
C. R. Acad. Sci. Paris, Ser. I 356 (2018) 207–213
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Functional analysis/Mathematical analysis

Remarks on the Monge–Kantorovich problem in the discrete 

setting

Remarques sur le problème de Monge–Kantorovich dans le cas discret

Haïm Brezis a,b,c

a Department of Mathematics, Hill Center, Busch Campus, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
b Departments of Mathematics and Computer Science, Technion, Israel Institute of Technology, 32000 Haifa, Israel
c Laboratoire Jacques-Louis-Lions, Université Pierre-et-Marie-Curie, 4, place Jussieu, 75252 Paris cedex 05, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 December 2017
Accepted 19 December 2017
Available online 5 January 2018

Presented by Haïm Brezis

In Optimal Transport theory, three quantities play a central role: the minimal cost of 
transport, originally introduced by Monge, its relaxed version introduced by Kantorovich, 
and a dual formulation also due to Kantorovich. The goal of this Note is to publicize a 
very elementary, self-contained argument extracted from [9], which shows that all three 
quantities coincide in the discrete case.
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r é s u m é

En théorie du transport optimal, trois quantités jouent un rôle central : le coût minimal 
de transport, introduit par Monge, sa version relaxée, introduite par Kantorovich, et la 
formulation duale, due aussi à Kantorovich. L’objet de cette note est de mettre en avant 
une démonstration totalement élémentaire, extraite de [9], du fait que ces trois quantités 
coïncident dans le cas discret ; cette preuve ne requiert aucune connaissance préalable.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Consider two sets X, Y consisting of m points (Pi) and (Ni), 1 ≤ i ≤ m, i.e.

X = {Pi, P2, . . . , Pm} and Y = {N1, N2, . . . , Nm} .

Let c : X × Y → R be any function (c stands for “cost”). We introduce three quantities. The first one denoted M (for Monge) 
is defined by
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M := min
σ∈Sm

m∑
i=1

c(Pi, Nσ (i)), (1)

where the minimum is taken over the set Sm of all permutations of the integers {1, 2, . . . , m}. The second one, denoted K
(for Kantorovich), is defined by

K := min
A

⎧⎨
⎩

m∑
i, j=1

aijc(Pi, N j); A = (aij) is doubly stochastic

⎫⎬
⎭ . (2)

Recall that a matrix A = (aij) is doubly stochastic if

aij ≥ 0∀i, j,
m∑

i=1

aij = 1 ∀ j, and
m∑

j=1

aij = 1 ∀i. (3)

Finally define D (for duality) by

D := sup
ψ :Y →R

ϕ:X→R

{
m∑

i=1

(ϕ(Pi) − ψ(Ni));ϕ(x) − ψ(y) ≤ c(x, y), ∀x ∈ X,∀y ∈ Y

}
. (4)

Theorem 1.1. We have

M = K = D. (5)

Moreover the “sup” in (4) is achieved.

Equality K = D in Theorem 1.1 is at the heart of Kantorovich’s pioneering discovery concerning the Monge problem (see 
[19] and [20]). Equality M = K makes totally transparent the connection between Kantorovich’s formulation and Monge’s 
original goal (see item (3) in Section 4 below). The purpose of this note is to advertise the MK (= Monge–Kantorovich) 
theory in its most elementary (but in itself striking and useful!) setting, as it appears, e.g., in Brezis–Coron–Lieb [11] (see 
Section 3 and item (1) in Section 4 below). This “primitive” case illuminates the foundations of the MK saga which has 
“exploded” in recent years; see, e.g., the remarkable works of [2], [3], [7], [15], [16], [17], [23], [24], [29], [34], [35], etc. 
I reproduce in Section 2 an elementary self-contained proof of Theorem 1.1 (accessible to first-year students), extracted from 
a presentation of [11] that I gave in 1985 (see [9]).

