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Abstract
We investigate the validity of the fractional Gagliardo-Nirenberg-Sobolev inequality
(1) ”f”W’ (Q) ,S ||f||Ws1 P1(Q)||fI|WS2 P2(Q)? Vf € Wsl’pl(Q)ﬂWsz’pz(Q).

Here, s1,s9,r are non-negative numbers (not necessarily integers), 1 < p1,p2,q < oo, and we
assume, for some 0 € (0,1), the standard relations

1 6 1-6 —
(2)r<s::931+(1—0)32and—:(_+_)_S r.
q \p1 Pp2 N

Formally, estimate (1) is obtained by combining the “pure” fractional Gagliardo-Nirenberg
style interpolation inequality

(3) ”f”WS P(Q) S ”fllwsl pl(Q)||f||W32 P2(2) (with 1/p = 9/p1 +(1- 9)/])2)
with the fractional Sobolev style embedding

1 1 s-
(4) WHP(Q) — W™9(Q), 0<r<s,1sp<qgsoo,—=————
g p N

,p(s—r)<N.

Estimates (3) and (4) are true “most of the time”, but not always; the exact range of validity
of (3) and (4) has been known. Combining these results, we infer that (1) is valid “most of the
time”. However, the validity of (1) when (3) and/or (4) fail was unclear. The goal of this paper is
to characterize the values of s1,s9,7,p1,p2,9,0,N such that (1) holds.
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1. Introduction

This is a follow-up of [5], and we use the same notation as in [5]. There, we have investigated
the validity of the Gagliardo-Nirenberg (GN) interpolation estimate

1f lwer@ S s mn oyl f 1y ¥ F € WP A W2P2(Q). (1.1)
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Here, the real numbers s1,s2,5=0, 1 < p1,p2,p <oco and 0 € (0,1) satisfy the relations

1 6 1-6
§1<89,8=0s1+(1—-0)sg and — = — + ——. 1.2)
P D1 P2

We say that Q is a standard domain in RN if
Q is either RV, or a half space, or a Lipschitz bounded domain in RY. (1.3)

When all the smoothness exponents, s1,s2 and s, are integers, the validity of (1.1) was estab-
lished by Gagliardo [8] and Nirenberg [12]. For general non-negative exponents, non necessarily
integers, (1.1) may fail. In [5], we gave a necessary and sufficient condition for the validity of
(1.1). This involves the following assumption:

1
sgis aninteger =1, ps=1landO0<sg—s;<1-——. (1.4)
P1

More specifically, we have proved the following
Theorem A ([5]). Let Q be a standard domain in RY.
1. Assume that (1.4) fails. Then (1.1) holds for every 6 € (0,1), with s and p given by (1.2).

2. Assume that (1.4) holds. Then (1.1) fails for every 0 € (0,1), with s and p given by (1.2).

Let us also recall the following well-known Sobolev style embeddings. Let s,r, p,q satisfy

N N
O<r<s<oo,lsp<qg=<oo,r—-—=s——. (1.5)
q p

Then we have “most of the time” W2 (Q) — W"4(Q2). More specifically, we have the following
result, well-known to experts.

Theorem B. Let Q be a standard domain in RY. Let s,r, p,q, N satisfy (1.5). Then we have
WP (Q) — W™9(Q) (1.6)

with the following exceptions, where (1.6) fails.

1. When
N=1,sisaninteger =1, p=1,1<g<oocandr=s-1+1/q, (1.7)
we have
wsl(Q) > W9 (), (1.8)
2. When
N ) )
N=1,1<p<oo,q=00and s—— =r=0is an integer, (1.9)
p
we have
W3P(Q) &~ W(Q). (1.10)



For the convenience of the reader, we present in the appendix a proof of some special cases
of Theorem B that we could not find in the literature, and give references for the other ones.

The Gagliardo-Nirenberg-Sobolev (GNS) inequalities are inequalities obtained, at least for-
mally, by combining (1.1) with (1.6). They are of the form

If lwra SIF Ipsron il f ismpacqy ¥ F € WEHPHQ)NW2P2(Q), (1.11)
where

0<s1=<s92,720,1<p1,p2,q <00,(s1,p1) #(s2,p2),0 €(0,1),
(9 +1—9) s—r (1.12)
P1 P2 N -

r<s:=0s1+(1-0)sg, — =
q

[More specifically, (1.11) can be obtained either by using first (1.1), next (1.6), or by applying
first (1.6) in order to obtain the embeddings W%/-?; — W79/ j=1,2 next by applying (1.1) to
the couple (W91 'W7"2:92) with interpolation parameter 6. Both procedures lead to the same
family of inequalities.]

The conditions (s1,p1) # (se, p2) and r < s are imposed in order to exclude from (1.11) the GN
interpolation inequalities (1.1) and the Sobolev embeddings (1.6). Indeed, let us note that, when
(s1,p1) =(s2,p2) and r < s = s1 = sg, estimate (1.11) amounts to (1.6), whose validity is settled
by Theorem B. On the other hand, when r = s, (1.11) becomes (1.1), and we are in position to
apply Theorem A.

We also note that, in (1.12), the parameter q is determined by all the other ones.

Estimate (1.11) is valid in “many cases”. Indeed, assuming (1.12), by combining Theorems
A and B we obtain a wide range of s1,s9,7,p1,p2,q,0,N such that (1.11) holds. Here are two
typical “historical” examples.

Ladyzhenskaya’s inequality ([9]). Let Q c R? be a bounded Lipschitz domain. Then

Il SUFIFZIVAIYZ, Y F e Wy (1.13)

Inequality (1.13) can be obtained as follows. First, Theorem A with s; =0, s9 =1, p1 =2,
p2=2,0=1/2yields

I lgaze SUFIZZIF gz, Y F € WH(Q). (1.14)
Next, Theorem Bwith N =2,s=1/2, p=2,r=0, g =4 gives
1£ e SUf lgpuze, ¥ f € WY22(Q). (1.15)
We obtain (1.13) from (1.14)—(1.15). O
Nash’s inequality ([11]). Let Q c R? be a bounded Lipschitz domain. Then

IF e SUFIVRIVEILE, ¥ F e Wy Q). (1.16)

In order to obtain (1.16), we start, as above, from the GN interpolation style inequality

1f lwuzan STFIZENF I ¥ F € WHA(Q) (1.17)

and the Sobolev style inequality
1F 2 SIf llypueas, ¥ F € WY243(Q), (1.18)

We obtain (1.16) from (1.17)—(1.18). O



The above technique works well when estimates (1.1) and (1.6) are valid. However, it may
happen (and it does happen) that (1.11) holds despite the fact that one (or both) of the estimates
(1.1) or (1.6) fails. Here is such an example.

