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a b s t r a c t

Inspired by the BBM formula and by work of G. Leoni and D. Spector, we analyze
the asymptotic behavior of two sequences of convex nonlocal functionals (Ψn(u))
and (Φn(u)) which converge formally to the BV-norm of u. We show that pointwise
convergence when u is not smooth can be delicate; by contrast, Γ -convergence to
the BV-norm is a robust and very useful mode of convergence.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, Ω denotes a smooth bounded open subset of Rd (d ≥ 1). We first recall a formula
(BBM formula) due to J. Bourgain, H. Brezis, and P. Mironescu [2] (with a refinement by J. Davila [11]).
Let (ρn) be a sequence of radial mollifiers in the sense that

ρn ∈ L1
loc

(0,+∞), ρn ≥ 0, (1.1) ∞
0
ρn(r)rd−1 dr = 1 ∀n, (1.2)

and

lim
n→+∞

 ∞
δ

ρn(r)rd−1 dr = 0 ∀ δ > 0. (1.3)
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Set

In(u) =

Ω


Ω

|u(x)− u(y)|
|x− y|

ρn(|x− y|) dx dy ≤ +∞, ∀u ∈ L1(Ω) (1.4)

and

I(u) =

γd

Ω

|∇u| if u ∈ BV (Ω),

+∞ if u ∈ L1(Ω) \BV (Ω),
(1.5)

where, for any e ∈ Sd−1,

γd =


Sd−1
|σ · e| dσ =


2
d− 1 |S

d−2| if d ≥ 3,
4 if d = 2,
2 if d = 1.

(1.6)

Then

lim
n→+∞

In(u) = I(u) ∀u ∈ L1(Ω). (1.7)

It has also been established by A. Ponce [23] that In → I as n → +∞ in the sense of Γ -convergence in
L1(Ω). For works related to the BBM formula, see [5–7,15,16]. Other functionals converging to the BV-norm
are considered in [3,8,9,17–22].

One of the goals of this paper is to analyze the asymptotic behavior of sequences of functionals which
“resemble” In(u) and converge to I(u) (at least when u is smooth). As we are going to see pointwise
convergence of In(u) when u is not smooth can be delicate and depends heavily on the specific choice of
(ρn). By contrast, Γ -convergence to I is a robust concept which is not sensitive to the choice of (ρn). We
first consider the sequence (Ψn) of functionals defined by

Ψn(u) =


Ω


Ω

|u(x)− u(y)|1+εn

|x− y|1+εn
ρn(|x− y|) dx dy

 1
1+εn

≤ +∞, ∀u ∈ L1(Ω), (1.8)

where (εn)→ 0+ and (ρn) is a sequence of mollifiers as above.
A general result concerning pointwise convergence is the following

Proposition 1. We have

lim
n→+∞

Ψn(u) = I(u) ∀u ∈

q>1
W 1,q(Ω) (1.9)

and

lim inf
n→+∞

Ψn(u) ≥ I(u) ∀u ∈ L1(Ω). (1.10)

By choosing a special sequence of (ρn), one may greatly improve the conclusion of Proposition 1:

Proposition 2. There exists a sequence (ρn) and a constant C such that

Ψn(u) ≤ CI(u) ∀n,∀u ∈ L1(Ω) (1.11)

and

lim
n→+∞

Ψn(u) = I(u) ∀u ∈ L1(Ω). (1.12)

The proof of Propositions 1 and 2 is presented in Section 2.1. By contrast, some sequences (ρn) may
produce pathologies:
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Proposition 3. Assume d = 1. There exists a sequence (ρn) and some v ∈W 1,1(Ω) such that

Ψn(v) = +∞ ∀n ≥ 1. (1.13)

Proposition 4. Assume d = 1. Given any M > 1, there exists a sequence (ρn) and a constant C such that

Ψn(u) ≤ CI(u) ∀n,∀u ∈ L1(Ω), (1.14)
lim
n→+∞

Ψn(u) = I(u) ∀u ∈W 1,1(Ω), (1.15)

and, for some nontrivial v ∈ BV (Ω),

lim
n→+∞

Ψn(v) =MI(v). (1.16)

The proofs of Propositions 3 and 4 are presented in Section 2.2. In Sections 2.3 and 2.4, we return to a
general sequence (ρn) and we establish the following results:

Proposition 5. We have

Ψn → I in the sense of Γ -convergence in L1(Ω), as n→ +∞. (1.17)

Motivated by Image Processing (see, e.g., [1,12–14,25]), we set

En(u) =

Ω

|u− f |q + Ψn(u) for u ∈ Lq(Ω), (1.18)

and

E0(u) =

Ω

|u− f |q + I(u) for u ∈ Lq(Ω), (1.19)

where q > 1 and f ∈ Lq(Ω). Our main result is

Proposition 6. For each n, there exists a unique un ∈ Lq(Ω) such that

En(un) = min
u∈Lq(Ω)

En(u).

Let v be the unique minimizer of E0 in Lq(Ω) ∩BV (Ω). We have, as n→ +∞,

un → v in Lq(Ω)

and

En(un)→ E0(v).

In Section 3, we investigate similar questions for the sequence (Φn) of functionals defined by

Φn(u) =

Ω

dx


Ω

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
≤ +∞, for u ∈ L1(Ω),

where p > 1. Such functionals were introduced and studied by G. Leoni and D. Spector [15,16] (see also [26]);
their motivation came from a paper by G. Gilboa and S. Osher [13] (where p = 2) dealing with Image
Processing.

2. Asymptotic analysis of the sequence (Ψn)

2.1. Some positive facts about the sequence (Ψn)

We start with the
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Proof of Proposition 1. We first establish (1.10). By Hölder’s inequality, we have for every u ∈ L1(Ω)

In(u) ≤ Ψn(u)


Ω


Ω

ρn(|x− y|) dx dy
 εn

1+εn
. (2.1)

From (1.2), we have 
Ω


Ω

ρn(|x− y|) dx dy ≤ |Sd−1||Ω |. (2.2)

Note that

lim
n→+∞


|Sd−1||Ω |

 εn
1+εn = 1.

Inserting (1.7) in (2.1) yields (1.10).

We next establish (1.9) for u ∈W 1,q(Ω) with q > 1. Assuming n sufficiently large so that 1 + εn < q, we
may write using Hölder’s inequality

Ψn(u) ≤ In(u)anJbnn,q, (2.3)

where

Jn,q =


Ω


Ω

|u(x)− u(y)|q

|x− y|q
ρn(|x− y|) dx dy

1/q
, (2.4)

an + bn = 1 and an + bn
q

= 1
1 + εn

, (2.5)

i.e.,

bn


1− 1
q


= εn

1 + εn
and an = 1− bn. (2.6)

From [2], we know that

Jn,q ≤ C∥∇u∥Lq , with C independent of n. (2.7)

Combining (2.3), (2.6), (2.7), and using (1.7), we obtain

lim sup
n→+∞

Ψn(u) ≤ I(u).