2. Proof of Theorem 1.1

Choosing for A in (2) a permutation matrix yields

K ≤ M. (6)

On the other hand, assume that ϕ and ψ are as in (4). Let A = (aij) be a doubly stochastic matrix. Multiplying the inequal-
ities ϕ(Pi) − ψ(N j) ≤ c(Pi, N j) by aij and summing over i, j yields

m∑
i=1

(ϕ(Pi) − ψ(Ni)) ≤
m∑

i, j=1

aijc(Pi, N j). (7)

Minimizing over A and maximizing over ϕ, ψ gives

D ≤ K . (8)

In view of (6) and (8), it suffices to establish that

M ≤ D. (9)

Proof of (9). Without loss of generality we may relabel the points (N j) so that

M =
m∑

i=1

c(Pi, Ni) ≤
m∑

j=1

c(P j, Nσ ( j)) ∀σ ∈ Sm. (10)

By (4) it remains to show that there exist functions ϕ : X →R and ψ : Y →R such that
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m∑
i=1

(ϕ(Pi) − ψ(Ni)) ≥ M (11)

and

ϕ(Pi) − ψ(N j) ≤ c(Pi, N j) ∀i, j. (12)

Set

di = c(Pi, Ni) ∀i (13)

and

bij = c(Pi, N j) − di = c(Pi, N j) − c(Pi, Ni) ∀i, j. (14)

Consider the numbers λi = ψ(Ni), 1 ≤ i ≤ m, as being the unknowns. Once the λi ’s have been determined set

ϕ(Pi) = ψ(Ni) + di = λi + di ∀i. (15)

(This choice is dictated by (10), (11), and (12) applied with i = j.) From (15), (13) and (10) we see that (11) holds. We now 
rewrite (12) as

λi − λ j ≤ bij ∀i, j. (16)

Note that by (13) and (14)

bii = 0 1 ≤ i ≤ m, (17)

and that the hypothesis (10) reads

m∑
j=1

b jσ ( j) ≥ 0 ∀σ ∈ Sm. (18)

We complete the proof of (12) (and thus the existence of functions ϕ and ψ satisfying (11)–(12)) via the next lemma 
essentially due to Afriat [1].

Lemma 2.1. Assume that (bij) is a general matrix satisfying (17)–(18). Then the system of inequalities (16) admits a solution.

Proof. (Copied from [9], inspired by [1]). We first propose an ansatz for the λi ’s and then prove that this ansatz has all the 
required properties. A chain K connecting i to j is a finite sequence K = (i1, . . . , ik) such that k ≥ 2, il ∈ {1, . . . , m} ∀l, i1 = i, 
and ik = j. (We do not assume that i1, . . . , ik are distinct.)

Given a chain K connecting i = i1 to j = ik , set

S K := bi1i2 + bi2i3 + · · · + bik−1 ik . (19)

Suppose now that a solution (λi) to (16) exists and consider a chain K connecting i to j. We have

λi1 − λi2 ≤ bi1i2 ,

λi2 − λi3 ≤ bi2i3 ,

. . .

λik−1 − λik ≤ bik−1 ik .

Adding these inequalities yields

λi − λ j ≤ S K , (20)

and in particular

λi − λ1 ≤ inf
K

{
S K ; K is a chain connecting i to 1

}
. (21)

We now turn to the existence of a solution (λi) to (16). Since the λi ’s are defined modulo an additive constant it is tempting, 
in view of (21), to set, for every 1 ≤ i ≤ m,
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λi := inf
K

{
S K ; K is a chain connecting i to 1

}
. (22)

(A priori, it may happen that λi = −∞, but this will be excluded below.) Fix 1 ≤ i, j ≤ m and let K = (i1, . . . , ik) be any 
chain connecting j to 1, then K̃ := (i, K ) connects i to 1 and therefore (by (22))

λi ≤ S K̃ = bij + S K . (23)

Taking the inf over K in (23) we obtain

λi ≤ bij + λ j ∀1 ≤ i, j ≤ m. (24)

This corresponds to the desired inequality (16) provided we establish that λ j �= −∞ ∀ j; assumptions (17) and (18) enter 
here. We will prove that

λ1 = 0. (25)

Then, combining (24) and (25) we deduce that

0 = λ1 ≤ b1 j + λ j ∀ j

and thus λ j �= −∞ ∀ j. We now turn to the proof of (25). First, we choose the chain K = (1, 1) in (22) and obtain

λ1 ≤ b11 = 0. (26)

Next we establish that λ1 ≥ 0. We start with some terminology. A chain K connecting i to j = i is called a cycle (or a loop). 
A cycle is simple if i1, . . . , ik−1 are distinct. We claim that, for every cycle K ,

S K ≥ 0. (27)