Example 1. Assume that N =1. We have

I llwonse SUF Iypasall Fllga, ¥ F € WHAQNWHHQ). (1.19)

It is natural to try to derive (1.19) by combining the (formal) GN inequality

If llwseas SUF Iyyasall Fllga, ¥ F € WHAH@QnWEHQ) (1.20)

with the Sobolev estimate
I lwsase S f lyseas, ¥V F € WYB43(Q). (1.21)
Here, (1.20) fails, (1.21) holds and, by Theorem 1 below, (1.19) holds.

On the other hand, it may happen that (1.11) fails (despite the fact that (1.12) holds). Here
is such an example.

Example 2. Assume that N = 1. Then, as a consequence of Theorem 1 below, the following
estimate fails.

If lass SUFINAa I Flle, ¥ F € WY22Q) n W), (1.22)

In this case, the analogues of (1.20) and (1.21) are

1flwsnan S UFIaeal Fllygan, ¥ F € W2AQnWHI(Q), (1.23)
respectively
I lwzss S llypsuas, ¥ F € W43(Q), (1.24)

This time, (1.23) fails, (1.24) holds, and (1.22) fails.

Our main result provides a complete answer to the question of the validity/failure of (1.11).

Theorem 1. Let Q be a standard domain in RY. Let s1,s9,7,p1,p02,9,0,N satisfy (1.12). Then
the GNS inequality (1.11) holds with the following exceptions, when it fails.

1. N=1,sgisaninteger =1, 1<pi<oo,pg=1,s1=89—1+—,

P1
0 6
[I<pi<oo,r=sg—1]or |sg+——-1<r<sg+—-0].
P1 p1
N . .
2. N= 1, S1<892,81—— =89—— =r1s an integer, q = co, (Pl,pz)?f(oo,l)(foreverye€(0,1))_
p1 b2
In the special case where
S1=r =Sy, (1.25)

which is a traditional assumption, considered for example in the seminal work of Nirenberg
[12], Theorem 1 takes the following form.

Corollary 1. Let Q be a standard domain in RY. Let sq,s9,7,p1,p2,9,0,N satisfy (1.12) and
(1.25). Then the GNS inequality (1.11) holds with the following exceptions, when it fails.

4



1. N=1,sgisaninteger =1, 1<pi<oo, pe=1,s1=s9—-1+—,
P1

0 0
S9+——-1<r<sg+——-0andr =s;.
P1 P1

N
2. N=21,p1=00,1<pg<o00,q=00,s1=r=0is an integer, sg =r + — (for every 0 € (0, 1)).
P2

Remark 1. Assume that 0 <s; <r < sy are integers and that (1.12) holds. By Corollary 1, (1.11)
holds except when

N
N=1, p1=00, 1<pg<oo, g =00, s;=r=0is an integer, so=r+ —
p2 (1.26)

(for every 6 € (0, 1)).

This corresponds to the framework of Nirenberg’s paper [12]. [As observed by a number of
people, the exceptional case (1.26) had been overlooked in [12].]

Remark 2. Let us note a striking phenomenon. Let N =2,s1=1,s9=N,r=0, p1=N, p2=1,
g =00, 0 €(0,1). Then WHN(RN) n WNAL(RY) — LO(RY) (since WNL(RY) — L®(RYN)). Therefore,
we have the additive inequality

1f Iz SN ey + 1 f i, ¥ F € WEN@RN) n WNL(RN). (1.27)

However, by Theorem 1 item 2, there is no multiplicative version of (1.27), i.e., there is no
0 € (0,1) such that

I Iz SUFNGan I Flgnss ¥ F € WEN@®RY) n W HRY) (1.28)

WN.,1»

(see Case 5.4; for an alternative proof, see [6, Appendix]). This in sharp contrast with the GN
situation, where additive and multiplicative versions are equivalent.

Remark 3. As we will see in the course of the proof of Theorem 1, the following condition plays
a crucial role in the arguments:

N N
§1— — =89 — —. (1.29)
P1 D2
If (1.29) holds, the equality
r—ﬂz9(31—£)+(1—9)(32—l)
q b1 b2

holds for every 6 € (0,1). Therefore, in Theorem 1 item 2, every 6 € (0,1) is admissible, while in
item 1, there exists a non-empty open interval of admissible 8 € (0, 1).

Our paper is organized as follows. Section 3 is devoted to the proof of Theorem 1. The proof
relies heavily on the identification of most of the Sobolev spaces with Triebel-Lizorkin spaces
(see e.g. [17, Section 2.3.5], [14, Section 2.1.2]). This approach turned out also to be effective in
the proof of Theorem A in [5], and we refer the reader to [5, Sections 2 and 5] for a collection of
properties and tools useful in this context. For the convenience of the reader, an initial Section
2 gathers the minimal material related to Sobolev and Triebel-Lizorkin spaces that we need in
order to prove Theorem 1. The appendix is devoted to a proof of Theorem B.

