

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Two subtle convex nonlocal approximations of the BV-norm

Haïm Brezis^{a,b,c}, Hoai-Minh Nguyen^{d,*}

- ^a Rutgers University, Department of Mathematics, Hill Center, Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
- ^b Department of Mathematics, Technion, Israel Institute of Technology, 32.000 Haifa, Israel
- ^c Laboratoire Jacques-Louis Lions UPMC, 4 place Jussieu, 75005 Paris, France
- ^d EPFL SB MATHAA CAMA, Station 8, CH-1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 30 January 2016 Accepted 3 February 2016 Communicated by Enzo Mitidieri

For Juan-Luis Vazquez on his 70th birthday, wishing him continued success and inspiration in his wonderful mathematics

Keywords: Asymptotic behavior Sequence of functionals Pointwise convergence

ABSTRACT

Inspired by the BBM formula and by work of G. Leoni and D. Spector, we analyze the asymptotic behavior of two sequences of convex nonlocal functionals $(\Psi_n(u))$ and $(\Phi_n(u))$ which converge formally to the BV-norm of u. We show that pointwise convergence when u is not smooth can be delicate; by contrast, Γ -convergence to the BV-norm is a robust and very useful mode of convergence.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, Ω denotes a smooth bounded open subset of \mathbb{R}^d $(d \geq 1)$. We first recall a formula (BBM formula) due to J. Bourgain, H. Brezis, and P. Mironescu [2] (with a refinement by J. Davila [11]). Let (ρ_n) be a sequence of radial mollifiers in the sense that

$$\rho_n \in L^1_{loc}(0, +\infty), \quad \rho_n \ge 0, \tag{1.1}$$

$$\int_0^\infty \rho_n(r)r^{d-1} dr = 1 \quad \forall n, \tag{1.2}$$

and

$$\lim_{n \to +\infty} \int_{\delta}^{\infty} \rho_n(r) r^{d-1} dr = 0 \quad \forall \, \delta > 0.$$
 (1.3)

E-mail addresses: brezis@math.rutgers.edu (H. Brezis), hoai-minh.nguyen@epfl.ch (H.-M. Nguyen).

^{*} Corresponding author.

Set

$$I_n(u) = \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|}{|x - y|} \rho_n(|x - y|) dx dy \le +\infty, \quad \forall u \in L^1(\Omega)$$

$$\tag{1.4}$$

and

$$I(u) = \begin{cases} \gamma_d \int_{\Omega} |\nabla u| & \text{if } u \in BV(\Omega), \\ +\infty & \text{if } u \in L^1(\Omega) \setminus BV(\Omega), \end{cases}$$
 (1.5)

where, for any $e \in \mathbb{S}^{d-1}$,

$$\gamma_{d} = \int_{\mathbb{S}^{d-1}} |\sigma \cdot e| \, d\sigma = \begin{cases} \frac{2}{d-1} |\mathbb{S}^{d-2}| & \text{if } d \ge 3, \\ 4 & \text{if } d = 2, \\ 2 & \text{if } d = 1. \end{cases}$$
 (1.6)

Then

$$\lim_{n \to +\infty} I_n(u) = I(u) \quad \forall u \in L^1(\Omega).$$
(1.7)

It has also been established by A. Ponce [23] that $I_n \to I$ as $n \to +\infty$ in the sense of Γ -convergence in $L^1(\Omega)$. For works related to the BBM formula, see [5–7,15,16]. Other functionals converging to the BV-norm are considered in [3,8,9,17–22].

One of the goals of this paper is to analyze the asymptotic behavior of sequences of functionals which "resemble" $I_n(u)$ and converge to I(u) (at least when u is smooth). As we are going to see pointwise convergence of $I_n(u)$ when u is not smooth can be delicate and depends heavily on the specific choice of (ρ_n) . By contrast, Γ -convergence to I is a robust concept which is not sensitive to the choice of (ρ_n) . We first consider the sequence (Ψ_n) of functionals defined by

$$\Psi_n(u) = \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^{1+\varepsilon_n}}{|x - y|^{1+\varepsilon_n}} \rho_n(|x - y|) \, dx \, dy \right)^{\frac{1}{1+\varepsilon_n}} \le +\infty, \quad \forall \, u \in L^1(\Omega), \tag{1.8}$$

where $(\varepsilon_n) \to 0_+$ and (ρ_n) is a sequence of mollifiers as above.