This proves (1.9) since we already know (1.10). �

Proof of Proposition 2. The sequence (ρn) is defined by

ρn(t) = 1 + d+ εn
δ1+d+εn

t1+εn1(0,δn)(t), (2.8)

where 1A denotes the characteristic function of the set A, and (δn) is a positive sequence converging to 0
and satisfying

lim
n→+∞

δεnn = 1; (2.9)

one may take for example

δn = e−1/√εn . (2.10)

We have

Ψ1+εn
n (u) = 1 + d+ εn

δ1+d+εn
n


Ω


Ω

|x−y|<δn

|u(x)− u(y)|1+εn dx dy. (2.11)
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From the Sobolev embedding, we know that BV (Ω) ⊂ Lq(Ω) with q = d/(d− 1) and moreover,
Ω


Ω

|u(x)− u(y)|q dx dy
1/q

≤ CI(u) ∀u ∈ L1(Ω). (2.12)

Applying Hölder’s inequality as above, we find

Ψn(u) ≤
1 + d+ εn
δ1+d+εn
n

 1
1+εn
Xann Y

bn
n , (2.13)

where

Xn =

Ω


Ω

|x−y|<δn

|u(x)− u(y)| dx dy, (2.14)

Yn =

 
Ω


Ω

|x−y|<δn

|u(x)− u(y)|q dx dy


1/q

, (2.15)

and an and bn are as in (2.5). From [2] (applied with ρn(t) = 1+d
δ1+d
n
t1(0,δn)(t)), we know that

Xn ≤ Cδ1+d
n I(u). (2.16)

Moreover, by (1.7), we have

lim
n→+∞

1 + d
δ1+d
n

Xn = I(u). (2.17)

On the other hand, by (2.12), we obtain

Yn ≤ CI(u) := Y. (2.18)

Inserting (2.16) and (2.18) in (2.13) gives

Ψn(u) ≤ C
1
δαnn
I(u), (2.19)

where, by (2.6),

αn = 1 + d+ εn
1 + εn

− (1 + d)an = 1 + d+ εn
1 + εn

− (1 + d) + (1 + d)qεn
(q − 1)(1 + εn)

= − εnd1 + εn
+ (1 + d)qεn

(q − 1)(1 + εn)
= εnd

2

1 + εn
.

From (2.19) and (2.9), we obtain (1.11).

We next prove (1.12). In view of (1.10), it suffices to verify that

lim sup
n→+∞

Ψn(u) ≤ I(u) ∀u ∈ L1(Ω). (2.20)

We return to (2.13) and write

Ψn(u) ≤
1 + d+ εn
δ1+d+εn
n

 1
1+εn
 δd+1
n

d+ 1

an (1 + d)Xn
δ1+d
n

an
Y bn = γnδ−αnn

 (1 + d)Xn
δ1+d
n

an
Y bn ,

where γn → 1, an → 1, and bn → 0. Using (2.9) and (2.17), we conclude that (2.20) holds. �
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2.2. Some sequences (ρn) producing pathologies

In this section, we establish Propositions 3 and 4.

Proof of Proposition 3. Take Ω = (−1/2, 1/2) and ρn(t) = εntεn−11(0,1)(t). Then

Ψ1+εn
n (u) ≥ εn

 1/2

0
dx

 0

−1/2

|u(x)− u(y)|1+εn

|x− y|2
dy.

If we assume in addition that u(y) = 0 on (−1/2, 0), we obtain

Ψ1+εn
n (u) ≥ εn

 1/2

0
|u(x)|1+εn

 1
x
− 1
x+ 1/2


dx. (2.21)

Choosing, for example,

u(x) =

| ln x|−α on 0 < x < 1/2,
0 on − 1/2 < x ≤ 0,

(2.22)

with α > 0, we see that u ∈ W 1,1(Ω) while the RHS in (2.21) is +∞ when α(1 + εn) ≤ 1; we might take,
for example, α = minn


1/(1 + εn)


. �

Proof of Proposition 4. Take Ω = (−1, 1) and (ρn) as in (2.8) (but do not take δn as in (2.9)). Let

v(x) =


0 for x ∈ (−1, 0),
1 for x ∈ (0, 1).

Then

Ψn(v) = 2 + εn
δ2+εn
n

 1

0

 1

0
x+y<δn

dx dy = 2 + εn
δεnn
.

Since I(v) = 2 (see (1.5) and (1.6)), we deduce that

Ψn(v) = 2 + εn
2δεnn

I(v). (2.23)

Given M > 1, let A = lnM > 0 and δn = e−A/εn . Then

lim
n→+∞

Ψn(v) =MI(v).

On the other hand, we have, for every u ∈ BV (Ω),

Ψn(u) ≤
2 + εn
δ2+εn
n


Ω


Ω

|x−y|<δn

|u(x)− u(y)|1+εn dx dy.

As in the proof of Proposition 2 (see (2.19)), we find

Ψn(u) ≤ C
1
δαnn
I(u),

Since δn = e−A/εn , we deduce that (1.14) holds.

In order to obtain (1.15), we recall (see (1.9)) that

lim
n→+∞

Ψ(ũ) = I(ũ) ∀ ũ ∈ C1(Ω̄). (2.24)

For u ∈W 1,1(Ω), we write

Ψn(u)− I(u) = Ψn(u)−Ψn(ũ) + Ψn(ũ)− I(ũ) + I(ũ)− I(u),
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and thus by (1.14),

|Ψn(u)− I(u)| ≤ CI(u− ũ) + |Ψn(ũ)− I(ũ)|. (2.25)

We conclude that limn→+∞ |Ψn(u)− I(u)| = 0 using (2.24) and the density of C1(Ω̄) in W 1,1(Ω).

2.3. Γ -convergence

This section is devoted to the proof of Proposition 5 and a slightly stronger variant.
Recall that (see, e.g., [4,10]), by definition, the sequence (Ψn)Γ -converges to Ψ in L1(Ω) as n→∞ if the

following two properties hold:

(G1) For every u ∈ L1(Ω) and for every sequence (un) ⊂ L1(Ω) such that un → u in L1(Ω) as n→∞, one
has

lim inf
n→∞

Ψn(un) ≥ Ψ(u).

(G2) For every u ∈ L1(Ω), there exists a sequence (un) ⊂ L1(Ω) such that un → u in L1(Ω) as n → ∞,
and

lim sup
n→∞

Ψn(un) ≤ Ψ(u).

Proof of (G1). Going back to (2.1)–(2.3), we have

In(u) ≤ βnΨn(u) ∀u ∈ L1(Ω),

where βn → 1. Thus

In(un) ≤ βnΨn(un) ∀n,

and since In → I in the sense of Γ -convergence in L1(Ω) (see [23] and also [7]), we conclude that

lim inf
n→+∞

Ψn(un) ≥ I(u).

Proof of (G2). Given u ∈ BV (Ω), we will construct a sequence (un) converging to u in L1(Ω) such that

lim sup
n→+∞

Ψn(un) ≤ I(u).

Let vk ∈ C1(Ω̄) be such that

vk → u in L1(Ω) and I(vk)→ I(u). (2.26)

For each k, let nk be such that Ψn(vk)− I(vk) ≤ 1/k if n > nk. (2.27)

Without loss of generality, one may assume that (nk) is an increasing sequence with respect to k. Define

un = vk if nk < n ≤ nk+1.