Acknowledgments. We warmly thank Eric Baer for useful exchanges on this topic. This
article has been partially written during a long term visit of PM at the Simion Stoilow Institute
of Mathematics of the Romanian Academy. He thanks the Institute and the Centre Francophone
en Mathématiques in Bucharest for their support on that occasion.
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2. Basic properties of Sobolev spaces

To start with, let us define a convenient norm on the Sobolev space W5?(Q), with Q c RN a
standard domain. Given s >0 and 1 < p < o0, let m = |s]| be the integer part of s and and set

ID™f e, ifs=m
If lwsp) = D™f(x)—D™f(y)|P Up 2.1)
Flwes) (/ / | f(x) )l dxdy , ifm<s<m+1
ala lx — y|N+(s—m)p

(with the obvious modification when p = 00). Then (see e.g. [17, Section 2.3.8])

Lemma 1. Let Q c RY be a standard domain. Let s >0 and 1 < p <oo. Then

f=flwse =1fllwsr) = Ilf lLe) + 1 f lwsr) (2.2)
is equivalent to the “usual” norms on W*2?(Q).
We endow W4 2(Q)) with this norm.

Definition 1. Let w € C(RY) be such that ¢ = 1 in B1(0) and suppy < B2(0). Define ¢ = ¢ and,
for j =1, yj(x):= w(x/2) —p(x/2771). Set Q= g—le € #. [Equivalently, we have ¢g = % 1y
and, for j =1, ¢;(x) = oNJj (p0(2j x)—2NU _1)(p0(2j ~1x).] Then for each tempered distribution f in
RY we have

f=Y fjing =S ®RY), with f; = f x ;. (2.3)
j=0

f=2%js0f;is “the” Littlewood-Paley decomposition of f € .
Note that & f; =y ;Zf is compactly supported, and therefore f; € C* for each ;.

Definition 2. Starting from the Littlewood-Paley decomposition, we define the Triebel-Lizorkin
spaces Fy, , = F;,q(RN) as follows. We let
(Zj °f j(x))

I llrs, = ,0<p=<o00,0<qg=<o0, (2.4)

IN) Il Lp(RN)
F;,q::{feyl;||f||F1s)’q<oo},0<p<oo,0<q§oo. (2.5)

7=0

The space Fg, , is still defined as in (2.5), with p = g = oco.

Note that we do not define the spaces Fg, , when q < oo; this is a delicate matter (see [17,
Section 2.3.4, p. 50]).

Most of the Sobolev spaces can be identified with Triebel-Lizorkin spaces [17, Section 2.3.5],
[14, Section 2.1.2].
Lemma 2. The following equalities of spaces hold, with equivalence of norms:

1. If s >0 is not an integer and 1 < p < oo, then WSP(RN) =F;
2. If s= 0 is an integer and 1 < p < oo, then WSP(RN) = F; 9-

When s = 0 is an integer and either p =1 or p = 0o, the Sobolev space W*? cannot be identified
with a Triebel-Lizorkin space.

Definition 3. A regular Sobolev space is a space WP = WP (RY) which can be identified with
a Triebel-Lizorkin space. Equivalently, W7 is regular if and only if either [s is not an integer
and 1 < p <oo] or [s is an integer and 1 < p < co]. The remaining Sobolev spaces, W*1 and W4
with £ = 0 an integer, are exceptional.



Lemma 3. Let 0<ry<rg<ooand 1<p <gq <oo be fixed. Then for every integer £ = 0,
u € LP(RN) and R > 0 we have the direct Nikolskii’s estimates

supp @ < B(O,R) = |D*ull o) SR NP VD |y, en, (2.6)

and the reverse Nikolskii’s estimates
supp @ < B(0,r2R)\B(0,71R) = llull Loy SR ID ull pogn)- 2.7

See e.g. [16, Chapter 5, Lemma 3.14] for the first result, and [7, Lemma 2.1.1] for the second
one.

In particular, let f; be as in the Littlewood-Paley decomposition. Then the direct estimates
apply to u := fj, with j =0 and R := 2/*1 The reverse estimates apply to u := fj with j =1,
R:=2/,r1:=1/2, rg:=2.

Another useful tool is the following.

Lemma 4. Let sq,s2,s€ R, 0 < p1,p2,p <00 and 60 € (0,1) satisfy s; < sg and (1.2). Then for
every 0<q1,q2,q <oo we have

1f ey, SUFIGe Il Yfes 2.8)

Y
b P1,91 P2,92

The above result is due to Oru [13] (unpublished); for a proof, see [4, Lemma 3.1 and Section
III].

We emphasize the fact that the values of N, q1,q2,q are irrelevant for the validity of (2.8),
and that the essential assumptions are s # s9 and the proportionality relations (1.2).

We next establish various estimates needed in the proof of Theorem 1.

Lemma 5. Let —co<s<oo,1<p<ocoand0<?<o0. Then
|Fllgs e SUFllps,, V¥ F € S/ @®Y). 2.9)

Proof. When p = oo, the conclusion is clear. Assume that p <oco. Let f =3 ;50f; be the
Littlewood-Paley decomposition of f € %’ (RN). We may assume that ||| Fs, < 00. Set

M

[t

gx):= H (2jsfj(x))

j=0
so that [|fllFs, = lgllLe <oo.
We have 2js|fj(x)| < g(x), Vx, Vj. By the direct Nikolskii’s estimates (2.6) (with g := 00), we
have
1fille S2NPIUFjILe < 27NP 7 gliLe = 27N P75 Fllps

so that

(s—N/,
1 | ps-ip = sup 2’ NP il oo S fllpes - O
00,00 J 4

Lemma 6. Let s=0and 1< p <oo. Then

S lwse, ¥ € WSPRN). (2.10)

~Y

1l

(e oX

N/p
0o



Proof. We start with a preliminary remark. Let f € L°(RY) and let f =Y. j=o0 fj be its Littlewood-
Paley decomposition. With ¢; as in Definition 1, we have

I£illee < I f e ll@jlie < ClifllLe, (2.11)

for some C > 0 independent of f, p and j.

We now proceed with the proof of the lemma. Its conclusion follows from Lemmas 5 and 2,
except when s =0 is an integer and p =1 or p =oco. For s =0 integer and p =1 or p = oo, let
feWwsP(RN)andlet f =Y j=o0fj be its Littlewood-Paley decomposition.