A general result concerning pointwise convergence is the following

Proposition 1. We have

$$\lim_{n \to +\infty} \Psi_n(u) = I(u) \quad \forall u \in \bigcup_{q>1} W^{1,q}(\Omega)$$
(1.9)

and

$$\liminf_{n \to +\infty} \Psi_n(u) \ge I(u) \quad \forall u \in L^1(\Omega).$$
(1.10)

By choosing a special sequence of (ρ_n) , one may greatly improve the conclusion of Proposition 1:

Proposition 2. There exists a sequence (ρ_n) and a constant C such that

$$\Psi_n(u) \le CI(u) \quad \forall n, \forall u \in L^1(\Omega)$$
 (1.11)

and

$$\lim_{n \to +\infty} \Psi_n(u) = I(u) \quad \forall u \in L^1(\Omega). \tag{1.12}$$

The proof of Propositions 1 and 2 is presented in Section 2.1. By contrast, some sequences (ρ_n) may produce pathologies:

Proposition 3. Assume d=1. There exists a sequence (ρ_n) and some $v \in W^{1,1}(\Omega)$ such that

$$\Psi_n(v) = +\infty \quad \forall \, n \ge 1. \tag{1.13}$$

Proposition 4. Assume d = 1. Given any M > 1, there exists a sequence (ρ_n) and a constant C such that

$$\Psi_n(u) \le CI(u) \quad \forall n, \forall u \in L^1(\Omega),$$
 (1.14)

$$\lim_{n \to +\infty} \Psi_n(u) = I(u) \quad \forall u \in W^{1,1}(\Omega), \tag{1.15}$$

and, for some nontrivial $v \in BV(\Omega)$,

$$\lim_{n \to +\infty} \Psi_n(v) = MI(v). \tag{1.16}$$

The proofs of Propositions 3 and 4 are presented in Section 2.2. In Sections 2.3 and 2.4, we return to a general sequence (ρ_n) and we establish the following results:

Proposition 5. We have

$$\Psi_n \to I \text{ in the sense of } \Gamma\text{-convergence in } L^1(\Omega), \quad \text{as } n \to +\infty.$$
 (1.17)

Motivated by Image Processing (see, e.g., [1,12–14,25]), we set

$$E_n(u) = \int_{\Omega} |u - f|^q + \Psi_n(u) \quad \text{for } u \in L^q(\Omega), \tag{1.18}$$

and

$$E_0(u) = \int_{\Omega} |u - f|^q + I(u) \quad \text{for } u \in L^q(\Omega),$$
 (1.19)

where q > 1 and $f \in L^q(\Omega)$. Our main result is

Proposition 6. For each n, there exists a unique $u_n \in L^q(\Omega)$ such that

$$E_n(u_n) = \min_{u \in L^q(\Omega)} E_n(u).$$

Let v be the unique minimizer of E_0 in $L^q(\Omega) \cap BV(\Omega)$. We have, as $n \to +\infty$,

$$u_n \to v$$
 in $L^q(\Omega)$

and

$$E_n(u_n) \to E_0(v)$$
.

In Section 3, we investigate similar questions for the sequence (Φ_n) of functionals defined by

$$\Phi_n(u) = \int_{\Omega} dx \left[\int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dy \right]^{1/p} \le +\infty, \quad \text{for } u \in L^1(\Omega),$$

where p > 1. Such functionals were introduced and studied by G. Leoni and D. Spector [15,16] (see also [26]); their motivation came from a paper by G. Gilboa and S. Osher [13] (where p = 2) dealing with Image Processing.

