ESTIMATES ON THE SUPPORT OF SOLUTIONS OF PARABOLIC VARIATIONAL INEQUALITIES

BY
HAIM BRÉZIS AND AVNER FRIEDMAN

1. Introduction

Consider a parabolic Cauchy problem

\begin{align}
(1.1) \quad & u_t - \Delta u = f \quad (x \in \mathbb{R}^n, \ 0 < t \leq T), \\
(1.2) \quad & u(x, 0) = u_0(x) \quad (x \in \mathbb{R}^n)
\end{align}

where \(\Delta \) is the Laplace operator. The solution \(u \) does not have compact support in general, even when \(f \equiv 0 \) and \(u_0 \) has compact support. For a parabolic variational inequality consisting of

\begin{align}
(1.3) \quad & u \geq 0, \quad (u_t - \Delta u)(v - u) \geq f(v - u) \text{ a.e., for any } v \geq 0,
\end{align}

and of (1.2), the situation is entirely different: when \(f \) is uniformly negative, \(u(x, t) \) has compact support whenever \(u_0(x) \) has compact support. The object of this paper is to study properties of the support.

In Section 2 we study the variational inequality (1.3), (1.2) when \(u_0 \) is any finite measure. Existence and uniqueness are proved.

In Sections 3–6 it is assumed that \(f \) is bounded and is uniformly negative. In Section 3 we show that if \(u_0(x) \) has compact support then \(u(x, t) \) has compact support. An analogous result for elliptic variational inequalities was proved earlier by Brézis [2] (and then generalized by Redheffer [6]).

In Sections 4 and 5 we study the behavior of the support \(S(t) \) of the function \(x \to u(x, t) \). In Section 4 we consider the case where \(u_0 \) is any function in \(L^\infty(\mathbb{R}^n) \) with compact support \(S = S(0) \); thus \(u_0 \) is not required to vanish on \(\partial S \). It is proved that, for all small times \(t \),

\[S(t) \subset S + B(c[t\log t]^{1/2}) \]

where \(+ \) denotes the vector sum, \(B(\rho) = \{x: |x| \leq \rho\} \), and \(c \) is a positive constant. This result is shown to be sharp.

In Section 5 we assume that \(u_0(x) \) vanishes together with its first derivatives on \(\partial S \). We then prove that

\[S(t) \subset S + B(C/\sqrt{t}) \]

for some positive constant \(C \).

Received February 24, 1975.

This work was partially supported by a National Science Foundation grant.
In Section 6 we consider the case where \(u_0(x) \) does not have compact support, but \(u_0(x) \to 0 \) as \(|x| \to \infty \). We prove that \(S(t) \) is a compact set for any \(t > 0 \). Thus in sharp contrast with the case of (1.1), the support “shrinks” instantaneously.

2. Existence and uniqueness

Consider the parabolic variational inequality

\begin{equation}
(u_t - \Delta u)(v - u) \geq f(v - u) \text{ a.e.} \quad (x \in \mathbb{R}^n, 0 < t < T)
\end{equation}

for any measurable function \(v, v \geq 0 \),

\begin{equation}
u \geq 0 \quad (x \in \mathbb{R}^n, 0 \leq t \leq T),
\end{equation}

\begin{equation}
u(x, 0) = u_0(x) \quad (x \in \mathbb{R}^n).
\end{equation}

Let \(\mu \) be any positive number and introduce the norm

\[
|g|_{L^p, \mu(\mathbb{R}^n)} = \left\{ \int_{\mathbb{R}^n} e^{-\mu|x|} |g(x)|^p \, dx \right\}^{1/p}
\]

for any \(p > 1 \). If \(|g|_{L^p, \mu(\mathbb{R}^n)} < \infty \) then we say that \(g \in L^p, \mu(\mathbb{R}^n) \). We let

\[
W^{k, p, \mu}(\mathbb{R}^n) = \{ u \in L^p, \mu(\mathbb{R}^n); D^k u \in L^p, \mu(\mathbb{R}^n) \text{ for } |x| \leq k \}.
\]

If \(u, u_t, u_x, u_{xx} \) belong to \(L^{2, \mu}(\mathbb{R}^n) \) for any \(t \in (0, T] \), then we can rewrite (2.1) in the form

\[
\int_{\mathbb{R}^n} e^{-2\mu|x|} u_t(v - u) \, dx + \int_{\mathbb{R}^n} e^{-2\mu|x|} D_x u \cdot D_x(v - u) \, dx
\]

\[
+ \int_{\mathbb{R}^n} D_x u \cdot (D_x e^{-2\mu|x|})(v - u) \, dx \geq \int_{\mathbb{R}^n} e^{-2\mu|x|} f(v - u) \, dx
\]

for \(0 < t \leq T \), and for any \(v \) such that \(v, v_x \) belong to \(L^{2, \mu}(\mathbb{R}^n) \), \(v \geq 0 \) a.e.

We shall assume:

\begin{equation}
u_0 \text{ is a measure, } u_0 \geq 0, \int_{\mathbb{R}^n} u_0 < \infty,
\end{equation}

\begin{equation}f \in L^\infty(\mathbb{R}^n, x(0, T)), f_t \in L^\infty(\mathbb{R}^n, x(0, T)).
\end{equation}

Denote by \(K(x, t, y) \) the fundamental solution of the heat equation. For any function \(f(y) \), the integral of \(f \) with respect to the measure \(u_0 \) is denoted by \(\int_{\mathbb{R}^n} f(y)u_0(y) \, dy \). The condition (2.3) will be taken, later on, in the sense that

\begin{equation}
u(x, t) = \int_{\mathbb{R}^n} K(x, t, y)u_0(y) \, dy \leq Ct
\end{equation}

where \(C \) is a constant independent of \(x \). (2.7) implies in particular that \(u(x, t) \to u_0(x) \) as \(t \downarrow 0 \) for the weak*-topology on the space of measures.
Theorem 2.1. Let (2.5), (2.6) hold. Then there exists a unique solution of (2.1)–(2.3) such that, for any $\delta > 0$,

$$u \in L^\infty([\delta, T); W^{2,p}(\mathbb{R}^n)]$$
$$u_t \in L^\infty([\delta, T); L^{p}(\mathbb{R}^n)] \text{ for any } 2 \leq p < \infty, \mu > 0;$$

the condition (2.3) is satisfied in the sense of (2.7).