When p = o0, (2.7) and (2.11) yield, for j =1,
Ifilzeo <27 DS Fillpeo = 27 1D il <27 DS Fllzoe < 27 || llysco. (2.12)

Since, on the other hand, we have, by (2.11), || follLe < | f Iz, we find that £ lFs, S f llwsco.
Similarly, when p =1, (2.6), (2.7) and (2.11) imply, for j = 1,

filze S 2NN il S 2N DS il = 289 (D )l

5 2(N—s)j ”Dsf”Ll < z(N—s)j IIfIIWs,1, (2.13)

while
Ifollzee Sfollzr SMFNL < If llyysa. (2.14)
Combining (2.13) with (2.14), we find that Ifll sy S If lys1- O

Lemma 7. Let N >2,s>0and 1<p <q <oo. Let 0 =0, €R be defined by 0 —N/q =s—N/p.
Then

WPRY) — FJ .. (2.15)

Proof. Lemma 6 shows that (2.15) holds when ¢ = co.

Assume next that ¢ < co. By Theorem B, we have WSP(RY) — WZ4(RYN). [Item 1 (resp. item
2) is ruled out since N = 2 (resp. g < 00).] On the other hand, for sufficiently small £ > 0 and
p<q <P =p+e, we are in position to apply Lemma 2 and obtain that

WHPRY) - WOIRN)=F3 , — FJ . (2.16)
Finally, let P < q <oo. Let 8 = P/q €(0,1), so that

1 6 1-60
—=— 4
q P o

and oy =00p +(1-0)0. (2.17)
By (2.17), (2.16) with ¢ = P and Lemma 4, we find that

IFlpes, SIS pr ||f||;a§o SIF lwsp@yys ¥ F € WHPRN). O

Lemma 8. We have

Il SUflpo , Vfes" (2.18)

Proof. Let f =% ;> f; be the Littlewood-Paley decomposition of f. Then

2 fi

Jj=sd

£ llzee <sup =Iflgo - O

LOO

LOO



3. Proof of Theorem 1

Outline of the proof. We investigate the validity of (1.11) by considering a number of cases,
which are of interest only when

at least one of the conditions (1.4), (1.7) or (1.9) is satisfied. 3.1)

Therefore, even if (3.1) is not explicitly assumed in a case, we may assume that (3.1) holds.

In the “positive” cases where (1.11) holds, it suffices to establish its validity only when Q =
RY. Indeed, combining (1.11) in Q = RN with the existence of a universal extension operator
P :W5P(Q) — WSP(RY), we obtain the validity of (1.11) in all standard domains.

In the “negative” cases where (1.11) fails, it suffices to prove that (1.11) fails in some ball
B. Indeed, assuming this fact and using the existence of a universal extension operator P :
W3 P(B) — W*P(Q) (with B c Q), we find that (1.11) fails in any domain Q.

In view of the above, we will work either in RY (in the positive cases) or in a (fixed) ball B
(in the negative cases).

It will be convenient to consider not only s1,s2,7,p1,p2,9,0,N, but also s and p as in Theo-
rem A, given respectively by

$:=0s1+(1-0)s9, 3.2)
1 6 1-0
S T (3.3)
p P1 P2

Before proceeding with the proof, let us recall the assumption s < s9, which is part of (1.12).
The proof is divided into eight cases. We will explain at the end why all situations where
(3.1) holds are contained in one of these cases.
Case 1. g =00, r =0 1is an integer, r <s; and s1 —N/p1 #s3—N/p2
Case 2. s1 =s9
Case3. p=1
Case 4. (1.1) holds (i.e., (1.4) fails) and s1 —N/p1 #s2—N/po
Case 5. s1<sg,q=o00and s;—N/p1=s9—N/pg is an integer =0
Case 6. N=1,s9=11is aninteger, po=1,1<pj<ocoands;i=sg—1+1/py
Case7. N=1,s9=11is an integer, po=1,1<pi<ocoandsg—1+1/p1<si<se
Case 8. N =2,s9=11is an integer, po=1,1<pi<ocoand sg—1+1/p1 <si<sq9
Case 1. Assume that ¢ = oo, r =0 is an integer, r <s; and s;1 — N/p1 # sa — N/po. Then (1.11)
holds
Proof. We note that s1—r—N/p1 # s2—r—N/pg and that s;—r >0, j =1,2. We are thus in
position to combine Lemmas 4 and 6 and find that

||f||F0 <SIfI° FoLrNe £ 2305 Nipy ~ ||f||Ws1 -r.p1 ||f||Ws2 —rpg N ”f”Wslpl ”f”WSsz (3.4)
Replacing in (3.4) f with 0%f, with a a multi-index such that |a| = r, we find that

ID” fllpo SIID" f||Ws1 -rp1 ||Drf||Ws2 -rpg N ||f||Ws1 p1 ||f||Ws2 P2 - (3.5)
Combining (3.4) and (3.5) with Lemmas 1 and 8, we find that

1 Iwree = 1f Lo+ 1D” fllzee S N1 fllgo0 o+ ID" fllpo S Ipsron 1 1gomps - O

Case 2. (1.11) holds when s1 =s9
Proof. With no loss of generality, we may assume that 1 < p; < pg < oco. [Recall that we have

9



assumed (s1,p1) # (s2,p2), and thus when s; = s we must have p; # po.] It follows that r <
s =s1 =589 and p; < p < pg. Let us note that, in view of the assumption s; = sg, (1.1) holds.
Therefore, (1.11) holds also, possibly except when (1.6) fails. We find that we only have have to
investigate the validity of (1.11) when

s—— =ris an integer =0 and g = oo. (3.6)
p

In this case, the validity of (1.11) follows from Case 1. O

Case 3. (1.11) holds when p =1

Proof. In this case we have p = p; = p2 = 1 and thus s; < sg. In particular, (1.1) holds. The
only possible obstruction for the validity of (1.11) can arise from Theorem B item 1. We thus
investigate the case where N =1, s =1 1is an integer, 1< g <oo,r=s—-1+1/q.

We let S1, So such that:
1. We have s1 <S1<s5<S2<s9,and S; is not an integer, j = 1,2.
2. IfweletRj:=S;-1+1/q, j=1,2,then R; > 0.