2. Asymptotic analysis of the sequence (Ψ_n)

2.1. Some positive facts about the sequence (Ψ_n)

We start with the

Proof of Proposition 1. We first establish (1.10). By Hölder's inequality, we have for every $u \in L^1(\Omega)$

$$I_n(u) \le \Psi_n(u) \left(\int_{\Omega} \int_{\Omega} \rho_n(|x - y|) \, dx \, dy \right)^{\frac{\varepsilon_n}{1 + \varepsilon_n}}. \tag{2.1}$$

From (1.2), we have

$$\int_{\Omega} \int_{\Omega} \rho_n(|x-y|) \, dx \, dy \le |\mathbb{S}^{d-1}| |\Omega|. \tag{2.2}$$

Note that

$$\lim_{n\to +\infty} \bigl(|\mathbb{S}^{d-1}| |\varOmega| \bigr)^{\frac{\varepsilon_n}{1+\varepsilon_n}} = 1.$$

Inserting (1.7) in (2.1) yields (1.10).

We next establish (1.9) for $u \in W^{1,q}(\Omega)$ with q > 1. Assuming n sufficiently large so that $1 + \varepsilon_n < q$, we may write using Hölder's inequality

$$\Psi_n(u) \le I_n(u)^{a_n} J_{n,q}^{b_n},$$
(2.3)

where

$$J_{n,q} = \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^q}{|x - y|^q} \rho_n(|x - y|) \, dx \, dy \right)^{1/q}, \tag{2.4}$$

$$a_n + b_n = 1$$
 and $a_n + \frac{b_n}{a} = \frac{1}{1 + \varepsilon_n}$, (2.5)

i.e.,

$$b_n\left(1 - \frac{1}{q}\right) = \frac{\varepsilon_n}{1 + \varepsilon_n}$$
 and $a_n = 1 - b_n$. (2.6)

From [2], we know that

$$J_{n,q} \le C \|\nabla u\|_{L^q}$$
, with C independent of n . (2.7)

Combining (2.3), (2.6), (2.7), and using (1.7), we obtain

$$\limsup_{n \to +\infty} \Psi_n(u) \le I(u).$$

This proves (1.9) since we already know (1.10). \square

Proof of Proposition 2. The sequence (ρ_n) is defined by

$$\rho_n(t) = \frac{1 + d + \varepsilon_n}{\delta^{1 + d + \varepsilon_n}} t^{1 + \varepsilon_n} \mathbb{1}_{(0, \delta_n)}(t), \tag{2.8}$$

where $\mathbb{1}_A$ denotes the characteristic function of the set A, and (δ_n) is a positive sequence converging to 0 and satisfying

$$\lim_{n \to +\infty} \delta_n^{\varepsilon_n} = 1; \tag{2.9}$$

one may take for example

$$\delta_n = e^{-1/\sqrt{\varepsilon_n}}. (2.10)$$

We have

$$\Psi_n^{1+\varepsilon_n}(u) = \frac{1+d+\varepsilon_n}{\delta_n^{1+d+\varepsilon_n}} \int_{\Omega} \int_{\Omega} |u(x) - u(y)|^{1+\varepsilon_n} dx dy.$$
 (2.11)

From the Sobolev embedding, we know that $BV(\Omega) \subset L^q(\Omega)$ with q = d/(d-1) and moreover,

$$\left(\int_{\Omega} \int_{\Omega} |u(x) - u(y)|^q dx dy\right)^{1/q} \le CI(u) \quad \forall u \in L^1(\Omega).$$
 (2.12)

Applying Hölder's inequality as above, we find

$$\Psi_n(u) \le \left(\frac{1+d+\varepsilon_n}{\delta_n^{1+d+\varepsilon_n}}\right)^{\frac{1}{1+\varepsilon_n}} X_n^{a_n} Y_n^{b_n},\tag{2.13}$$

where

$$X_n = \int_{\Omega} \int_{\Omega} |u(x) - u(y)| dx dy, \qquad (2.14)$$

$$Y_n = \left(\int_{\Omega} \int_{\Omega} |u(x) - u(y)|^q dx dy \right)^{1/q}, \qquad (2.15)$$