Combining (2.26) and (2.27) yields

un → u in L1(Ω) and lim
n→+∞

Ψn(un) = I(u). �

In fact, a property stronger than (G1) holds.
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Proposition 7. For every u ∈ L1(Ω) and for every sequence (un) ⊂ L1(Ω) such that un ⇀ u weakly in L1(Ω)
as n→ +∞, one has

lim inf
n→+∞

Ψn(un) ≥ I(u). (2.28)

Proof. We adapt a suggestion of E. Stein (personal communication to H. Brezis) described in [5]. Let (µk)
be a sequence of smooth mollifiers such that µk ≥ 0 and suppµk ⊂ B1/k = B1/k(0) = B(0, 1/k). Fix
D an arbitrary smooth open subset of Ω such that D̄ ⊂ Ω and let k0 > 0 be large enough such that
B(x, 1/k0) ⊂⊂ Ω for every x ∈ D. Given v ∈ L1(Ω), define in D

vk = µk ∗ v for k ≥ k0.

We have
D


D

|vk(x)− vk(y)|1+εn

|x− y|1+εn
ρn(|x− y|) dx dy

=

D


D

|µk ∗ v(x)− µk ∗ v(y)|1+εn

|x− y|1+εn
ρn(|x− y|) dx dy

=

D


D

 B(0,1/k) µk(z)

v(x− z)− v(y − z)


dz
1+εn

|x− y|1+εn
dx dy

≤

D


D


B(0,1/k) µk(z)

v(x− z)− v(y − z)1+εn
dz

|x− y|1+εn
ρn(|x− y|) dx dy,

by Hölder’s inequality. A change of variables implies, for k ≥ k0,
D


D

|vk(x)− vk(y)|1+εn

|x− y|1+εn
ρn(|x− y|) dx dy ≤


Ω


Ω

|v(x)− v(y)|1+εn

|x− y|1+εn
ρn(|x− y|) dx dy. (2.29)

Applying (2.29) to v = un we find
D


D

|uk,n(x)− uk,n(y)|1+εn

|x− y|1+εn
ρn(|x− y|) dx dy ≤ Ψ1+εn

n (un), (2.30)

where uk,n = µk ∗ un is defined in D for every n and every k ≥ k0. Since un ⇀ u weakly in L1(Ω) we know
that for each fixed k,

uk,n → µk ∗ u strongly in L1(D) as n→ +∞.

Passing to the limit in (2.29) as n→ +∞ (and fixed k) and applying Proposition 5 (Property (G1)) we find
that

lim inf
n→+∞


D


D

|uk,n(x)− uk,n(y)|1+εn

|x− y|1+εn
ρn(|x− y|) dx dy ≥ γd


D

|∇(µk ∗ u)|. (2.31)

Combining (2.30) and (2.31) yields

lim inf
n→+∞

Ψn(un) ≥ γd

D

|∇(µk ∗ u)| ∀ k ≥ k0.

Letting k → +∞, we obtain

lim inf
n→+∞

Ψn(un) ≥ γd

D

|∇u|.

Since D is arbitrary, Proposition 7 follows. �
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2.4. Functionals with roots in image processing

We give here the

Proof of Proposition 6. For each fixed n, the functional En defined on Lq(Ω) by (1.18) is convex and lower
semicontinuous (l.s.c.) for the strong Lq-topology (note that Ψn is l.s.c. by Fatou’s lemma). Thus En is also
l.s.c. for the weak Lq-topology. Since q > 1, Lq is reflexive and infu∈Lq(Ω)En(u) is achieved. Uniqueness of
the minimizer follows from strict convexity.

We next establish the second statement. Since q > 1, one may assume that unk ⇀ u0 weakly in Lq(Ω)
for some subsequence (unk). We claim that

u0 = v. (2.32)

By Proposition 5 (Property (G2)), there exists (vn) ⊂ L1(Ω) such that vn → v in L1(Ω) and

lim sup
n→∞

Ψn(vn) ≤ I(v). (2.33)

Set, for A > 0 and s ∈ R,

TA(s) =


s if |s| ≤ A,
A if s > A,
−A if s < −A.

(2.34)

We have, since un is a minimizer of En,

En(un) ≤ En(TAvn) =

Ω

|TAvn − f |q + Ψn(TAvn) ≤

Ω

|TAvn − f |q + Ψn(vn). (2.35)

Letting n→∞ and using (2.33), we derive

lim sup
n→+∞

En(un) ≤

Ω

|TAv − f |q + I(v).

This implies, by letting A→ +∞,

lim sup
n→+∞

En(un) ≤ E0(v). (2.36)

On the other hand, we have by Proposition 7,

lim inf
nk→+∞

Ψnk(unk) ≥ I(v), (2.37)

and therefore

E0(u0) ≤ lim inf
nk→+∞

Enk(unk). (2.38)

From (2.36) and (2.38), we obtain claim (2.32).

Next we write 
Ω

|un − f |q = En(un)−Ψn(un). (2.39)

Combining (2.39) with (2.36) and (2.37) gives

lim sup
nk→+∞


Ω

|unk − f |q ≤ E0(v)− I(v) =

Ω

|v − f |q. (2.40)
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Since we already know that unk ⇀ v weakly in Lq(Ω), we deduce from (2.40) that unk → v strongly in
Lq(Ω). The uniqueness of the limit implies that un → v strongly in Lq(Ω), so that

lim inf
n→+∞

En(un) ≥

Ω

|v − f |q + I(v) = E0(v).

Returning to (2.36) yields

lim
n→+∞

En(un) = E0(v). �

Remark 1. There is an alternative proof of Proposition 6 which holds when d ≥ 2 (and also when d = 1
provided that we make a mild additional assumptions on (ρn)). Instead of Proposition 7, one may rely on a
compactness argument based on

Proposition 8. Let (un) be a bounded sequence in L1(Ω) such that

sup
n

Ψn(un) < +∞. (2.41)

When d = 1, we also assume that for each n the function t → ρn(t) is non-increasing. Then (un) is relatively
compact in L1(Ω).

Proof. From (2.1), (2.2) and (2.41), we have

In(un) ≤ C ∀n.