Indeed when K is a simple cycle (27) follows from (18) (and (17)) applied to the permutation i1 → i2 · · · → ik (the other 
integers are invariant). By decomposing a general cycle into simple cycles we find that (27) holds for all cycles. Applying 
(27) to any chain connecting 1 to 1, we deduce from (22) that λ1 ≥ 0. �
Remark 2.1. The above proof provides in fact a necessary and sufficient condition for the existence of a solution to (16). It 
reads as follows.∑

j∈B

b jσ ( j) ≥ 0, ∀σ ∈ Sk, (28)

for every integer 1 ≤ k ≤ m and for every subset B of {1, . . . , m} containing k distinct elements, where the permutations σ
act only on B . This result appears already in [1] as a consequence of Theorems 3.1 and 7.2 in [1]. Unfortunately, the proofs 
in [1] are obscured by a flurry of definitions!

3. When the cost c is a distance

We now present a simple consequence of Theorem 1.1 when the cost c is a distance, which corresponds to the setting of 
[20]. Let d(x, y) be a pseudometric (i.e. the distance between two distinct points can be zero) on a set Z . Let (Pi ), (Ni), 1 ≤
i ≤ m be points in Z such that Pi �= N j ∀i, j (but it may happen that Pi = P j or Ni = N j for some i �= j).

Corollary 3.1. We have

DLip := sup
ζ

{
m∑

i=1

(ζ(Pi) − ζ(Ni)); ζ : Z →R, |ζ(x) − ζ(y)| ≤ d(x, y)∀x, y ∈ Z

}

= min
σ∈Sm

m∑
i=1

d(Pi, Nσ (i)) = M.

Proof. Clearly DLip ≤ M . After relabeling the points (N j) we may assume, as in (10), that

M =
m∑

d(Pi, Ni) ≤
m∑

d(P j, Nσ ( j)) ∀σ ∈ Sm. (29)

i=1 j=1
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Applying Theorem 1.1 with X = {P1, P2, . . . , Pm}, Y = {N1, N2, . . . , Nm} and c(x, y) = d(x, y) we know that M = D; thus we 
obtain functions ϕ : X → R and ψ : Y → R such that

ϕ(Pi) − ψ(Ni) = d(Pi, Ni) ∀i, (30)

and

ϕ(Pi) − ψ(N j) ≤ d(Pi, N j) ∀i, j. (31)

We claim that

|ψ(Ni) − ψ(N j)| ≤ d(Ni, N j) ∀i, j. (32)

Indeed, by (30), (31), and the triangle inequality we have

ψ(Ni) = ϕ(Pi) − d(Pi, Ni) ≤ ψ(N j) + d(Pi, N j) − d(Pi, Ni) ≤ ψ(N j) + d(Ni, N j),

which implies (32). Set, for z ∈ Z ,

ζ0(z) = inf
j

{
ψ(N j) + d(z, N j)

}
, (33)

so that

|ζ0(x) − ζ0(y)| ≤ d(x, y) ∀x, y ∈ Z .

From (32) we see that

ζ0(Ni) = ψ(Ni) ∀i. (34)

On the other hand, we have, by (33) and (31), ζ0(Pi) ≥ ϕ(Pi) ∀i, while taking j = i in (33), and using (30), yields

ζ0(Pi) ≤ d(Pi, Ni) + ψ(Ni) = ϕ(Pi) ∀i.

Therefore,

ζ0(Pi) = ϕ(Pi) ∀i. (35)

Choosing ζ = ζ0 in the definition of DLip and applying (30), (34), and (35) yields DLip ≥ M . �
4. Final comments

(1) Corollary 3.1 is taken from [11]. Equality M = DLip plays an important role in proving that the “least energy required 
to produce prescribed singularities” (in liquid crystals) coincides with the “length of a minimal connection connecting 
these singularities” (for subsequent developments see, e.g., [5], [8], [12], [13] and [28]). The proof of Corollary 3.1 in 
[11] takes a few lines, but it relies heavily on three nontrivial tools. The equality K = DLip is derived from Kantorovich’s 
duality (see item (2) below). While the equality M = K relies on Birkhoff’s theorem [6] on doubly stochastic matrices 
(also called Birkhoff–von Neumann’s theorem because von Neumann [36] rediscovered it independently a few years 
later). It asserts that the extreme points of the convex set A of doubly stochastic matrices are precisely the permutation 
matrices. Applying the Krein–Milman theorem, one deduces that any matrix in A is a convex combination of permu-
tation matrices, and consequently K ≥ M . (For recent developments related to Birkhoff’s theorem, I refer the reader to 
[22] and [14].) By contrast, the above proof of Corollary 3.1 is elementary and self-contained. No prerequisite is needed 
and moreover it yields the two equalities M = K and K = D in a single shot!