and a_n and b_n are as in (2.5). From [2] (applied with $\rho_n(t) = \frac{1+d}{\delta_n^{1+d}} t \mathbb{1}_{(0,\delta_n)}(t)$), we know that

$$X_n \le C\delta_n^{1+d}I(u). \tag{2.16}$$

Moreover, by (1.7), we have

$$\lim_{n \to +\infty} \frac{1+d}{\delta_n^{1+d}} X_n = I(u). \tag{2.17}$$

On the other hand, by (2.12), we obtain

$$Y_n \le CI(u) := Y. \tag{2.18}$$

Inserting (2.16) and (2.18) in (2.13) gives

$$\Psi_n(u) \le C \frac{1}{\delta_n^{\alpha_n}} I(u), \tag{2.19}$$

where, by (2.6),

$$\alpha_n = \frac{1+d+\varepsilon_n}{1+\varepsilon_n} - (1+d)a_n = \frac{1+d+\varepsilon_n}{1+\varepsilon_n} - (1+d) + \frac{(1+d)q\varepsilon_n}{(q-1)(1+\varepsilon_n)}$$
$$= -\frac{\varepsilon_n d}{1+\varepsilon_n} + \frac{(1+d)q\varepsilon_n}{(q-1)(1+\varepsilon_n)} = \frac{\varepsilon_n d^2}{1+\varepsilon_n}.$$

From (2.19) and (2.9), we obtain (1.11).

We next prove (1.12). In view of (1.10), it suffices to verify that

$$\limsup_{n \to +\infty} \Psi_n(u) \le I(u) \quad \forall u \in L^1(\Omega). \tag{2.20}$$

We return to (2.13) and write

$$\Psi_n(u) \le \left(\frac{1+d+\varepsilon_n}{\delta_n^{1+d+\varepsilon_n}}\right)^{\frac{1}{1+\varepsilon_n}} \left(\frac{\delta_n^{d+1}}{d+1}\right)^{a_n} \left(\frac{(1+d)X_n}{\delta_n^{1+d}}\right)^{a_n} Y^{b_n} = \gamma_n \delta_n^{-\alpha_n} \left(\frac{(1+d)X_n}{\delta_n^{1+d}}\right)^{a_n} Y^{b_n},$$

where $\gamma_n \to 1, a_n \to 1$, and $b_n \to 0$. Using (2.9) and (2.17), we conclude that (2.20) holds. \square

2.2. Some sequences (ρ_n) producing pathologies

In this section, we establish Propositions 3 and 4.

Proof of Proposition 3. Take $\Omega = (-1/2, 1/2)$ and $\rho_n(t) = \varepsilon_n t^{\varepsilon_n - 1} \mathbb{1}_{(0,1)}(t)$. Then

$$\Psi_n^{1+\varepsilon_n}(u) \ge \varepsilon_n \int_0^{1/2} dx \int_{-1/2}^0 \frac{|u(x) - u(y)|^{1+\varepsilon_n}}{|x - y|^2} dy.$$

If we assume in addition that u(y) = 0 on (-1/2, 0), we obtain

$$\Psi_n^{1+\varepsilon_n}(u) \ge \varepsilon_n \int_0^{1/2} |u(x)|^{1+\varepsilon_n} \left(\frac{1}{x} - \frac{1}{x+1/2}\right) dx. \tag{2.21}$$

Choosing, for example,

$$u(x) = \begin{cases} |\ln x|^{-\alpha} & \text{on } 0 < x < 1/2, \\ 0 & \text{on } -1/2 < x \le 0, \end{cases}$$
 (2.22)

with $\alpha > 0$, we see that $u \in W^{1,1}(\Omega)$ while the RHS in (2.21) is $+\infty$ when $\alpha(1 + \varepsilon_n) \le 1$; we might take, for example, $\alpha = \min_{n} \{1/(1 + \varepsilon_n)\}$. \square

Proof of Proposition 4. Take $\Omega = (-1,1)$ and (ρ_n) as in (2.8) (but do not take δ_n as in (2.9)). Let

$$v(x) = \begin{cases} 0 & \text{for } x \in (-1, 0), \\ 1 & \text{for } x \in (0, 1). \end{cases}$$