We may now invoke a result of J. Bourgain, H. Brezis, P. Mironescu in [2] when ρn is non-increasing. A. Ponce
in [24] established that the monotonicity of ρn is not necessary when d ≥ 2. �

Proof of Proposition 6 revisited. Using Proposition 8 we can assume that unk ⇀ u0 weakly in Lq(Ω) and
strongly in L1(Ω). We may then rely on Proposition 5 instead of Proposition 7. The rest is unchanged. �

3. A second approximation of the BV -norm

Motivated by a suggestion of G. Gilboa and S. Osher in [13], G. Leoni and D. Spector [15,16] studied the
following functionals

Φn(u) =

Ω

dx


Ω

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
≤ +∞ for u ∈ L1(Ω) (3.1)

where 1 < p < +∞ and (ρn) satisfies (1.1)–(1.3). In [16], they established that (Φn) converges to J in the
sense of Γ -convergence in L1(Ω), where J is defined by

J(u) :=

γp,d

Ω

|∇u| if u ∈ BV (Ω),

+∞ if u ∈ L1(Ω) \BV (Ω).
(3.2)

Here, for any e ∈ Sd−1,

γp,d :=


Sd−1
|σ · e|p dσ

1/p
. (3.3)

In particular,

γp,1 = 21/p. (3.4)

When there is no confusion, we simply write γ instead of γp,d. [In fact, G. Leoni and D. Spector considered
more general functionals involving a second parameter 1 ≤ q < +∞ and they prove that it Γ -converges
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in L1(Ω) to

Ω
|∇u|q up to a positive constant. Here we are concerned only with the most delicate case

q = 1 which produces the BV-norm in the asymptotic limit.]
Pointwise convergence of the sequence (Φn) turns out to be quite complex and not yet fully understood

(which confirms again the importance of Γ -convergence). Several claims in [15] concerning the pointwise
convergence of (Φn) were not correct as was pointed out in [16].

This section is organized as follows. In Sections 3.1–3.3, we describe various results (both positive and
negative) concerning pointwise convergence. The case d = 1 is of special interest because the situation there
is quite satisfactory (the only remaining open problem appears in Remark 3). Our results for the case d ≥ 2
are not as complete; see e.g. important open problems mentioned in Remarks 5 and 8. We then present a
new proof of Γ -convergence in Section 3.4; as we already mentioned, this result is due to G. Leoni and D.
Spector, but our proof is simpler. Finally, in Section 3.5, we discuss variational problems similar to (1.18)
(where Ψn is replaced by Φn) with roots in Image Processing.

3.1. Some positive facts about the sequence (Φn)

A general result concerning the pointwise convergence of (Φn) is the following.

Proposition 9. We have

lim
n→∞

Φn(u) = J(u) ∀u ∈W 1,p(Ω) (3.5)

and

lim inf
n→∞

Φn(u) ≥ J(u) ∀u ∈ L1(Ω). (3.6)

Proof. The proof is divided into three steps.

Step 1: Proof of (3.5) for u ∈ C2(Ω̄). We have

|u(x)− u(y)−∇u(x) · (x− y)| ≤ C|x− y|2 ∀x, y ∈ Ω ,

for some positive constant C independent of x and y. It follows that

|u(x)− u(y)| ≤ |∇u(x) · (x− y)|+ C|x− y|2 ∀x, y ∈ Ω (3.7)

and

|∇u(x) · (x− y)| ≤ |u(x)− u(y)|+ C|x− y|2 ∀x, y ∈ Ω . (3.8)

From (3.7), we derive that
Ω

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
≤


Ω

|∇u(x) · (y − x)|p

|x− y|p
ρn(|x− y|) dy

1/p

+C


Ω

|x− y|pρn(|x− y|) dy
1/p

;

which implies, by (1.2) and (1.3),
Ω

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
≤ γ|∇u(x)|+ o(1). (3.9)

Here and in what follows in this proof, o(1) denotes a quantity which converges to 0 (independently of x)
as n→ +∞. We derive that

Φn(u) ≤ γ

Ω

|∇u(x)| dx+ o(1). (3.10)
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For the reverse inequality, we consider an arbitrary open subset D of Ω such that D̄ ⊂ Ω . For a fixed x ∈ D,
using (1.2), (1.3) and (3.8) one can verify as in (3.9) that

γ|∇u(x)| ≤


Ω

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
+ o(1).

It follows that

γ


D

|∇u(x)| dx ≤ Φn(u) + o(1). (3.11)

Combining (3.10) and (3.11) yields

γ


D

|∇u(x)| dx ≤ lim inf
n→+∞

Φn(u) ≤ lim sup
n→+∞

Φn(u) ≤ γ

Ω

|∇u(x)| dx.

The conclusion of Step 1 follows since D is arbitrary,

Step 2: Proof of (3.6). We follow the same strategy as in the proof of Proposition 7. Let (µk) be a sequence
of smooth mollifiers such that µk ≥ 0 and suppµk ⊂ B1/k. Fix D an arbitrary smooth open subset of Ω such
that D̄ ⊂ Ω and let k0 > 0 be large enough such that B(x, 1/k0) ⊂⊂ Ω for every x ∈ D. Given u ∈ L1(Ω),
define in D

uk = µk ∗ u for k ≥ k0.

We have, for k ≥ k0, 
D


D

|uk(x)− uk(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
dx ≤ Φn(u) ∀n. (3.12)

Letting n→ +∞ (for fixed k and fixed D), we find, using Step 1 on D, that, for k ≥ k0,

lim
n→+∞


D


D

|uk(x)− uk(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
dx = γ


D

|∇uk(x)| dx.

We derive from (3.12) that

lim inf
n→+∞

Φn(u) ≥ γ

D

|∇uk(x)| dx, (3.13)

for k ≥ k0. Letting k → +∞, we obtain

lim inf
n→+∞

Φn(u) ≥ γ

D

|∇u(x)| dx. (3.14)

We deduce (3.6) since D is arbitrary.

Step 3: Proof of (3.5) for u ∈W 1,p(Ω). By Hölder’s inequality, we have

Φn(u) ≤ |Ω |1−1/p


Ω


Ω

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dx dy

1/p
. (3.15)

We may then invoke a result of [2] to conclude that

Φn(u) ≤ C∥∇u∥Lp(Ω) ∀u ∈W 1,p(Ω), (3.16)

with C > 0 independent of n. We next write, using triangle inequality,

|Φn(u)− Φn(ũ)| ≤ Φn(u− ũ) ≤ C∥∇(u− ũ)∥Lp(Ω) ∀u, ũ ∈W 1,p(Ω).
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This implies

|Φn(u)− J(u)| ≤ |Φn(u)− Φn(ũ)|+ |Φn(ũ)− J(ũ)|+ |J(ũ)− J(u)|
≤ C∥∇(u− ũ)∥Lp(Ω) + |Φn(ũ)− J(ũ)|.

Using the density of C2(Ω̄) in W 1,p(Ω), we obtain (3.5). �

By choosing a special sequence (ρn), we may greatly improve the conclusion of Proposition 9. More
precisely, let (δn) be a positive sequence converging to 0 and define

ρn(t) = (p+ d)
δp+dn

tp1(0,δn)(t). (3.17)

We have

Proposition 10. Let d ≥ 1 and assume that either

1 < p ≤ d/(d− 1) and d ≥ 2,

or

1 < p < +∞ and d = 1,

and let (ρn) be defined by (3.17). Then

Φn(u) ≤ C

Ω

|∇u| ∀n, ∀u ∈ L1(Ω), (3.18)

for some positive constant C depending only on d, p, and Ω , and

lim
n→+∞

Φn(u) = J(u) ∀u ∈W 1,1(Ω). (3.19)

On the other hand, there exists some nontrivial v ∈ BV (Ω) such that

lim
n→+∞

Φn(v) = αpJ(v) with αp > 1. (3.20)

Remark 2. The restriction p ≤ d/(d− 1) in the case d ≥ 2 is quite natural if the goal is to prove (3.18) since
the Sobolev embedding W 1,1(Ω) ⊂ Ld/(d−1) is sharp. In fact, this requirement is necessary. Let d ≥ 2, fix
x0 ∈ Ω , and assume that diam(Ω) < 1/2 for notational ease. Set u(x) = |x− x0|1−d ln−2 |x− x0|. One can
verify that u ∈W 1,1(Ω) and for x ∈ Ω with |x− x0| < δn/2

Ω
|x−y|<δn

|u(x)− u(y)|p dy = +∞

since p > d/(d− 1). It follows that

γ


Ω

|∇u(x)| dx < +∞ = Φn(u) ∀n.