Notice that, by the Sobolev inequalities, u is a continuous function for $0 < t \leq T$.

Proof. Let $Q_R = \{x; |x| < R\}, \varepsilon > 0$, and consider the “truncated problem”

$$u_t - \Delta u + \beta_\varepsilon(u) = f \text{ if } x \in Q_R, 0 < t < T,$$
$$u(x, 0) = u_0(x) \text{ if } x \in Q_R,$$
$$u(x, t) = 0 \text{ if } x \in \partial Q_R, t > 0.$$

Here the $\beta_\varepsilon(u)$ are C^∞ functions of u, defined for $\varepsilon > 0, u \in \mathbb{R}^1$, and satisfying:

$$\beta_\varepsilon(u) = 0 \text{ if } u > 0,$$
$$\beta_\varepsilon(u) \to -\infty \text{ if } u < 0, \varepsilon \downarrow 0,$$
$$\beta_\varepsilon'(u) > 0 \text{ if } u < 0.$$

Denote the solution of (2.9)–(2.11) by $u_{R,\varepsilon}$. We claim that

$$\min \{\inf f, 0\} \leq \beta_\varepsilon(u_{R,\varepsilon}) \leq 0.$$

To prove this as well as the existence of $u_{R,\varepsilon}$ it suffices to consider the case where $u_0(x)$ is a (nonnegative) continuous function; for then we can use approximation to handle the general case where u_0 is a measure.

The function $\beta_\varepsilon(u_{R,\varepsilon})$ takes its minimum in $\overline{Q}_R \times [0, T]$ at some point (\bar{x}, \bar{i}). If $u_{R,\varepsilon}(\bar{x}, \bar{i}) < 0$ then $u_{R,\varepsilon}$ also takes its minimum at (\bar{x}, \bar{i}), since $\beta_\varepsilon'(u) > 0$ if $u < 0$. Hence, if (\bar{x}, \bar{i}) does not lie on the parabolic boundary, then (2.9) yields

$$\beta_\varepsilon(u_{R,\varepsilon}) \geq f \text{ at } (\bar{x}, \bar{i}), \text{ provided } u_{R,\varepsilon}(\bar{x}, \bar{i}) < 0.$$

If (\bar{x}, \bar{i}) lies on the parabolic boundary, then

$$\beta_\varepsilon(u_{R,\varepsilon}) = 0 \text{ at } (\bar{x}, \bar{i}).$$

We have thus proved that if $u_{R,\varepsilon}(\bar{x}, \bar{i}) < 0$ then

$$\beta_\varepsilon(u_{R,\varepsilon}(\bar{x}, \bar{i})) \geq \min (0, \inf f).$$

If $u_{R,\varepsilon}(\bar{x}, \bar{i}) \geq 0$ then this inequality is also (trivially) true. This completes the proof of (2.12).

From (2.9), (2.12) we see that $u = u_{R,\varepsilon}$ satisfies

$$u_t - \Delta u = f - \beta_\varepsilon(u) \in L^\infty(Q_R).$$
Denote by \(K_R(x, t, y) \) the Green function of the heat operator in the cylinder \(Q_n \times (0, T) \). By the maximum principle,

\[
0 \leq K_R(x, t, y) \leq K(x, t, y).
\]

Using the construction of \(K_R \) as \(K + h_R \) with a suitable \(h_R \) (see [4]), recalling the standard estimates on \(D_x K \), and estimating \(D_x h_R \) by the interior Schauder estimates (for instance), we conclude that

\[
|D_x K_R(x, t, y)| \leq \frac{C}{t^{(n+1)/2}} \exp \left[-\frac{|x-y|^2}{2t} \right] \quad \text{if} \ |x| < R - 1,
\]

where \(C \) is a constant independent of \(R \).

We can represent \(u \in U_R \) as follows:

\[
\begin{align*}
|u_1(x, t)|_{W^{1, \infty}(Q_{R-1})} &\leq \frac{C}{t^{(n+1)/2}}, \quad |u_2(x, t)|_{W^{1, \infty}(Q_{R-1})} \leq C t^{1/2} \\
\end{align*}
\]

where \(C \) is a constant independent of \(R \) and \(t \). Hence

\[
|e^{-\mu|x|}u_1(x, t)|_{W^{1, r}(Q_{R-1})} \leq \frac{C}{t^{(n+1)/2}}, \quad |e^{-\mu|x|}u_2(x, t)|_{W^{1, r}(Q_{R-1})} \leq C t^{1/2}
\]

for any \(\mu > 0 \), where \(C \) is a constant independent of \(R, t \).

Next, from the \(L^p \) estimates of [3], [7], for any \(\delta > 0 \),

\[
\begin{align*}
\int_\delta^T \int_Q e^{-\mu|x|} \left(\left| \frac{\partial}{\partial t} u_2 \right|^p + |D_x u_2|^p + |D_x^2 u_2|^p \right) dx \, dt \leq C(\delta)
\end{align*}
\]

where \(C(\delta) \) a constant independent of \(R \). Indeed, we write down (2.17) for \(u_2 \xi_i \), where \(\{\xi_i\} \) is a suitable partition of unity for \(\bar{Q}_R \), and sum over \(i \); then, using (2.16), we obtain (2.17) with a constant independent of \(R \) (cf. [1], [5]).