The last condition is satisfied provided S, j = 1,2 are sufficiently close to s (since s—1+1/qg =
1/q > 0).

Define 1,11,A2 €(0,1) by the relations
s = /181 +(1- /1)82, Sl = /1181 +(1- /11)82, Sg = /1281 +(1- /12)82. 3.7)

Clearly, we have

r=AR1+(1-A)Ro, (3.8)
A1+ -A) A2 =0, 3.9
AA-AD+A -1 -A2)=1-6. (3.10)

Let us note that, since 1 < g <oco and S; is not an integer, j = 1,2, we have
WS ®R) — WEH®R), j=1,2. 3.11)
Using successively: (3.8) and Theorem A, (3.11), (3.9)—(3.10) and Theorem A, we find that

1-
1-11 1-2A2 —
(n fIIWsl . ||f||W32,1(R)) (IIfIIWsl @ ||f||W32,1(R)) = 1 Vs 1 sy

This completes Case 3. O

In view of Case 2 and Case 3, from now on we may assume that
81 <89 (3.12)
and
1< p<oo, (3.13)

and in particular that (1.7) fails. [Note that the value p = co is excluded, in view of (1.12).]

Case 4. Assume that (1.1) holds (i.e., that (1.4) fails) and that s; —N/p1 # so—N/po. Then (1.11)
holds
Proof. We may assume that (3.12) and (3.13) hold. It suffices to investigate the cases where (1.6)
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fails. In view of Theorem B and of the assumption (3.13), we thus have that » = 0 is an integer,
g=00,l<p<ocoands=r+N/p.

It will be convenient to rely on geometric interpretations of the conditions (1.2) and (1.4)
with s1 < s9. Condition (1.2) asserts that the point (s,1/p) belongs to the open line segment
I = I(s1,82,p1,p2) determined by its endpoints (s1,1/p1) and (sg,1/p2). On the other hand,
condition (1.4) is equivalent to the fact that the right endpoint of I, i.e., (s2,1/p2), is of the
form (k,1), with & positive integer, and that in addition the slope of I is < —1. Therefore, given
$1,S2,p1,P2, if (1.4) is satisfied for some couple (s, p) with (s,1/p) € I, then it is satisfied by every
such couple. Equivalently, given I, if (1.1) holds for some couple (s, p) with (s,1/p) € I, then (1.1)
holds for every such couple.

Using these considerations, (3.12) and the assumption that (1.1) is satisfied by (s, p), we
obtain the following fact (which can also be checked analytically). Let s;1 <S1 <s<Sg<sg and
define P1, P2 such that the points (S;,1/P;), j = 1,2, belong to I. Define A, 11, A3 as in (3.7).
Then

1 A 1-2A; 1 A 1-2
— -7 =12 —=—+—= (3.14)
P; p1  p2 p P1 Py
and
A 1-4, -
1 llyys,2; S UF Wgsgon 1f Iysapss ¥ F € WLPLRN) A We2P2(RY), V j = 1,2. (3.15)

We choose S; such that S; —r >0, j = 1,2; this is possible since s —r = N/p > 0.

We next note that, under the assumption s; — N/p; # sg — N/pg, the function I > (s,1/p) —
s—N/p is strictly monotone, and thus in particular S; —N/P; # So—N/P3. Since r < S1, by Case
1 we have

I lwreo SUFN sy 115 o, - (3.16)

We complete Case 4 by combining (3.16), (3.15) and (3.9)—(3.10). O
In Case 5 below, we assume (3.12), i.e., s1 < S9.

Case 5. Assume that ¢ = co and that s; — N/p1 =sg— N/pg is an integer = 0. Then (1.11) fails
except in the trivial case where p1 =00, pa =1
Proof. Let us note that we have po < piandr=s—-N/p=s1—N/p1=s2—N/pg =0 is an integer.

Case 5.1. py=ocoand pa2=1
In this case, we have s; =r, s =r+ N, and thus W1 = W and W%2P2 — W"*° whence
(1.11).

Case 5.2. po>1and p; <oo
We have W52:-P2 — W5L.P1 which implies W21 nW$2:P2 = W51.P1 However, we have W51P1 o>
W7, so that (1.11) fails.

Case 5.3. po>1and p; =00 (so that s =r)
In this case, (1.11) becomes || f llwreo < £ 1900 I £1I152 ., , which fails since W52:P2 s> W,

Ws2:P22
Case5.4. po=1land 1<pi<oo
This is a more delicate case. We want to prove that the estimate

1Flwreo SUFysron 1 Iggns ¥ F €WPEPLB) AW HVA(B) (3.17)

fails in the unit ball B.
When r = 0, this is an immediate consequence of the analysis in [6, Appendix]. We present a
a proof valid for all integers r = 0.
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Fix some function ¢ € C°(B) such that ¢(x) = x7/r! near the origin. For such ¢, we have
0<Cj<oo,j=1,2,3, where

Ci:= |‘P|W31’P1(RN), Cq:= |(,0|W7~+N,1([RN), Cs:= I(pIWr,OO([RN)-
Set

P Mx) =17 p(Ax), VA > 1,

so that ¢ € C2(B).
A simple scaling argument shows that
|(,07L|WS1,111(B) —Cq, |(p/llwr+N,1(B) —Cg as 1 — oo, |(p/1|Wr,oo(B) =Cg, (3.18)
lp™ i) — 0as A — o0, V1<t <oo (3.19)
and
D™ -~ 0 a.e. in B as 1 — oo, Vm =0 integer. (3.20)

In view of (3.18)—(3.20), of Lemma 1 and of the Brezis-Lieb lemma ([3]), for every fixed
function f € C°(B) and for every fixed number >0 we have

L f + B I o1 gy = 1 Iiesn gy + (CDP 67 (3.21)
and
Lim |1f + B lwrenag = I f lwrenagg) + Ca2p. (3.22)

Using (3.21)—~(3.22) and a straightforward induction argument, for every sequence (§;) of
positive numbers we may choose a sequence (1) such that

J+1 J 1 4J
7 (" Z(ﬁj)pl <Y Bjoh 3 Z(ﬁ])f’l V=1 (3.23)
=1 J=1 Ws1.,1(B)
and
J+1 4J J
CQZﬁJ_ Zﬁj(p < Cy) Bj, VJ=1 (3.24)
4J = J+1 i
Wr+N,1(B) J
(see [10] for a similar construction).
On the other hand, we have
J J
J=1 Wr:oo(B) 1 j= j=1

We consider a sequence (f3;) of positive numbers such that

Y Bj=ocoand Y (B)P' <oo (3.26)

Jj=1 j=1

(note that this is possible, since p1 > po =1).
We now argue by contradiction and assume that (3.17) holds. We obtain a contradiction (via
(3.23)—(3.26)) by testing (3.17) on fj := ZJ 1[3](,0 7 and letting J — oo.