Remark 3. We do not know whether it is possible to construct a sequence (ρn) such that (3.19) holds for
every u ∈ BV (Ω). The problem is open even when d = 1.

The proof of Proposition 10 relies on the following inequality which is just a rescaled version of the
standard Sobolev one. Let BR be a ball of radius R, then for any p ∈ [1, d/(d− 1)],

BR

u(y)−−
BR

u
p dy1/p

≤ CRα

BR

|∇u(z)| dz ∀u ∈ L1(BR), (3.21)

for some positive constant C depending only on d and p, where α := (d/p) + 1− d ≥ 0.
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Proof of Proposition 10. Since Φn(u) = Φn(u + c) for any constant c, without loss of generality, one may
assume that


Ω
u = 0. Consider an extension of u to Rd which is still denoted by u such that

∥u∥W 1,1(Rd) ≤ CΩ∥u∥W 1,1(Ω) ≤ CΩ∥∇u∥L1(Ω). (3.22)

In view of (3.17), we have

Φn(u) ≤
(p+ d)1/p

δ
1+d/p
n


Ω


B(x,δn)

|u(x)− u(y)|p dy
1/p
dx. (3.23)

We have, for y ∈ B(x, δn),

|u(x)− u(y)| ≤
u(x)−−

B(x,δn)
u
+ u(y)−−

B(x,δn)
u
. (3.24)

It follows from the triangle inequality that
B(x,δn)

|u(x)− u(y)|p dy
1/p
≤ Cδd/pn

u(x)−−
B(x,δn)

u
+ 

B(x,δn)

u(y)−−
B(x,δn)

u
p dy1/p

. (3.25)

Here and in what follows in this proof, C denotes a positive constant depending only on d, p, and Ω . Inserting
(3.21) in (3.25) yields

B(x,δn)
|u(x)− u(y)|p dy

1/p
≤ Cδd/pn

u(x)−−
B(x,δn)

u
+ Cδαn 

B(x,δn)
|∇u(z)| dz. (3.26)

We claim that 
Ω

u(x)−−
B(x,δn)

u
 dx ≤ Cδn 

Ω

|∇u| (3.27)

and 
Ω

dx


B(x,δn)

|∇u(z)| dz ≤ Cδdn

Ω

|∇u|. (3.28)

Indeed, we have, for R large enough,
Ω

u(x)−−
B(x,δn)

u
 dx ≤ Cδ−dn 

BR


BR

|x−y|<δn

|u(x)− u(y)| dx dy

≤ Cδn

BR

|∇u| ≤ Cδn

Ω

|∇u|,

by the BBM formula applied to ρn(t) = (d+ 1)δ−(d+1)
n t1(0,δn) and by (3.22). On the other hand,

Ω


B(x,δn)

|∇u(z)| dz dx ≤

BR


BR

|x−z|<δn

|∇u(z)| dz dx ≤ Cδpn

Ω

|∇u(x)| dx,

by (3.22). Combining (3.26)–(3.28) yields
Ω


B(x,δn)

|u(x)− u(y)|p dy
1/p
dx ≤ Cδ1+d/p

n


Ω

|∇u(z)| dz (3.29)

(recall that α+ d = 1 + d/p). It follows from (3.23) that

Φn(u) ≤ C∥∇u∥L1(Ω);

which is (3.18).

Assertion (3.19) is deduced from (3.18) via a density argument as in the proof of Proposition 9.
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It remains to prove (3.20). For simplicity, take Ω = (−1/2, 1/2) and consider v(x) = 1(0,1/2)(x). Then,
for n sufficiently large,

Φn(v) = 2(p+ 1)1/p

δ
1/p
n

 δn
0

 δn−x
0

dy
1/p
dx = 2(p+ 1)1/p

δ
1+1/p
n

 δn
0

(δn − x)1/p dx

= 2(p+ 1)1/p

δ
1+1/p
n

δ
1+1/p
n

1 + 1/p = 2p
(p+ 1)1−1/p > 21/p = J(v).

Indeed, since p+ 1 < 2p, it follows that (p+ 1)1−1/p < (2p)1−1/p and thus
2p

(p+ 1)1−1/p > (2p)1/p > 21/p. �

3.2. More about the pointwise convergence of (Φn) when d = 1

In this section, we assume that d = 1 and Ω = (−1/2, 1/2).

Proposition 11. Assume that (ρn) satisfies (1.1)–(1.3). Then, for every q > 1, we have

Φn(u) ≤ Cq∥u′∥Lq(Ω) ∀u ∈W 1,q(Ω),

for some positive constant Cq depending only on q. Moreover,

lim
n→+∞

Φn(u) = J(u) ∀u ∈

q>1
W 1,q(Ω).

Proof. Since Φn(u) = Φn(u+c) for any constant c, without loss of generality, one may assume that

Ω
u = 0.

Consider an extension of u to R which is still denoted by u, such that

∥u∥W 1,q(R) ≤ Cq∥u∥W 1,q(Ω) ≤ Cq∥u′∥Lq(Ω).

Let M(f) denote the maximal function of f defined in R, i.e.,

M(f)(x) := sup
r>0
−
 x+r

x−r
|f(s)| ds.

From the definition of Φn, we have

Φn(u) ≤ C

Ω


Ω

|M(u′)(x)|pρn(|x− y|) dy
1/p
dx ≤ C


Ω

M(u′)(x) dx.

The first statement now follows from the fact that ∥M(f)∥Lq(R) ≤ Cq∥f∥Lq(R) since q > 1. The second
statement is derived from the first statement via a density argument as in the proof of Proposition 9. �

Our next result shows that Proposition 11 is sharp and cannot be extended to q = 1 (for a general
sequence (ρn)).

Proposition 12. For every p > 1, there exist a sequence (ρn) satisfying (1.1)–(1.3) and some function
v ∈W 1,1(Ω) such that

Φn(v) = +∞ ∀n.

Proof. Fix α > 0 and β > 1 such that

α+ β/p < 1. (3.30)
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Since p > 1 such α and β exist. Let (δn) be a sequence of positive numbers converging to 0 and consider

ρn(t) := An
1

t| ln t|β 1(0,δn).

Here An is chosen in such a way that (1.3) holds, i.e., An
 δn

0
dt

t| ln t|β = 1. Set

v(x) =


0 if − 1/2 < x < 0,
| ln x|−α if 0 < x < 1/2.