The inequality (2.17) can be verified directly for \(u_1 \). Since \(u = u_1 + u_2 \), we deduce that

\[
\begin{align*}
\int_\delta^T \int_Q e^{-\mu|x|} |u_1|^p \, dx \, dt \leq C.
\end{align*}
\]

Let \(\xi(t) \) be a \(C^\infty \) nonnegative function, \(\xi(t) = 0 \) if \(t < \delta/2 \), \(\xi(t) = 1 \) if \(t > \delta \). Differentiating (2.9) with respect to \(t \), we get

\[
u_t - \Delta u_t + \beta'_\xi(u) u_t = f_t.
\]
Multiplying both sides by $\exp(-p\mu|x|)\xi|u_t|^p u_t$ and integrating over $Q_R(x(0, T), we find that we have

$$\frac{1}{p} \int_{Q_R} |e^{-p\mu|x|}u_t(x, T)|^p \, dx + \int_0^T \int_{Q_R} \sum_i u_{txi} \frac{\partial}{\partial x_i} (\exp(-p\mu|x|)) \cdot \xi|u_t|^{p-2}u_t \, dx \, dt$$

$$\leq \int_0^T \int_{Q_R} |f_i| e^{-p\mu|x|} \xi|u_t|^{p-1} \, dx \, dt + \int_0^T \int_{Q_R} \frac{1}{p} |u_t|^p \xi e^{-\mu p|x|} \, dx \, dt$$

But

$$u_{txi}|u_t|^{p-2}u_t = \frac{1}{p} \frac{\partial}{\partial x_i} |u_t|^p$$

so that

$$\int_0^T \int_{Q_R} \sum_i u_{txi} \frac{\partial}{\partial x_i} (e^{-p\mu|x|}) \cdot \xi|u_t|^{p-2}u_t \, dx \, dt$$

$$= \int_0^T \int_{Q_R} \left(\frac{1}{p} \right) \xi|u_t|^p - \Delta(e^{-p\mu|x|}) \, dx \, dt.$$

However

$$\Delta e^{-p\mu|x|} = \left(p^2 \mu^2 - \frac{(n-1)p\mu}{|x|} \right) e^{-p\mu|x|}$$

$$\leq p^2 \mu^2 e^{-p\mu|x|}.$$

Hence we conclude that

$$\frac{1}{p} \int_{Q_R} |e^{-p\mu|x|} u_t(x, T)|^p \, dx \leq \int_0^T \int_{Q_R} |f_i| e^{-p\mu|x|} \xi|u_t|^{p-1} \, dx \, dt$$

$$+ \int_0^T \int_{Q_R} \frac{1}{p} |u_t|^p \xi e^{-\mu p|x|} \, dx \, dt$$

$$+ \int_0^T \int_{Q_R} \mu^2 \xi|u_t|^p e^{-\mu p|x|} \, dx \, dt.$$

Recalling (2.18), we conclude that, for any $\delta > 0$,

$$(2.19) \int_{Q_R} |e^{-\mu|x|} u_t(x, t)|^p \, dx \leq C$$

where C is a constant independent of R. From (2.9), (2.12) we then also have

$$(2.20) \int_{Q_R} |e^{-\mu|x|} \Delta u(x, t)|^p \, dx \leq C$$

with another constant C, independent of R.

We extend the definition of $u = u_{R, \epsilon}$ into $R^n x [0, T]$ in such a way that (2.19), (2.20) remain valid with Q_R replaced by R^n, and the $u_{R, \epsilon}$ remain uniformly bounded.
Using the standard L^p estimates for Δ, we can then choose a sequence $u = u_{R, \varepsilon} (R \to \infty, \varepsilon \to 0)$ which is convergent uniformly in compact subsets to a function u, such that

$$\frac{\partial}{\partial t} u_{R, \varepsilon} \to \frac{\partial}{\partial t} u, \quad D_x^2 u_{R, \varepsilon} \to D_x^2 u \quad (1 \leq |x| \leq 2)$$

weakly in the weak star topology of $L^p((\delta_0, T); L^p(R^n))$ for any $\delta_0 > 0$, $2 \leq p < \infty$. Thus, u satisfies (2.8).

The fact that u is a solution of the variational inequality (2.1), (2.2) follows by a standard argument. Next, from (2.15) we obtain

$$u_{R, \varepsilon}(x, t) \leq \int_{Q_R} K_R(x, t, y) u_0(y) \, dy \quad (2.21)$$

where, by (2.13) and the boundedness of $f - \beta_\varepsilon$, $|u_2(x, t)| \leq Ct$, C a constant independent of R, ε. Going to the limit in (2.21), we obtain the inequality (2.7).

This completes the proof of existence. The proof of uniqueness follows by a standard argument: One writes (2.4) for u and $v = \hat{u}$ and then for \hat{u} and $v = u$, where u, \hat{u} are two solutions. Then, by adding the inequalities, one gets, after some simple manipulations,

$$\frac{d}{dt} \int_{R^n} |e^{-\mu|x|}(\hat{u} - u)(x, t)|^2 \, dx \leq C \int_{R^n} |e^{-\mu|x|}(\hat{u} - u)|^2 \, dx;$$

hence $\hat{u} - u \equiv 0$ by (2.7).

3. Compact support for the solution

We shall now assume that

$$f \in L^\infty(R^n x(0, T)), \quad f_t \in L^\infty(R^n x(0, T)) \quad (3.1)$$

By Theorem 2.1, the variational inequality (3.1)-(3.3) has a unique solution $u(x, t)$ in $R^n x(0, \infty)$ (satisfying (2.8) for any $0 < \delta < T < \infty$). The object of the remaining part of this paper is to study the support of u. We shall henceforth need the condition:

$$f \leq -v \quad (3.2) \quad (v \text{ positive constant}).$$

Theorem 3.1. Let (2.5), (3.1), (3.2) hold. Then there is a positive number T_0 such that $u(x, t) \equiv 0$ if $t \geq T_0$.