(2) Equality K = D in Theorem 1.1 is at the heart of Kantorovich’s discovery (dating back to the late 1930s – see the 
references in [33]) and goes far beyond the discrete setting considered here. Note that K and D involve the minimization 
(resp. maximization) of linear functionals on convex sets. The most common way to show that K = D is via duality, 
either in the sense of linear programming or in the sense of conjugate convex functions (applying for example the 
theorem of Fenchel–Rockafellar; see, e.g., Theorem I.12 in [10]). I refer the reader to [2], [3], [15], [17], [23], [24], [29], 
[34], [35], etc.

(3) According to A. M. Vershik (personal communication), equality M = K was known to L. V. Kantorovich, based on 
Birkhoff’s theorem (see item (1) above), which was published around the same time as [19]-[20]. Apparently Birkhoff’s 
ideas were in the air since a precursor of Birkhoff’s theorem appeared already in 1931 (see the historical note on p. 
25 of [14]). Surprisingly, Birkhoff’s theorem is hardly ever mentioned in the vast MK literature. The reason for it being 
that the MK community has been mostly preoccupied with the equality M = K in the non-atomic case; in this setting, 
the Monge formulation was not even precisely stated until the 1970s when it was posed explicitly in modern terms by 
A. M. Vershik [32] (see also [7]). In their rush to the continuum case, the MK aficionados paid little attention to the 
discrete case — which is in itself striking and useful!!
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(4) As already mentioned, our elementary proof of Theorem 1.1 does not require any of the tools described in items (1) 
and (2) above. Instead, it relies on the construction (22) (copied from [9]) involving “chains” and “cycles”. This device is 
reminiscent of Rockafellar’s celebrated theorem [26] on cyclically monotone operators. The same construction appears 
subsequently, at the suggestion of Rockafellar, in [25] in the context of Mathematical Economics, and then in [31] in 
the MK context. In [31], Smith and Knott introduced the terminology “c-cyclical monotonicity”, which has become 
very fashionable in the MK community, see [2], [3], [4], [15], [17], [21], [23], [24], [27], [30], [29], [34], [35], etc. In 
the literature, one can find two distinct definitions. The original definition says that if X, Y are arbitrary sets and 
c : X × Y → R is any function, then a set � ⊂ X × Y is c-cyclically monotone if for every integer n, and for any finite 
sequence (xi, yi), 1 ≤ i ≤ n, of points in � (not necessarily distinct), one has

n∑
i=1

{c(xi, yi+1) − c(xi, yi)} ≥ 0, (36)

where yn+1 := y1. In another definition, (36) is replaced by

n∑
i=1

{
c(xi, yσ (i)) − c(xi, yi)

} ≥ 0 ∀σ ∈ Sn. (37)

In fact, the two definitions are equivalent. Clearly, (37) implies (36) (just choose σ(i) = i + 1 when 1 ≤ i ≤ n − 1 and 
σ(n) = 1). For the reverse implication, we return to the proof of Lemma 2.1 with bij = c(xi, y j) − c(xi, yi). We claim that 
for every cycle K = (i1, i2, . . . , ik−1, i1), one has S K ≥ 0 (so that the conclusion of Lemma 2.1 holds, and clearly implies 
(37)). Applying (36) to (xi1 , yi1 ), . . . , (xik−1 , yik−1 ) (instead of (xi, yi)) yields S K ≥ 0. If we take � = (Pi, Ni), 1 ≤ i ≤ m, 
as in the setting of Theorem 1.1, assumption (37) seems (at least formally) stronger than assumption (18) in Lemma 2.1
because (37) is assumed for all finite sequences (xi, yi) in �, and moreover these points are not necessarily distinct 
— but the conclusions are the same and thus the two assumptions are a posteriori equivalent! Finally, observe that if 
X = Y = H is a Hilbert space and c(x, y) = |x − y|2, then a set � ⊂ H × H is c-cyclically monotone if and only if it is 
cyclically monotone in the usual sense (coined by Rockafellar).

(5) E. Ghys [18] and A. Vershik [33] tell the fascinating stories of the Monge and Kantorovich discoveries. I highly recom-
mend these papers.
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