Clearly, v ∈W 1,1(Ω). We have

Φn(v) =
 1/2

−1/2

 1/2

−1/2

|v(x)− v(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
dx

≥
 δn

0
A1/p
n |v(x)|

 δn−x
0

1
|x+ y|p ρn(x+ y) dy

1/p
dx. (3.31)

We have, for 0 < x < δn/2, δn−x
0

1
|x+ y|p ρn(x+ y) dy ≥

 δn
x

dt

tp+1| ln t|β ≥
 2x

x

dt

tp+1| ln t|β ≥
Cp,β
xp| ln x|β ;

and thus  δn−x
0

1
|x+ y|p ρn(x+ y) dy

1/p
≥ Cp,β
x| ln x|β/p

. (3.32)

Since, by (3.30),  δn/2
0

1
x| ln x|β/p+α

dx = +∞,

it follows from (3.31) and (3.32) that

Φn(v) = +∞ ∀n. �

Remark 4. D. Spector [26] has noticed that the sequence (ρn) and the function v constructed by A. Ponce
(presented in [17]) satisfy (1.1)–(1.3), v ∈ W 1,1(Ω),Φn(v) < +∞ for all n, and limn→+∞ Φn(v) = +∞. In
our construction, the pathology is even more dramatic since Φn(v) = +∞ for all n.

3.3. More about the pointwise convergence of (Φn) when d ≥ 2

In this section, we present two “improvements” of (3.5) concerning the (pointwise) convergence of Φn(u) to
J(u). In the first one (Proposition 13) (ρn) is a general sequence (satisfying (1.1)–(1.3)), but the assumption
on u is quite restrictive: u ∈ W 1,q(Ω) with q > q0 where q0 is defined in (3.33). In the second one
(Proposition 14) there is an additional assumption on (ρn), but pointwise convergence holds for a large
(more natural) class of u’s: u ∈W 1,q(Ω) with q > q1 where q1 < q0 is defined in (3.44).

Proposition 13. Let p > 1 and assume that (ρn) satisfies (1.1)–(1.3). Set

q0 := pd/(d+ p− 1), (3.33)

so that 1 < q0 < p. Then

Φn(u) ≤ C∥∇u∥Lq ∀u ∈W 1,q(Ω) with q > q0, (3.34)
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for some positive constant C = Cp,q,Ω depending only on p, q, and Ω . Moreover,

lim
n→+∞

Φn(u) = J(u) ∀u ∈W 1,q(Ω) with q > q0. (3.35)

Proof. Since Φn(u) = Φn(u+c) for any constant c, without loss of generality, one may assume that

Ω
u = 0.

Consider an extension of u to Rd which is still denoted by u, such that

∥u∥W 1,q(Rd) ≤ Cq,Ω∥u∥W 1,q(Ω) ≤ Cq,Ω∥∇u∥Lq(Ω).

For simplicity of notation, we assume that diam(Ω) ≤ 1/2. Then

Φn(u) ≤

Ω


Sd−1

 1

0

|u(x+ rσ)− u(x)|p

rp
ρn(r)rd−1 dr dσ

1/p
dx.

We have

|u(x+ rσ)− u(x)| ≤
u(x+ rσ)−−


Sd−1
u(x+ rσ′) dσ′

+ u(x)−−
Sd−1
u(x+ rσ′) dσ′


≤ −


Sd−1
|u(x+ rσ)− u(x+ rσ′)| dσ′ +−


Sd−1
|u(x)− u(x+ rσ′)| dσ′.

It follows that

Φn(u) . T1 + T2, (3.36)

where

T1 =

Ω

 1

0


Sd−1


Sd−1
|u(x+ rσ)− u(x+ rσ′)|p dσ′ dσ ρn(r)rd−1−p dr

1/p
dx

and

T2 =

Ω

 1

0


Sd−1
|u(x)− u(x+ rσ′)| dσ′

p
ρn(r)rd−1−p dr

1/p
dx.

In this proof the notation a . b means that a ≤ Cb for some positive constant C depending only on p, q,
and Ω .

We first estimate T1. Let B1 denotes the open unit ball of Rd. By (3.33) we know that the trace mapping
u → u|∂B1 is continuous from W 1,q0(B1) into Lq(∂B1). It follows that

Sd−1


Sd−1
|u(x+ rσ)− u(x+ rσ′)|p dσ′ dσ . ∥∇u(x+ r·)∥pLq0 (B1) . rpMp/q0(|∇u|q0)(x)

(recall that M(f) denotes the maximal function of a function f defined in Rd). Using (1.2), we derive that

T1 .

Ω

 1

0
Mp/q0(|∇u|q0)(x)ρn(r)rd−1 dr

1/p
dx .


Ω

M1/q0(|∇u|q0)(x) dx. (3.37)

Since q > q0, it follows from the theory of maximal functions that
Ω

M1/q0(|∇u|q0)(x) dx . ∥∇u∥Lq(Ω). (3.38)

Combining (3.37) and (3.38) yields

T1 . ∥∇u∥Lq(Ω). (3.39)

We next estimate T2. We have
Sd−1
|u(x)− u(x+ rσ′)| dσ′ ≤


Sd−1

 r
0
|∇u(x+ sσ′)| ds dσ′.



H. Brezis, H.-M. Nguyen / Nonlinear Analysis 137 (2016) 222–245 239

Applying Lemma 1, we obtain, for 0 < r < 1 and x ∈ Ω ,
Sd−1

 r
0
|∇u(x+ sσ′)| ds dσ′ ≤ CrM(|∇u|)(x). (3.40)

We derive that

T2 .

Ω

M(|∇u|)(x) dx . ∥∇u∥Lq (3.41)

by the theory of maximal functions since q > 1. Combining (3.36), (3.39) and (3.41) yields (3.34).

Assertion (3.35) follows from (3.34) via a density argument as in the proof of Proposition 9. �

In the proof of Proposition 13, we used the following elementary.

Lemma 1. Let d ≥ 1, r > 0, x ∈ Rd, and f ∈ L1
loc

(Rd). We have
Sd−1

 r
0
|f(x+ sσ)| ds dσ ≤ CdrM(f)(x), (3.42)

for some positive constant Cd depending only on d.