Proof. From the proof of Theorem 2.1 we infer that $u_{R, \varepsilon}(x, 1) \leq M$ where M is a positive constant independent of R, ε. Set $T_0 = 1 + M/v$ and consider the function

$$w(x, t) = M - v(t - 1) \quad (x \in R^n, 1 \leq t \leq T_0).$$

Observe that $w > 0$ if $1 \leq t \leq T_0$, $w(x, T_0) = 0$, and

$$w_t - \Delta w + \beta_\varepsilon(w) = -v \quad \text{if } x \in R^n, 1 \leq t \leq T_0.$$
We can apply the maximum principle to \(w - u_{R, \varepsilon} \) in the strip \(1 \leq t \leq T_0 \), and thus conclude that \(w - u_{R, \varepsilon} \geq 0 \) in this strip. In particular,

\[
u_{R, \varepsilon}(x, T_0) \leq 0.
\]

Taking \(R \to \infty, \varepsilon \to 0 \), we conclude that \(u(x, T_0) \equiv 0 \). By uniqueness, \(u(x, t) \equiv 0 \) if \(t \geq T_0 \).

Theorem 3.2. Let the conditions (2.5), (3.1), (3.2) hold and suppose that \(u_0 \) has compact support. Then there is a positive constant \(R_0 \) such that \(u(x, t) \equiv 0 \) if \(|x| > R_0 \).

Proof. Let \(\rho \) be a positive number such that \(\text{supp} u_0 \subset \{x; |x| < \rho\} \). From the proof of Theorem 2.1 we infer that

\[
|u_{R, \varepsilon}(x, T)| \leq N \quad \text{if } x \in \mathbb{R}^n, \rho \leq |x| \leq R, 0 < t < T_0.
\]

Consider the function

\[
w(x) = \begin{cases} \mu(R_0 - r)^2 & \text{if } 0 < r < R_0, \\ 0 & \text{if } r > R_0 \end{cases}
\]

where \(r = |x| \) and \(\mu, R_0 \) are positive constants. Choosing \(\mu, R_0 \) such that \(2\mu \leq v, \mu(R_0 - \rho)^2 \geq N \), we find that

\[
w_t - \Delta w + \beta_\varepsilon(w) = -\Delta w - v \quad \text{if } |x| > \rho,
\]

\[
w \geq N \quad \text{if } |x| = \rho.
\]

We can now apply the maximum principle to \(w - u_{R, \varepsilon} \) and conclude that \(w - u_{R, \varepsilon} \geq 0 \) if \(\rho < |x| < R, 0 < t < T_0 \). In particular,

\[
u_{R, \varepsilon}(x, t) \equiv 0 \quad \text{if } R_0 \leq |x| \leq R, 0 \leq t \leq T_0.
\]

Taking \(R \to \infty, \varepsilon \to 0 \) the assertion of the theorem follows.

We conclude this section with a standard comparison lemma that will be needed in the following sections.

Lemma 3.3. Denote by \(u \) and \(\hat{u} \) two functions satisfying (2.1) and (2.2) with

\[
u, \hat{u} \in L^\infty(\delta, T; W^{2,2,\mu}(\mathbb{R}^n)), \quad u_t, \hat{u}_t \in L^\infty(\delta, T; L^{2,1,\mu}(\mathbb{R}^n))
\]

for some \(\mu \) and any \(\delta > 0 \). Assume \(u(\cdot, t) \to u_0(\cdot) \) and \(\hat{u}(\cdot, t) \to \hat{u}_0(\cdot) \) in \(L^{2,\mu}(\mathbb{R}^n) \) as \(t \to 0 \). If \(u_0 \leq \hat{u}_0 \) a.e. on \(\mathbb{R}^n \) and \(f \leq \hat{f} \) a.e. on \(\mathbb{R}^n \times (0, T) \), then \(u \leq \hat{u} \) a.e. in \(\mathbb{R}^n \times (0, T) \).

Proof. Let \(w = (u - \hat{u}) \); substituting \(v = \text{Min} \{u, \hat{u}\} \) and then \(\hat{v} = \text{Max} \{u, \hat{u}\} \) in (2.1) we obtain after addition:

\[
w_t w^+ - \Delta w^+ w^+ \leq (f - \hat{f})w^+ \leq 0 \text{ a.e.}
\]
Multiplying through by $e^{-2\mu|x|}$ and integrating by parts, we get, after some simple calculations,

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^n} e^{-2\mu|x|}|w^+(x, t)|^2 \, dx \leq \int_{\mathbb{R}^n} \frac{1}{2}|w^+(x, t)|^2 \Delta(e^{-2\mu|x|}) \, dx$$

$$\leq 2\mu^2 \int_{\mathbb{R}^n} |w^+(x, t)|^2 e^{-2\mu|x|} \, dx.$$

On the other hand $w^+(\cdot, t) \to 0$ in $L^2, u_0(\mathbb{R}^n)$ as $t \to 0$. We conclude that $w^+ = 0$ and thus $u = \hat{u}$ a.e. as $\mathbb{R}^n \times (0, T)$.

4. Estimates on the support

In what follows we use the notation $B(\rho) = \{x; |x| < \rho\}$. If A and B are sets in \mathbb{R}^n, we denote by $A + B$ their vector sum.

We shall denote by $S(t)$ the support of the function $x \mapsto u(x, t)$, and write $S = S(0)$, i.e., S is the support of the measure u_0 (S is a closed set).