Case 5 is complete. d
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Case 6. Assume that N =1, sg =1 is an integer, po=1, 1<pj<ooand sy =s2—1+1/p;. Then
(1.11) holds if and only if: [1 < p; <oco and p1/0 < q <oo] or [p1 =00 and g = o]
Proof. We first assume that s9 =1 (and thus s; = 1/p1 and r = 1/q); as we will see below, the case
where s9 = 2 easily reduces to this special case.
Case 6.1. sp=1and p; =0

By Theorem B, when 1 < g < oo we have

WHLQ) N L®(Q) = WHHQ) £ WY1 (Q),

and thus (1.11) cannot hold.
On the other hand, when g = oo, the estimate ||/ [z < ||f||LoO £ 11

in view of the embedding W11(Q) — L®(Q).

Case 6.2. sp=1,1<p;<ooand q =p1/0 (and thus r =6/p1)
By Theorem A and the embedding WH1(R) — L*®°(R), we have

W1 1 holds for every 6 €(0,1),

1Fllwra = 1 lggomnone SIFN s o IFIERE < UFIS oy NFIED,

whence (1.11).

Case 6.3. ss=1,1<pi<ooand p1/60 <q <oo
By Theorem B and the previous case, we have

1 lwra = 1 lwaa SN lyomipie S IIfIIWyplp1 I 55

Case 6.4. sg=1,1<pi<ocoand q<p1/0
Note that we must have g > 1. We will prove that, for every 1 < q < p1/8, the estimate

1Fllgpvag SUENG 1m0 I Is, ¥ F € WPPPHD) AWHLT) (3.27)

fails in the interval I = (-2,2).
For 0<e<1/2,a>0, b >0, we consider the function v = v, 4 : (-2a,2a) — R given by:

0, if |x| >(1+¢)a
v(x):=1 b, if x| <a . (3.28)
affine, in (a,(1+¢)a)and in (—(1+¢&)a,—a)

By straightforward calculations, we have
[vlwriw) = 2b (3.29)
and
C;b'|lne| < |u|§v1/t,t((_2a,2a» < Cb'|Ine|, V1<t <oo (with 0<C;,C} < 00). (3.30)

Arguing by contradiction and assuming the validity of (3.27), we obtain a contradiction (via
(3.29)—(3.30)) by testing (3.27) with v, 11 and letting € — 0.

Case 6.5. s9=1,1<pi<ocoand g =00

This is a sub-case of Case 5.4.
Case 6.6. sg =2

Let us note that sq,s9,7,p1,p2,q are in a positive case if and only of s; —sg+1,1,r —sg +
1,p1,p2,q are in a positive case.

13



Therefore, in a positive case we are in position to apply (1.11) with s9 =1 and find that

-1 -1),0 -1)1-6
1792 Pllggrosgena STFS2TVNG 1000 172 Pl 330
S Wi 1 g1,V f € WERPL R N WL (R),

1z < 1 F lyyrsara SUFIG o0 1F Igpin

) . (3.32)
S 1101 ”f”WSZI’VfEW PPLR) N WP (R).

We obtain (1.11) from (3.31), (3.32) and Lemma 1.

If we are in a negative case, then there exists a sequence
(f)jz1 € (W2 5P AW H L)\ {0}

such that
1 illgr-saria 2 G U1y genpy IFiIE, V72 1. (3.33)

We consider some finite length open interval J such that I c J. By Lemma 1 and the exis-
tence of extension operators, there exist functions g;:J — R, Vj =1, such that

1 g ™V=fiinl.
||gj||W51 P1(J) = ||f]||W81 -s9+1.p1(])s ||g] ”WS2 Ly = ||f]||W1 1(1)» ”gJ”W”I(J) = ||f]||Wr so+1.q(J)s Vj=1

Using (3.33) and the above properties of g;, we find that (1.11) fails.
Case 6 is complete. O

Case 7. Assume that N =1, s9 =1 is an integer, pos =1, 1< p; <ocoand sg—1+1/p1 <s1 < s9.
Then (1.11) holds
Proof. As explained in Case 6, we may assume that sg =1, and thus 1/p1 <s; <1.

Case 7.1. sg=1land 1<q < p;
Let f € WSrPL(R) N WLL(R). Set A := | fllws1r1 and B := I fllwi1. We may assume that A >0
and B > 0. We want to prove the estimate

WA, SAPBE-a, (3.34)

Let f = }.j>of; be the Littlewood-Paley decomposition of f. In view of Lemma 2, (3.34)
amounts to

Y 2799 £04, S A% B0, (3.35)
Jj=0

We now note that the following estimates hold:

Il S2770F e =277 Il S2770F I <27/B, Vj=1, (3.36)
IfollLe SUfolipr SUflp: < B, (3.37)
Ifille S 27 VOY 510 S2779B, vji=1 (3.38)
and
il <2740 f gy, =270 I er s = 272474, (3.39)
Indeed:
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1. (3.36) follows from (2.7) and (2.11);
2. (3.37) is a special case of (2.6);
3. (3.38) is a consequence of (2.6) and (3.36);

4. (3.39) is an immediate consequence of the formula of || f||zs1 combined with Lemma 2.
P1,P1

Combining (3.36)—(3.37) with (3.39) we find, via Holder’s inequality, that
||fj||Lq 5 2—(/131+1—/1)ij131—1; (3.40)

here, the number A € (0,1) is defined by the equation

1_A + ﬂ. (3.41)

q D1 1

[The fact that 0 < A < 1 follows from the assumption 1<q < p;.]
From (3.37)—(3.38) and (3.40), we obtain, with x := A/B > 0,

If;lize S min{2~/4B, g~ 1-Dipd g1-i}

. _ (3.42)
— A9 gLt min{z—]/qx—a, 2—(Asl+1—A)JxA—9}_
In view of (3.42) and of the desired conclusion (3.35), it thus suffices to prove that
Z min{z(rq—l)jx—eq’ 2(r—/tsl—1+/1)jqx(7t—t9)(I} <1. (3.43)

7=0
We now invoke the following result, whose proof is postponed.