Proof. Set ϕ(s) =


Sd−1 |f(x+ sσ)| dσ, so that, by the definition of M(f)(x), we have

−

Br(x)

|f(y)| dy ≤M(f)(x) ∀ r > 0,

and thus

H(r) :=
 r

0
ϕ(s)sd−1 ds ≤ |B1|rdM(f)(x) ∀ r > 0. (3.43)

Then H ′(r) = ϕ(r)rd−1, so that r
0
ϕ(s) ds =

 r
0

H ′(s)
sd−1 ds = H(r)

rd−1 + (d− 1)
 r

0

H(s)
sd
ds ≤ CdrM(f)(x),

by (3.43); which is precisely (3.42). (The integration by parts can be easily justified by approximation.) �

Under the assumption that ρn is non-increasing for every n, one can replace the condition q > q0 in
Proposition 13 by the weaker condition q > q1, where

q1 := max

pd/(p+ d), 1


, (3.44)

so that 1 ≤ q1 < q0. It is worth noting that the embedding W 1,q1(Ω) ⊂ Lp(Ω) is sharp and therefore q1 is a
natural lower bound for q (see Remark 2). In fact, we prove a slightly more general result:

Proposition 14. Let p > 1 and assume that (ρn) satisfies (1.1)–(1.3). Suppose in addition that there exist
Λ > 0 and a sequence of non-increasing functions (ρ̂n) ⊂ L1

loc
(0,+∞) such that

ρn ≤ ρ̂n and
 ∞

0
ρ̂n(t)td−1 dt ≤ Λ ∀n. (3.45)

Then

Φn(u) ≤ C∥∇u∥Lq ∀u ∈W 1,q(Ω) with q > q1, (3.46)

for some positive constant C = C(p, q,Λ,Ω) depending only on p, q,Λ, and Ω . Moreover,

lim
n→+∞

Φn(u) = J(u) ∀u ∈W 1,q(Ω) with q > q1. (3.47)
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Remark 5. We do not know whether the conclusions of Proposition 14 hold without assuming the existence
of Λ and (ρ̂n). Equivalently, we do not know whether the conclusions of Proposition 13 hold under the
weaker condition q > q1.

Proof. For simplicity of notation, we assume that ρn is non-increasing for all n and work directly with ρn
instead of ρ̂n. We first prove (3.46). As in the proof of Proposition 13, one may assume that


Ω
u = 0.

Consider an extension of u to Rd which is still denoted by u such that

∥u∥W 1,q(Rd) ≤ Cq,Ω∥u∥W 1,q(Ω) ≤ Cq,Ω∥∇u∥Lq(Ω).

For simplicity of notation, we also assume that diam(Ω) ≤ 1/2. Then

Φn(u) ≤

Ω


Sd−1

 1

0

|u(x+ rσ)− u(x)|p

rp
ρn(r)rd−1 dr dσ

1/p
dx.

We claim that for a.e. x ∈ Ω ,

Z(x) =


Sd−1

 1

0

|u(x+ rσ)− u(x)|p

rp
ρn(r)rd−1 dr dσ

1/p
≤ CM1/q1(|∇u|q1)(x). (3.48)

Here and in what follows, C denotes a positive constant depending only on p, d, and Λ.

From (3.48), we deduce (3.46) via the theory of maximal functions since q > q1. Assertion (3.47) follows
from (3.46) by density as in the proof of Proposition 9.

It remains to prove (3.48). Without loss of generality we establish (3.48) for x = 0. The proof relies
heavily on two inequalities valid for all R > 0:

−

BR

u(ξ)−−
BR

u
p dξ1/p ≤ CRM1/q1(|∇u|q1)(0) (3.49)

and

−

BR

|u(ξ)− u(0)| dξ ≤ CRM1/q1(|∇u|q1)(0), (3.50)

where BR = BR(0).

Inequality (3.49) is simply a rescaled version of the Sobolev inequalityu−−
B1

u

Lp(B1)

≤ C∥∇u∥Lq1 (B1),

which implies that
−

BR

u(ξ)−−
BR

u
p dξ1/p ≤ CR−

BR

|∇u|q1
1/q1

≤ CRM1/q1(|∇u|q1)(0).

To prove (3.50), we write
BR

|u(ξ)− u(0)| dξ =
 R

0


Sd−1
|u(rσ)− u(0)|rd−1 dr dσ

≤ C
 R

0
rd−1 dr


Sd−1

 r
0
|∇u(sσ)| ds dσ

≤ C
 R

0
rdM(|∇u|)(0) by Lemma 1.

Thus

−

BR

|u(ξ)− u(0)| dξ ≤ CRM(|∇u|)(0) ≤ CRM1/q1(|∇u|q1)(0).
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From (3.48), we obtain

Z(0)p =
∞
i=0


Sd−1

 2−i

2−(i+1)
|u(rσ)− u(0)|pρn(r)rd−1−p dr dσ,

so that

Z(0)p ≤ C
∞
i=0
ρn(2−(i+1))2ip


Sd−1

 2−i

2−(i+1)
|u(rσ)− u(0)|prd−1 dr dσ. (3.51)

We have

|u(rσ)− u(0)| ≤
u(rσ)−−

B2−i

u
+ −

B2−i

u− u(0)
. (3.52)

Inserting (3.52) into (3.51) yields

Z(0)p ≤ C
∞
i=0

(Ui + Vi), (3.53)

where

Ui = ρn(2−(i+1))2ip


Sd−1

 2−i

2−(i+1)

u(rσ)−−
B2−i

u
prd−1 dr dσ

and

Vi = ρn(2−(i+1))2ip


Sd−1

 2−i

2−(i+1)

−
B2−i

u− u(0)
prd−1 dr dσ.

Clearly,

Ui ≤ ρn(2−(i+1))2ip


Sd−1

 2−i

0

u(rσ)−−
B2−i

u
prd−1 dr dσ ≤ ρn(2−(i+1))2−idA, (3.54)

by (3.49), where A =Mp/q1(|∇u|q1)(0). On the other hand,

Vi ≤ ρn(2−(i+1))2ip

−

B2−i

|u(ξ)− u(0)| dξ
p

2−id ≤ Cρn(2−(i+1))2−idA by (3.50). (3.55)

Combining (3.53)–(3.55), we obtain

Z(0)p ≤ C
∞
i=0
ρn(2−(i+1))2−idA.

Finally, we observe that 1

0
ρn(r)rd−1 dr ≥

∞
i=0

 2−(i+1)

2−(i+2)
ρn(r)rd−1 dr ≥ C

∞
i=0
ρn(2−(i+1))2−id

and thus

Z(0)p ≤ CMp/q1(|∇u|q1)(0)
 1

0
ρn(r)rd−1 dr ≤ CMp/q1(|∇u|q1)(0). �

Remark 6. Assumption (3.45) holds e.g. for the sequence (ρn) defined in (3.17), i.e.,

ρn(t) = p+ d
δp+dn
tp1(0,δn)(t).
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Indeed, we may choose

ρ̂n(t) = p+ d
δdn

1(0,δn)(t).

Applying Proposition 14 we recover Proposition 10 since q1 = 1 (note that pd ≤ p+ d when d = 1 and also
when d ≥ 2 provided that p ≤ d/(d − 1)). Note, however that in Proposition 14 we must take q > q1 = 1,
while q = 1 was allowed in Proposition 10. This discrepancy is related to our next remark.

Remark 7. Assume that d ≥ 2 and 1 < p ≤ d/(d − 1), so that q1 = 1. The conclusion of Proposition 14
fails in the borderline case q = q1 = 1. More precisely, for every p ∈


1, d/(d − 1)


, there exist a sequence

(ρn) satisfying (1.1)–(1.3) and (3.45), and a function v ∈ W 1,1(Ω) such that Φn(v) = +∞ for all n. The
construction is similar to the one presented in the proof of Proposition 10. Indeed, let Ω = B1/2(0). Fix
α > 0 and β > 1 such that

α+ β/p < 1. (3.56)

Since p > 1 such α and β exist. Let (δn) be a sequence of positive numbers converging to 0 and consider

ρn(t) := An
1

td| ln t|β 1(0,δn).