Theorem 4.1. Let f satisfy (3.1), (3.2) and let $u_0(x) \geq 0$ be a function in $L^\infty(\mathbb{R}^n)$. Assume that the support S of u_0 consists of a finite union of disjoint bounded closed domains, with C^1 boundary. Then, there is a positive constant c such that

$$S(t) \subset S + B(c/\sqrt{t \log t})$$

if t is sufficiently small.

The proof of Theorem 4.1 relies on the following lemmas.

Lemma 4.2. There exists a function $w(x, t)$, $x \in \mathbb{R}, t \in (0, 1)$ such that

$$w \in L^\infty(\mathbb{R} \times (0, 1),$$

$$w_t, w_x, w_{xx} \in L^\infty(\mathbb{R} \times (0, 1)) \text{ for each } 0 < \delta < 1,$$

$$w \geq 0 \text{ as } \mathbb{R} \times (0, 1),$$

$$w(x, t) = 0 \text{ for } x > \sqrt{6t \log t} \text{ and } t \in (0, 1),$$

$$|w_t - w_{xx}| \leq k t^{1/2} |\log t|^{3/2} \text{ for } x \in \mathbb{R}, t \in (0, 1) \text{ and } k \text{ some constant},$$

$$w(x, t) = 0 \text{ for } x > \sqrt{6t |\log t|} \text{ and } t \in (0, 1).$$

Proof of Lemma 4.2. Let $s(t) = \sqrt{6t |\log t|}$ and define for $x \in \mathbb{R}, t \in (0, 1)$:

$$v(x, t) = \begin{cases} A x^2 + B t + C t \log t + \frac{D}{\sqrt{t}} e^{-x^2/4t} & \text{when } |x| < s(t), \\ 0 & \text{when } |x| > s(t). \end{cases}$$

We determine the constants $A, B, C,$ and D in such a way that

$$v(s(t), t) = 0, \ v_x(s(t), t) = 0 \text{ for } t \in (0, 1).$$
Therefore it is required that
\[-6At \log t + Bt + Ct \log t + Dt = 0\]
and
\[2s(t)(A - D/4) = 0,\]
i.e.
\[(4.10) \quad A = D/4, B = -D, C = 3D/2.\]

It is easy to verify that when \(D > 0\), then \(v > 0\). Define now for \(x \in \mathbb{R}\) and \(t \in (0, 1)\),
\[(4.11) \quad w(x, t) = \int_{x}^{s(t)} v(\xi, t) \, d\xi,
\]
so that \(w(x, t) = 0\) when \(x > s(t)\) and hence \(w(x, 0) = 0\) for \(x > 0\). Next let \(x < 0\); if \(t\) is small enough to insure \(s(t) < -x\), then
\[w(x, t) = \int_{-s(t)}^{+s(t)} v(\xi, t) \, d\xi.
\]
Therefore
\[w(x, t) = 2 \int_{0}^{s(t)} \left(A\xi^2 + Bt + Dt \log t + \frac{D}{\sqrt{t}} e^{-\xi^2/4t} \right) d\xi = \frac{2}{3} As^3(t) + 2(Bt + Dt \log t)s(t) + \frac{2D}{\sqrt{t}} \int_{0}^{s(t)} e^{-\xi^2/4t} d\xi.
\]

The last term equals
\[2D \int_{0}^{\sqrt{6} \log t} e^{-\eta^2/4} d\eta,
\]
and thus as \(t \to 0\) we see that, for \(x < 0\),
\[w(x, t) \to 2D \int_{0}^{+\infty} e^{-\eta^2/4} d\eta.
\]

We fix now \(D\) in such a way that
\[2D \int_{0}^{+\infty} e^{-\eta^2/4} d\eta = 1
\]
and next \(A, B,\) and \(C\) are determined by \((4.10)\).

In order to compute \(Lw = w_t - w_{xx}\) we distinguish three regions.

Region I. \(x > s(t)\), where \(w = 0\) and so \(Lw = 0\).

Region II. \(x < -s(t)\) where
\[w(x, t) = \int_{-s(t)}^{+s(t)} v(\xi, t) \, d\xi,
\]

\[w_t = v(s(t), t)s'(t) + v(-s(t), t)s'(t) + \int_{-s(t)}^{+s(t)} v_t(\xi, t) \, d\xi,
\]
\[w_{xx} = 0.
\]
By (4.9) we get
\[w_t(x, t) = 2 \int_0^{s(t)} \left(B + C \log t + C \right) \, d\xi + 2D \int_0^{s(t)} \xi_t(x, t) \, d\xi \]
where
\[\xi(x, t) = \frac{1}{\sqrt{t}} e^{-x^2/4t}. \]

Since \(\xi_t = \xi_{xx} \) we have
\[\int_0^{s(t)} \xi_t(x, t) \, d\xi = \int_0^{s(t)} \xi_{xx}(x, t) \, d\xi = \xi_x(s(t), t) - \xi_x(0, t) = -\frac{s(t)}{2}. \]

Finally
\[Lw = w_t(x, t) = 2s(t)(B + C \log t + C) - Ds(t) = 3Ds(t) \log t. \]

Region III. \(-s(t) < x < +s(t)\) where \(w_t(x, t) = \int_x^{s(t)} v(\xi, t) \, d\xi \). Thus
\[w_t(x, t) = v(x, t), \quad w_{xx}(x, t) = -v(x, t) = \int_x^{s(t)} v_{xx}(\xi, t) \, d\xi. \]

Consequently
\[Lw = \int_x^{s(t)} (v_t - v_{xx})(\xi, t) \, d\xi \]
\[= \int_x^{s(t)} (B + C \log t + 2A) \, d\xi \]
\[= (s(t) - x)C \log t. \]

In the three regions we conclude that \(|Lw| \leq 3Ds(t)|\log t|. \)