Lemma 9. Let a,f,7,6 € R be such that ad = By and a, > 0. Then there exist 0 < C; <C2 <00
such that

Ci= ) min{2™x7, 257} <y, va>0. (3.44)
Jj=—00
In order to obtain (3.43), it suffices thus to be in position to apply Lemma 9 with
a:=(1-A+As1—-r)q,B:=rq—-1,y:=(1-0)q,6:=0q.
We start by checking the identity
ad = fy, (3.45)

which is equivalent to
1
9(1—A+7le—r):(/l—6)(r——). (3.46)
q

On the other hand, we have, by (1.11), r = 1/q + 0(s1 — 1/p1). Plugging this value of r into
(3.46) shows that (3.46) reduces to (3.41), and thus (3.45) holds.

We next prove that a, 8> 0. We clearly have § > 0. In view of (3.45), it suffices to prove that
B>0andy>0.

The inequality g > 0 follows from r —1/q =60(s1 — 1/p1).
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Finally, y > 0 is equivalent to A > 0, that we obtain as follows: we have ¢ > p, and thus

A 1-2 1 1 0 1-0

pn 1 ¢ p p1 1~
so that A > 6, as claimed.
Case 7.1 is complete.

Case 7.2. sgs=1and q = p;
Let, for sufficiently small € =0,  := p; — € and define R by

R-1/Q=r-19=s-1/p=0(s1—1/p1)>0.

Since for € = 0 we have 0 < R < s1, we find that, for small € >0, we have 0 <R < s1 <s, while
1<@ < pi. By Case 7.1, we have

I wra SUFIperen I 1500, ¥ F € WEPPL@R) N WHL(R). (3.47)
On the other hand, we have, by Theorem B,
WEQR) — WHI(R). (3.48)

Combining (3.47) and (3.48), we find that (1.11) holds.
Case 7 is complete. O

Case 8. Assume that N =2, s9 =1 is an integer, pe =1, 1 <p;<ooand sg—1+1/p1 <s1 < s9.
Then (1.11) holds
Proof. We consider several sub-cases.

Case 8.1. [p1 <g <oo]or[p1<q=o0and r is not a non-negative integer]
By Lemma 2, we have W9 = F| , for some ¢. Let rj, j = 1,2, be given by Lemma 7, such that

WsiPi(RNV) — Fq > J =1,2. Tt is easy to see that r; >rg and 0r1 + (1 —0)rg =r. Therefore, we
are in position to apply Lemma 4 and find that

1 llwra = 1 flFr, S ||f||9r1 £ 1% r2 SUF s IIfllwszl, vV f e WSIPLRN) a WosL(RY). (3.49)

Case 8.2. p1 <q =00 and r =0 is an integer
Since q = 0o, (1.12) yields

:6(31—£)+(1—9)(82—JX),
pP1 1

and thus
{ N N} N
r=max{sS{——,S2—— =81 —— =81.
p1 1 p1

Arguing as in the proof of (3.49), but using Lemmas 6 and 8 instead of Lemmas 7 and 2, we
find that

£l S IIfIIFo SN FIL rIIfII r2 r

N LN (3.50)
SUFNsr-rmn ||f||Ws2 1y V€ WSLPLRY) n WH2 2 (R™).
Applying (3.50) to 0%f, with |a| = r, we obtain
ID"fllz~ S ID” fllel 2 flIWS2 i 3.51)

< ”f"Wsl P11 ||fllws2 1 Vf € WSl’pl(RN)nWsz’l(RN)-
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We complete the analysis of Case 8.2 by combining (3.50) and (3.51) with Lemma 1.
We have thus settled all the cases where g > p1.
Assume next that g < p;. We define 0 € R and ¢ by

1 60 1-6 1
r=0s1+(1-0)cand — =—+—=—. (3.52)
q D1 4 pP1

Since, by (1.12), we have

1 1 6 1-6
r<fsi+(1-0)sgsand - <—=—+ ——, (3.53)
g p p1 1
we find from (3.52) and (3.53) that 0 <sg and 1<t < p;.

It also follows from (1.12) and (3.52) that

N N N N N
9(81—— +(1—0)(32——)=r——:9(31—— +(1—0)(0——), (3.54)
D1 1 q pP1 t
so that
N N
NN 3.55
TR (3.55)
Case 8.3. 0=0

In this case, Theorem B and (3.55) imply that W21 — W9 Since p1,¢> 1 and (3.52) holds,
we are in position to apply Theorem A and find that

1 wra S N Gpsson 1 I S IF Ipsnn IIfIIWszl, V f e WLPLRN) A WE2 L (RY).

