0) into LP\Q) which maps bounded sets ofLv(Q) into bounded sets of 
LP'(Q). Moreover, there exist a constant c1 and h in LP'(Q) such that for all 
y and u9 \f(y9 u)\<Cl\u\^+h(y). 

PROOF OF LEMMA 1. This is established in the opening chapter of 
Krasnoselsky's book [4]. 

The proofs of Theorems 3 and 4 depend upon the proof of a priori 
inequalities for solutions of the Hammerstein system (1) which in turn rest 
upon the inequalities established in the following lemmas. 

LEMMA 2. Suppose that f(y9 u) satisfies the condition (b) of the hypo-
thesis (HJ, and that (f(y9 u) • u)^c\f(y9 u)\ • \u\ for \u\^R0. Then for 
each fc>0, there exists a constant c(k) depending on k such that 

(7) (F(u), u)^k ||F(H)||£1 - c(fe) (u e L°°(Q)) 

where F(u) is the Niemytskii operator defined by the equation (3). 
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PROOF OF LEMMA 2. It suffices to prove the inequality (7) for all 
sufficiently large k. Let R^R0. Then 

(F(w), U) = f ƒ (y, u(x)) • u(x) dx + | ƒ (x, w(x)) • u(x) dx = Ix +1*. 
J\u\^R J\u\>R 

For Il9 we have the estimate 

J|u|<i2 

For the integrand in 72, we have the inequality 

f{x, U(X)) • U(X) ^ | ƒ(* , M(X))| • |M(X)| ^ C* |/(X, l|(x))|. 

Hence 

72 ^ f cK |/(x, M(X))| dx ^ cK HFWIlii - Re f |ƒ(*, u(x))\ dx 
J\u(x)\^R J\u(x)\^R 

Z:cR\\F(u)\\Li-cR\\gR\\Li. 

Combining these various inequalities, we see that 

(F(II), u) ^ cR \\F(u)\\LiiQ) - X(R). 

Setting k=cR, we obtain the desired result. Q.E.D. 

LEMMA 3. Suppose that meas(£fc)<oo and that f(y9u) satisfies the 
condition (b) of the hypothesis (HP), and that ifiy, «)) • u^c\f(y9 u)\ • \u\ 
for |t/|>^0. Then there exist constants Ci>0, c2^0 such that 

(8) (F(n), u) ^ cx ||F(u)||£V _ c2 (ii 6 L»(Q)), 

UW/ as a consequence for each k>0, there exists a constant c(k) such that 

(9) (F(II), ii) ^ fc | |F(II) | |^ - c(fe) (u e L"(0)). 

PROOF OF LEMMA 3. 

(F(w), u) = fix, M(X)) • w(x) dx 
J\u(x)\<R0 

+ f /(x, u(x)) • u(x) dx = Ix + h. 
•M " ( s ' I s Ko 

By Lemma 1, we have the inequality 

| /(x,«(x)) |^ c0 MX)!»"1+ />(*), 
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with h in Z/(£2). Hence, we may estimate Ix and obtain 

l/il ^ f c0 |i#(x)|* dx + ( \u(x)\ h(x) dx 
J\u\^R0 J\u\^Ro 

^ c0R»0 meas(n) + ( f |u(x)|* dxf VlL*' 
\J\U\£R0 I 

^ cQRv
0 meas(Q) + measCQ)1'**,, Il A II z,»'. 

For the integrand of 72, we have the inequality 

/(x, u(x)) • u(x) ^ e |/(x, u(x)| • |w(x)| 

while it follows from the inequality of Lemma 1 that 

|H(*)I ^ C2 \f(x, «(X))!1^"1 - Czh(xf»-\ 
Thus 

/(%, M(x». u(x) ^ c4 iFCiix^r1 7-1 - 5̂ IF(MX*)I K*?**-
If we integrate this last inequality and note that/?'=1 + 1/ƒ?—1, we find that 

h ^ c, ||F(u)||iV - c4 f |F(u)(x)r' dx - cB\\F(u)\\L>> \\h\\L*> 
J\u(x)\^R0 

^ c* l|F(u)||£V - c6 | |F(II)|£-' - c7. 

Since ^^e^'+cCe) for each e>0, the inequality (8) follows im
mediately, while the inequality (9) is an obvious consequence of the 
inequality (8). 

The general form of the argument by which we apply the results of 
Lemmas 2 and 3 to the proofs of Theorems 3 and 4 is given by the follow
ing abstract result. 

THEOREM 5. Let X and Y be two Banach spaces with a bilinear pairing 
to the reals denoted by (y, x) such that \(y9 x)\ ^ \\y \\T\M\x- ^et F be a con
tinuous mapping ofX into Y which maps bounded sets ofX into bounded sets 
of Y. Let Kbe a continuous mapping of Y into X which maps each bounded 
set in Y into a relatively compact subset ofX. Suppose that: 

(1) (v9Kv)^0forallvin Y. 
(2) For each k>0, there exists a constant c(k)^0 such that 

(F(u), ii) ^ k \\F(u)\\r - c(fc) (ii e X). 

Then for each v in X9 the equation (I+KF)(u)=v has at least one solution 
u in X. 

PROOF OF THEOREM 5. Let C=KF. Then C is a compact mapping of 
each ball in X'vato X. By the Leray-Schauder principle, it suffices to show 
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that there exists a constant JR>0 such that if u is a solution of the equation 
(I+ÇKF)(u)=v for a given v and any | in [0, 1], then \\u\\x<zR. If this 
equation holds, however, we have 

(F(ti), u) + £(F(u), KF(u)) = (F(«), v), 

and since (F(w), ^F(w))^0 by hypothesis (1), it follows that 

(F(u)9u)^(F(u),v)^\\F(u)\\Y\\v\\x. 

On the other hand, we choose k^\\v\\x+l9 and from hypothesis (2), we 
see that 

(F(u)9u)^k\\F(u)\\Y-c(k). 
Hence, 

k \\F(u)\\Y <: (F(II), u) + c(k) <: \\v\\x \\F(u)\\Y + c(k)9 

i.e., \\F(u)\\Y<c(k). 
Since u=-ÇKF(u)+v9 we see that \\u\\x<:\\KF{u)\\x+\\v\\x. K obvi

ously maps each bounded subset of Y into a bounded subset of X. Hence 
ll-K(w)ll*^0(l|w||F) for a suitable function ft and all w in 7. Thus, 

Mx ^ P(c(k)) + Mix- Q.E.D. 

Theorems 3 and 4 follow from Theorem 5 by specializing X and Y to 
be L°°(Q) and L 1 ^ ) in the first case, and LP(Q) and LP'(Q) in the second 
case. The validity of the hypothesis (2) in the two cases follows from 
Lemmas 2 and 3 respectively. We note that the argument given in the proof 
of Theorem 5 shows that the assumption that K is linear and monotone is 
unnecessary provided that one takes ^=0 and assumes merely that K is 
compact and that (i?, Kv)^.0 for all v in the appropriate space. 
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