Lemma 4.3. Let \(C \) be the cube \((-\theta, +\theta)^n (\theta > 0)\). There exists a function \(z(x, t), x \in R^n, t \in (0, 1) \) such that

\[z \in L^\infty(R^n \times (0, 1)), \]
\[z_t, z_{xx}, z_{xixj} \in L^2(R^n \times (\delta, 1)) \text{ for each } 0 < \delta < 1, \]
\[z \geq 0 \text{ on } R^n \times (0, 1), \]
\[as t \to 0, z(x, t) \to 0 \text{ for } x \in C, \text{ and } z(x, t) \to \text{ limit } \geq 1 \text{ for } x \notin \bar{C}, \]
\[|z_t - \Delta z| \leq k't^{1/2}|\log t|^{3/2} \text{ for } x \in R^n, t \in (0, 1) \text{ and } k \text{ is some constant,} \]
\[z(x, t) = 0 \text{ for Max}_{1 \leq i \leq n} |x_i| < \theta - \sqrt{6t|\log t|} \text{ (t small).} \]

Proof. It is clear from Lemma 4.2 that the function
\[z(x, t) = \sum_{i=1}^{n} [w(x_i + \theta, t) + w(\theta - x_i, t)] \]
satisfies all the required properties.
Proof of Theorem 4.1. Let \(\alpha = \text{ess sup}_S u_0 \). We denote by \(v(x_0) \) the unit outward normal at every point \(x_0 \in \partial S \) and by \(C(x_0, 2\theta) \) an open cube centered on \(v(x_0) \) whose side has length \(2\theta \) and such that \(x_0 \) is one of the vertices.

Since \(\partial S \) is \(C^1 \), there exists a fixed \(\theta > 0 \), independent of \(x_0 \), sufficiently small such that \(C(x_0, 2\theta) \cap S = \emptyset \) for every \(x_0 \in \partial S \). By shifting the origin we can always assume that \(C(x_0, 2\theta) \) is centered at the origin and has the form \((-\theta, +\theta)\). It follows from the comparison Lemma 3.3 that \(u \leq \alpha x \) on \(\mathbb{R}^n x(0, t_0) \) where \(t_0 \) is small enough to insure that

\[
kt^{1/2}|\log t|^{3/2} \leq v \quad \text{for} \quad 0 < t < t_0.
\]

Therefore we conclude that \(u(x, t) = 0 \) for \(t \) small enough and for \(x \) of the form \(x = x_0 + \lambda v(x_0), \sqrt{6n|\log t|} < \lambda < \theta \).

The conclusion of the theorem follows.

Remark. The proof of Theorem 4.1 applies also in cases where \(\partial S \) is not in \(C^1 \); for instance in case \(S \) is a convex set.

Let \(S \) be a closed set in \(\mathbb{R}^n \). Suppose for any \(x \in \partial S \) there exists a cone \(V_x \) with vertex \(x \) and with opening \(\sigma \) and height \(h \) independent of \(x \) such that \(V_x \subset S \); then we say that \(S \) satisfies the uniform cone property.

In the next theorem we derive a lower bound on \(S(t) \).

THEOREM 4.2. Let \(f \) satisfy (3.1), and let \(f \geq -v_0 > 0, v_0 \) constant. Let \(U_0 \) be a bounded measurable function whose support \(S \) satisfies the uniform cone property. If there is a positive constant \(\beta \) such that \(U_0(x) \geq \beta \) for \(x \in S \), then there is a positive constant \(c \) such that

\[
S(t) \geq S + B(c\sqrt{\log t}) \quad \text{for all} \quad t \text{ sufficiently small.}
\]

Proof. Consider the function

\[
w(x, t) = \frac{\beta}{(2\pi t)^{n/2}} \int_S \exp \left[-\frac{|x - \xi|^2}{4t} \right] \, d\xi - v_0 t.
\]

It satisfies \(\partial_t w - \Delta w = -v_0, w(x, 0) \leq u_0(x) \). Since \(\partial_t \geq f \geq -v_0 \), the maximum principle can be applied to \(u - w \). It gives

\[
u(x, t) \geq w(x, t).
\]

Denote by \(d(y) \) the distance of a point \(y \) to \(S \). If we can prove that

\[
w(y, t) > 0 \quad \text{whenever} \quad y \notin S, d(y) \leq c\sqrt{\log t},
\]

then, by (4.14), also \(u(y, t) > 0 \) and, consequently, the assertion (4.12) would follow.

In order to prove (4.15), let \(x_0 \) be a point on \(\partial S \) such that \(d(y) = |y - x_0| \). Integrating in (4.13) only over the cone with vertex \(x_0 \), opening \(\sigma \), and height \(\eta \) \((0 < \eta < h)\) which lies in \(S \), we find that

\[
w(y, t) > \beta_0 \frac{\eta^n}{t^{n/2}} \exp \left[-\frac{\mu}{t} d^2(y) - \frac{\mu \eta^2}{t} \right] - v_0 t.
\]
for any $0 < \eta < h$, where β_0, μ are positive constants. If t is sufficiently small then we can take $\eta = \sqrt{t}$. Hence, $w(y, t) > 0$ if

$$\beta_1 \exp \left[-\frac{\mu d^2(y)}{t} \right] \geq v_0 t$$

where β_1 is a positive constant. Taking the logarithm we see that $w(y, t) > 0$ if

$$\frac{\mu d^2(y)}{t} \leq |\log t| + \text{const.}$$

This gives (4.12) with $c < 1/\sqrt{\mu}$.

5. Estimates on the support (continued)

Theorem 5.1. Let (3.1), (3.2) hold and let $S = \text{supp } u_0$ be a finite disjoint union of bounded closed domains with C^2 boundary. Assume that

(5.1) $u_0 \in C^2(S), \quad u_0 = 0, \quad D_i u_0 = 0$ on ∂S.