Case 8.4. 0 <0 and p; <oo
In this case, we have 0 # s1 and 1 < g <oo. By (3.52), (3.55) and Lemmas 2, 4 and 7, we find
that, for some appropriate 7, we have
I lwra =1 f lFr S ||f||9s1 ||f|| S ||f||Ws1 Pl ||f||W32 1, Y f e WSrPIRN) n Wizl®Y),

Pl Pl

Case 8.5. 0 <0, p1 =00 and [q <o0o] or [qg =00 and r is not a non-negative integer]
The argument is almost identical to the one used in Case 8.4. Using, in addition, Lemma 6,
we find that

|Flwra = 1 f ey, SIS, . ||f||1 L S Wsaeo 1 s V¥ f € WELR@Y) 0 W2 @),

Case 8.6. 0 <0, g =00 and r =0 is an integer

By (3.52), we have p; =t =00 and, by (3.55), 0 = sg—N < 0. Going back to (3.52), we find that
r <si, and thus we also have r < s9. We also note that 0 =0(s;—r)+(1—-60)(sg—r—N). Using
Lemma 8 and arguing as above, we have

1/l zee < IIfIIFo S P Vil 32 r-N

(3.56)
S Wgsrroo 1 I S Wporoo £ 10 1 ¥ F € WOLRRN) n W2 HRY).
Applying (3.56) to 0*f, with |a| = r, we obtain
ID" fliLe S IID" fIIWs1 —reo |D” fllws2 r1
$1,00(mpN s2,1mIN (3.57)
S IIfIIWslooIIfIIWszl, VfeWPPRT)NWA(RY).
We complete this case by combining (3.56) and (3.57) with Lemma 1.
Case 8 is complete. O

Proof of Theorem 1 completed. As explained at the beginning of the proof, we have to investigate
the cases where (3.1) is satisfied, i.e., at least one of (1.4), (1.7) or (1.9) holds.
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1. Case 1 was a sort of preliminary case, allowing us to rule out some limiting situations
(where ¢ = oo and r = 0 is an integer).

2. The cases where s; = sg have been investigated in Case 2, and in the other cases we could
assume, in addition to (3.1), that s1 < s9.

3. The cases where (1.7) holds form a sub-case of Case 3.
4. The cases where (1.9) holds are sub-cases of Cases 4 and 5.
5. The cases where N =1 and (1.4) holds were treated in Cases 6 and 7.

6. The cases where N =2 and (1.4) holds were investigated in Case 8.

The proof of Theorem 1 is complete. O

Proof of Lemma 9. Let J = J(x) € Z be the (unique) integer such that
27U <2PIx 0 if j>Jand 27V aY = 2P x 0 if j < . (3.58)

It follows from (3.58) that
(y+86)(a+p)
i 5 TP 2T < qreap), (3.59)

On the other hand, the proportionality relation a6 = fy implies

y+o =0 and ay+5 =
a+p a+p

B

7. (3.60)

Using (3.59) and (3.60), we obtain

[e.°]

Y min {2_“j x7, 2ﬁjx_6} =) 2P7 70 4 Y 27U ¥ m 2P 170 4 270 5 ¥
jE—00 = j>d
~ xﬁ(}f+5)/(a+,3)—5 +x—a(y+5)/(a+ﬁ)+y — 2,
whence (3.44). O

Appendix. Proof of Theorem B

As explained at the beginning of Section 3, in view of the arguments we present it suffices
to work in Q =RY or in a ball. The proof consists of three cases.

Case 1. “Ordinary” cases

The conclusion of the theorem is well-known when both s and r are integers; see e.g. [2, Sec-
tion 9.3]. Similarly, for the case where both W*” and W™ are regular spaces (in the sense of
Definition 3); see e.g. [14, Section 2.2.3].

By the above, it remains to consider the case where exactly one of the spaces WP, W9 ig
exceptional, while the other one is of fractional order.

Case 2. W*P is of fractional order, while W4 is exceptional
Thus q = oo and r = 0 is an integer. We must have p > 1, for otherwise, by (1.5), s is an integer,
and thus W*! is exceptional.

The sequence (f,) constructed in Case 5.4 in the proof of Theorem 1 satisfies ||fsllwsr < 1,
while || f.jllwre — 0o as J — co. We find that (1.6) fails.
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Case 3. W*P is exceptional, while W"-? is of fractional order
Thus s = 1is an integer, p = 1, and 1 < q < co. [Indeed, if ¢ = co then r is an integer.] We consider
several sub-cases.

Case3.1. N=z2andr<s-1

In this case, we have W51 — Ws~LN/(N-1) 1y Case 1. By the same case, we have Ws~LV/WV-1
W4, and thus W1 — W4,

Case3.2. N=z2ands=1

In this case, the embedding W11 — W7 has been established by Solonnikov [15]. Another proof
of this embedding can be found in [1, Appendix D]. The proof there is presented only for N = 2,
but a similar argument holds for every N = 2; see also the references therein.

Case3.3. N=2,s=2ands—-1<r<s
By the previous case, we have

ueWs! = D lue Wl = DS lue WS+l (4.1)

On the other hand, we clearly have 1 < ¢ < N/(N —1). By the Sobolev embedding Wh! —
LN'N-D e find that

ueLlnLNW-D, ra (4.2)

From (4.1) and (4.2), we obtain that W1 — W4,

Case3.4. N=1ands=1

In this case, it is possible to construct a function u : R — R such that suppu < (0,1) and u €
WLL(R), but w ¢ WY2:9((0,1)), V ¢ > 1 (see Lemma 10 below). Thus the embedding W11 — W44
fails.

Case3.5. N=1,s=2ands—-1<r<s
By Case 3.4, there exists some u : R — R such that suppu < (0,1), u € Wh1\ ero_cﬁl’q. Let

v € W51((0,1)) be such that v~V = 4. Then we have v e WS\ W4,
The proof of Theorem B is complete. O

Lemma 10. There exists a function u : R — R, with suppu <(0, 1), such that:
1. ue WH(R).
2. For every 1< ¢ < oo, u ¢ WY2:2((0,1)).

Proof. Let v =v,44 be as in (3.28). Consider a sequence u; := Veja;b; (- — dj), where b; := 1/52,

£j:= e ¢ and a; and d; are chosen such that the intervals I := (d;—2a,,d j+2a ;) have mutually
disjoint supports contained in (1/3,2/3). Let u := } u;. Clearly, suppu < (0,1) and u € L?(R),
1< p < oo. By (3.29)—(3.30), we have u € WH1(R) and, for 1 < ¢ < oo,

1 .
q .19 o) =
|u|w1/q,q((0,1)) = ; |u.] |w1/q,q(1j) = Cq ; J‘2q € =oo. -
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