Note that the functions t → ρn(t) are non-increasing. Here An is chosen in such a way that (1.3) holds,
i.e., An

 δn
0

dt
t| ln t|β = 1. Set

V (x) = v(x1) :=


0 if − 1/2 < x1 < 0,
| ln x1|−α if 0 < x1 < 1/2.

Clearly, V ∈W 1,1(Ω). We have

Φn(V ) =

Ω


Ω

|V (x)− V (y)|p

|x− y|p
ρn(|x− y|) dy

1/p
dx

&

B1/4(0)

0<x1<δn/4

A1/p
n


|y−x|≤δn

|v(x1)− v(y1)|p

|x− y|p+d
 ln |x− y|β dy

1/p
dx.

Note that, for 0 < x1 < δn/4,
|y−x|≤δn

|v(x1)− v(y1)|p dy
|x− y|p+d

 ln |x− y|β &

|y1−x1|≤δn/4
|x′−y′|≤δn/4

|v(x1)− v(y1)|p dy′ dy1
|x1 − y1|p+d + |x′ − y′|p+d

 ln |x1 − y1|
β

&

|y1−x1|≤δn/4

|v(x1)− v(y1)|p dy1
|x1 − y1|p+1

 ln |x1 − y1|
β .

We derive as in the proof of Proposition 12 that
|y−x|≤δn

|v(x1)− v(y1)|p dy
|x− y|p+d

 ln |x− y|β &
v(x1)p

xp1| ln x1|β
.

It follows that

Φn(V ) &

Ω

0<x1<δn/4

A1/p
n

v(x1)
x1| ln x1|β/p

dx =

Ω

0<x1<δn/4

A1/p
n

1
x1| ln x1|α+β/p dx = +∞,

(by (3.56)).

Remark 8. Assume that d ≥ 2 and p > d/(d − 1), so that q1 = pd/(p + d) > 1. It is not known
whether the conclusions of Proposition 14 hold in the borderline case q = q1. More precisely, assume that
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d ≥ 2, p > d/(d− 1), and that (ρn) satisfying (1.1)–(1.3) and (3.45). Is it true that limn→+∞ Φn(u) = J(u)
for all u ∈W 1,q1(Ω)? Take for example d = 2 and p = 3 so that q1 = 6/5.

Remark 9. The technique we use in the proof of Proposition 14 is somewhat similar to the one used by D.
Spector [26] (see e.g. the proof of his Theorem 1.8). However, the results are quite different in nature.

3.4. Γ -convergence

Concerning the Γ -convergence of Φn, G. Leoni and D. Spector proved in [16].

Proposition 15. For every p > 1 we have

Φn
Γ−→ Φ0(·) := γ


Ω

|∇ · | in L1(Ω),

where γ is given in (3.3).

Their proof is quite involved. Here is a simpler proof.

Proof. For D an open subset of Ω such that D̄ ⊂ Ω , set

Φn(u,D) =

D

dx

D

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dy

1/p
for u ∈ L1(D).

Let u ∈ L1(Ω) and (un) ⊂ L1(Ω) be such that un → u in L1(Ω). We must prove that

lim inf
n→∞

Φn(un) ≥ γ

Ω

|∇u|.

Let (µk) be a sequence of smooth mollifiers such that suppµk ⊂ B1/k. Let D be a smooth open subset of Ω
such that D̄ ⊂ Ω and fix k0 such that D +B1/k0 ⊂ Ω . We have as in (2.29), for k ≥ k0,

Φn(µk ∗ un, D) ≤ Φn(un). (3.57)

Using the fact that

|Φn(u,D)− Φn(v,D)| ≤ CD∥u− v∥W 1,∞(D) ∀u, v ∈W 1,∞(D),

we obtain

|Φn(µk ∗ un, D)− Φn(µk ∗ u,D)| ≤ Ck,D∥un − u∥L1(Ω).

Hence

Φn(µk ∗ u,D) ≤ Φn(µk ∗ un, D) + Ck,D∥un − u∥L1(Ω). (3.58)

Combining (3.57) and (3.58) yields

γ


D

|∇(µk ∗ u)| ≤ lim inf
n→+∞

Φn(un).

Letting k →∞, we reach

γ


D

|∇u| ≤ lim inf
n→+∞

Φn(un).

Since D ⊂⊂ Ω is arbitrary, we derive that

γ


Ω

|∇u| ≤ lim inf
n→+∞

Φn(un).
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We next fix u ∈ BV (Ω) and construct a sequence (un) converging to u in L1(Ω) such that

lim sup
n→+∞

Φn(un) ≤ γ

Ω

|∇u|.

Let vk ∈ C1(Ω̄) be such that

vk → u in L1(Ω) and

Ω

|∇vk| →

Ω

|∇u|. (3.59)

For each k, let nk be such that Φn(vk)− γ 
Ω

|∇vk|
 ≤ 1/k if n > nk. (3.60)

Without loss of generality, one may assume that (nk) is an increasing sequence with respect to k. Define

un = vk if nk < n ≤ nk+1.

We derive from (3.59) and (3.60) that

un → u in L1(Ω) and lim
n→+∞

Φn(un) = γ

Ω

|∇u|.

The proof is complete. �

3.5. Functionals with roots in image processing

Set

Ên(u) :=

Ω

|u− f |q + Φn(u),

and

Ê0(u) :=

Ω

|u− f |q + γ

Ω

|∇u|,

where q > 1 and f ∈ Lq(Ω) is a given function. Motivated by Image Processing, we study variational
problems related to Ên. More precisely, we establish

Proposition 16. For every n, there exists a unique un ∈ Lq(Ω) such that

Ên(un) = min
u∈Lq(Ω)

Ên(u).

Let u0 be the unique minimizer of Ê0. We have, as n→ +∞,

un → u0 in Lq(Ω)

and

Ên(un)→ Ê0(u0).

Proof. The proof is similar to the one of Proposition 6. The details are left to the reader. �

Acknowledgments

The research of first author was partially supported by NSF grant DMS-1207793 and by ITN “FIRST”
of the European Commission, Grant Number PITN-GA-2009-238702.



H. Brezis, H.-M. Nguyen / Nonlinear Analysis 137 (2016) 222–245 245

References

[1] G. Aubert, P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving
variational problems? SIAM J. Numer. Anal. 47 (2009) 844–860.

[2] J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, in: J.L. Menaldi, E. Rofman, A. Sulem (Eds.),
Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439–455. A volume in honour of A.Bensoussan’s
60th birthday.

[3] J. Bourgain, H.-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris 343 (2006) 75–80.
[4] A. Braides, Γ -convergence for beginners, in: Oxford Lecture Series in Mathematics and its Applications, vol. 22, Oxford

University Press, Oxford, 2002.
[5] H. Brezis, How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk 57 (2002) 59–74

(English translation in Russian Math. Surveys 57 (2002), 693–708).
[6] H. Brezis, New approximations of the total variation and filters in Imaging, Rend. Lincei 26 (2015) 223–240.
[7] H. Brezis, P. Mironescu, Sobolev Maps with Values Into the Circle, Chapter 7, Birkhäuser (in preparation).
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