Then there exists a positive constant α, depending only on the data, such that

(5.2) $S(t) \subset S + B(\alpha \sqrt{t})$ for all $t \geq 0$.

Proof. Let y be any point outside S. Let $\delta = \text{dist.} (y, S)$. For simplicity we take $y = 0$.

Using (5.1) we find that, for any $x \in S$,

(5.3) $u_0(x) = \left| u_0(x) - u_0(x') \right| \leq C_0 |x - x'|^2 \leq C_0 (|x| - \delta)^2$

where x' is the first point where the ray from x to y intersects ∂S.

Setting $r = |x|, \lambda = (r - \delta) / \sqrt{t}$, we shall construct a comparison function

$$w(x, t) = \begin{cases} t F(\lambda) & \text{if } \delta - \alpha \sqrt{t} \leq r < \infty, \\ 0 & \text{if } r < \delta - \alpha \sqrt{t} \end{cases}$$

for $0 < t < \sigma, \sigma$ sufficiently small, where F is a nonnegative function defined on $[-\alpha, +\infty)$. We require that

(5.4) $F(-\alpha) = 0, \quad F'(\alpha) = 0$,

so that w is continuously differentiable across $r = \delta - \alpha \sqrt{t}$. We also require that $w(x, 0) \geq u_0(x)$. In view of (5.3), the last inequality holds if

(5.5) $\lim_{\lambda \to +\infty} \frac{F(\lambda)}{\lambda^2} \geq C_0$.

Finally, we require that $w_t - \Delta w \geq -v$; in terms of F this means that

(5.6) $F - \frac{1}{2} \lambda F' - \frac{n - 1}{r} \sqrt{t} F' - F'' \geq -v$

where the argument in F, F', F'' is λ.
We seek $F(\lambda)$ of the form

$$F(\lambda) = \begin{cases}
\mu(\lambda + \alpha)^2 & \text{if } -\alpha < \lambda < 0, \\
A\lambda^2 + B\lambda + C & \text{if } \lambda > 0.
\end{cases}$$

Then w is continuously differentiable across $\lambda = 0$ if

$$\mu x^2 = C, \, 2\mu x = B.$$

If we take

$$A \geq C_0$$

then (5.5) holds. The conditions in (5.4) are clearly satisfied.

We now turn to verifying the inequality (5.6). In the region where $-\alpha < \lambda < 0$, (5.6) reduces to

$$\mu(\lambda + \alpha)^2 - \mu\lambda(\lambda + \alpha) - \mu \frac{2(n-1)}{r} \sqrt{t(\lambda + \alpha) - 2}\mu \geq -v.$$

If t is sufficiently small then $\delta/2 < r < \delta$; the last inequality is then a consequence of

$$\mu \left[\lambda x + \alpha^2 - \frac{4(n-1)}{\delta} \sqrt{t(\lambda + \alpha) - 2} \right] \geq -v,$$

or, a consequence of

$$\mu \left(2 + \frac{4(n-1)}{\delta} \sqrt{\sigma x - \alpha^2} \right) \leq v \quad (0 < t \leq \sigma).$$

In the region where $\lambda > 0$, (5.6) holds if

$$A\lambda^2 + B\lambda + C - \frac{1}{2}\lambda(2A\lambda + B) - \frac{n-1}{r} \sqrt{t(2A\lambda + B) - 2A} \geq -v.$$

Since $r \geq \delta$, this inequality holds, for all $0 < t < \sigma$, if

$$\frac{B}{2} - 2 \frac{n-1}{\delta} \sqrt{\sigma A} \geq 0,$$

$$C - \frac{n-1}{\delta} \sqrt{\sigma B - 2A} \geq -v.$$

From (5.7) we find that

$$\alpha = 2C/B, \quad \mu = B^2/4C.$$

Taking $C \geq 2A - v + 1$ we see that (5.11) holds if σ is sufficiently small. If we further choose B, C to be positive, then α and μ are positive. If we also take C/B to be sufficiently large, then α becomes so large that the left-hand side of (5.9) is negative. Thus (5.9) is satisfied. Notice that also (5.10) is satisfied if σ is sufficiently small.

Thus, with the above choice of B, C, and A, and with the definitions of α, μ
by (5.12), we have established that the function w is a comparison function, i.e., it satisfies the conditions of Lemma 3.3. Consequently, $u(x, t) \leq w(x, t)$ in $\mathbb{R}^n \times (0, \sigma)$. The conclusion of Theorem 5.1 follows.

Remark 1. Theorem 5.1 extends to the case where S consists of a finite disjoint union of closed convex domains with C^1 boundary.

Remark 2. If $f_t \leq 0$ and
\[
f + \Delta u_0 < 0 \quad \text{in } S
\]
then one can show that $u_t \leq 0$. Consequently, $S(t) \subset S(t')$ if $t > t' > 0$.

6. Instantaneous shrinking of the support

In this section we consider the case where u_0 need not have compact support, but $u_0(x) \to 0$ if $|x| \to \infty$. We shall show that the support $S(t)$ of $x \to u(x, t)$ is compact, for any $t > 0$.

THEOREM 6.1. Let f satisfy (3.1), (3.2) and assume that
\[
u_0 \in L^\infty(\mathbb{R}^n) \cap L^1(\mathbb{R}^n), \quad u_0(x) \to 0 \text{ if } |x| \to \infty.
\]
Then $S(t)$ is a compact set, for any $t > 0$.

Proof. The assertion of the theorem follows from the assertion that there exists a function $\phi(r)$ and a positive number R, such that
\[
\phi(r) > 0, \quad \phi(r) \downarrow 0 \text{ if } r \uparrow \infty,
\]
\[
u(x, t) = 0 \text{ if } t > \phi(|x|), \quad |x| > R.
\]

In view of Theorem 3.2 it suffices to prove (6.3) just for $t < t_0$, where t_0 is a sufficiently small positive number. We first establish that
\[
u(x, t) \to 0 \text{ if } |x| \to \infty, \quad \text{uniformly in } t.
\]

Let z be the bounded solution of
\[
z_t - \Delta z = 0 \quad (x \in \mathbb{R}^n, \quad t > 0), \quad z(x, 0) = u_0(x) \quad (x \in \mathbb{R}^n).
\]
Representing z in terms of the fundamental solution and using (6.1), we find that for any $T > 0$,
\[
z(x, t) \to 0 \text{ if } |x| \to \infty, \quad \text{uniformly in } t, \quad 0 \leq t \leq T.
\]
Since $z \geq 0$, we can verify that the function $\hat{u} = z$ satisfies (2.1) with $\hat{f} = 0$. Noting that $\hat{f} \geq \hat{f}$, we can apply Lemma 3.3 to conclude that $z \geq u$. But then (6.4) is a consequence of (6.5).

Let η be any small positive number. By (6.4), there is an $R > 0$ sufficiently large such that
\[
u(x, t) < \eta \quad \text{if } |x| > R, \quad 0 \leq t \leq T.
\]
We shall estimate $u(x, t)$ more precisely in a region

$$\text{(6.7)} \quad |x| > R, \ 0 < t < t_0$$

where t_0 is a sufficiently small positive number.

Let $r = |x|$ and

$$w(x, t) = \begin{cases} \frac{((\phi(r) - t)^2}{r} & \text{if } |x| > R, \ 0 < t < \phi(r), \\ 0 & \text{if } |x| > R, \ t > \phi(r). \end{cases}$$

Then w satisfies $w \geq u$ if $|x| = R, \ 0 < t < t_0$, or if $|x| > R, \ t = 0$ provided

$$\text{(6.8)} \quad (\phi(R) - t_0)^2 \geq \eta,$$

$$\text{(6.9)} \quad \phi^2(r) \geq u_0(x) \ (r = |x| > R).$$

Also w satisfies the variational inequality (2.1) on $|x| > R, \ 0 < t < t_0$ with $f \geq -\gamma$ provided

$$-2(\phi(r) - t) - 2(\phi(r) - t)\phi''(r) - 2(\phi'(r))^2$$

$$\text{(6.10)} \quad -2 \frac{n-1}{r} (\phi(r) - t)\phi'(r) \geq -\gamma \ (r > R, \ 0 < t < \phi(r)).$$

Since the last inequality is linear in t, it suffices to verify it at $t = \phi(r)$ and $t = 0$, i.e.,

$$\text{(6.11)} \quad (\phi'(r))^2 \leq \frac{1}{2}\gamma \ (r > R),$$

$$\text{(6.12)} \quad \phi(r) + \phi(r)\phi''(r) + (\phi'(r))^2 + \frac{n-1}{r} \phi(r)\phi'(r) \leq \frac{1}{2}\gamma.$$

We shall now construct a function ϕ satisfying (6.8), (6.9), (6.11), and (6.12). Since $u_0(x) \to 0$ as $|x| \to \infty$, we can find an increasing sequence (a_n) such that

$$a_1 = R$$

and

$$\sqrt{u_0(x)} \leq \sqrt{\eta} \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \chi_{[a_n, a_{n+1}]}(|x|) \quad \text{for } |x| > R$$

where $\chi_{[a, b]}$ is the characteristic function of the interval $[a, b]$. We can always assume that $a_{n+1} - a_n \geq 1$ for $n \geq 1$.

Let $\zeta(t), \ t \in R^1$, be a smooth function with compact support such that $\zeta \geq 0$, $\zeta(t) = 1$ for $0 \leq t \leq 1$, $|\zeta(t)| \leq 1$, $|\zeta'(t)| \leq 1$ and $|\zeta''(t)| \leq 1$ for $t \in R^1$.

Define

$$\phi(r) = \rho \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \zeta \left(\frac{r - a_n}{a_{n+1} - a_n} \right), \ \rho > 0.$$

Clearly ϕ is a smooth function and $\phi(r) \to 0$ as $r \to +\infty$; we are going to see that for η small enough, it is possible to choose ρ in such a way that ϕ satisfies (6.8), (6.9), (6.11), and (6.12).
Since \(\phi(R) \geq \rho \), the conditions

\[
\rho \geq 2\sqrt{\eta} \quad \text{and} \quad t_0 \leq \sqrt{\eta}
\]

imply (6.8).

We have, for \(|x| > R \),

\[
\sqrt{u_0(x)} \leq \frac{\sqrt{\eta}}{\rho} \phi(|x|)
\]

and therefore (6.13) also implies (6.9).

On the other hand \(|\phi'(r)| \leq 2\rho \) and \(|\phi''(r)| \leq 2\rho \) for \(r \in R \). Thus (6.11) and (6.12) are consequences of the following

\[
4\rho^2 \leq \frac{1}{2}\gamma
\]

\[
2\rho + 4\rho^2 + 4\rho^2 + 4\rho^2 \leq \frac{1}{2}\gamma.
\]

Conclusion: we first choose a \(\rho > 0 \) satisfying (6.14), (6.15); next \(\eta \) and \(t_0 \) are obtained from (6.13). Finally, we choose \(R, \{a_n\} \) and construct \(\phi \).

From a variant of Lemma 3.3 we deduce that

\[
u(x, t) \leq w(x, t) \quad \text{if} \quad |x| > R, \quad 0 < t < t_0
\]

and the assertion (6.3) follows.

Remark. If \(u_0 \) has compact support, then in the above proof we can take \(\phi(r) \) to vanish if \(r \) is sufficiently large. Thus \(u(x, t) \) will vanish if \(|x| \geq R_0 \) for some \(R_0 \) sufficiently large. This gives another proof of Theorem 3.2.

References