Then

$$\Psi_n(v) = \frac{2 + \varepsilon_n}{\delta_n^{2 + \varepsilon_n}} \int_0^1 \int_0^1 dx \, dy = \frac{2 + \varepsilon_n}{\delta_n^{\varepsilon_n}}.$$

Since I(v) = 2 (see (1.5) and (1.6)), we deduce that

$$\Psi_n(v) = \frac{2 + \varepsilon_n}{2\delta_n^{\varepsilon_n}} I(v). \tag{2.23}$$

Given M > 1, let $A = \ln M > 0$ and $\delta_n = e^{-A/\varepsilon_n}$. Then

$$\lim_{n \to +\infty} \Psi_n(v) = MI(v).$$

On the other hand, we have, for every $u \in BV(\Omega)$,

$$\Psi_n(u) \le \frac{2 + \varepsilon_n}{\delta_n^{2 + \varepsilon_n}} \int_{\Omega} \int_{\Omega} |u(x) - u(y)|^{1 + \varepsilon_n} dx dy.$$

As in the proof of Proposition 2 (see (2.19)), we find

$$\Psi_n(u) \le C \frac{1}{\delta_n^{\alpha_n}} I(u),$$

Since $\delta_n = e^{-A/\varepsilon_n}$, we deduce that (1.14) holds.

In order to obtain (1.15), we recall (see (1.9)) that

$$\lim_{n \to +\infty} \Psi(\tilde{u}) = I(\tilde{u}) \quad \forall \, \tilde{u} \in C^1(\bar{\Omega}). \tag{2.24}$$

For $u \in W^{1,1}(\Omega)$, we write

$$\Psi_n(u) - I(u) = \Psi_n(u) - \Psi_n(\tilde{u}) + \Psi_n(\tilde{u}) - I(\tilde{u}) + I(\tilde{u}) - I(u),$$

and thus by (1.14),

$$|\Psi_n(u) - I(u)| \le CI(u - \tilde{u}) + |\Psi_n(\tilde{u}) - I(\tilde{u})|. \tag{2.25}$$

We conclude that $\lim_{n\to+\infty} |\Psi_n(u)-I(u)|=0$ using (2.24) and the density of $C^1(\bar{\Omega})$ in $W^{1,1}(\Omega)$.

2.3. Γ -convergence

This section is devoted to the proof of Proposition 5 and a slightly stronger variant.

Recall that (see, e.g., [4,10]), by definition, the sequence $(\Psi_n)\Gamma$ -converges to Ψ in $L^1(\Omega)$ as $n \to \infty$ if the following two properties hold:

(G1) For every $u \in L^1(\Omega)$ and for every sequence $(u_n) \subset L^1(\Omega)$ such that $u_n \to u$ in $L^1(\Omega)$ as $n \to \infty$, one has

$$\liminf_{n\to\infty} \Psi_n(u_n) \ge \Psi(u).$$

(G2) For every $u \in L^1(\Omega)$, there exists a sequence $(u_n) \subset L^1(\Omega)$ such that $u_n \to u$ in $L^1(\Omega)$ as $n \to \infty$, and

$$\limsup_{n\to\infty} \Psi_n(u_n) \le \Psi(u).$$

Proof of (G1). Going back to (2.1)–(2.3), we have

$$I_n(u) < \beta_n \Psi_n(u) \quad \forall u \in L^1(\Omega),$$

where $\beta_n \to 1$. Thus

$$I_n(u_n) \le \beta_n \Psi_n(u_n) \quad \forall n,$$

and since $I_n \to I$ in the sense of Γ -convergence in $L^1(\Omega)$ (see [23] and also [7]), we conclude that

$$\liminf_{n \to +\infty} \Psi_n(u_n) \ge I(u).$$

Proof of (G2). Given $u \in BV(\Omega)$, we will construct a sequence (u_n) converging to u in $L^1(\Omega)$ such that

$$\limsup_{n \to +\infty} \Psi_n(u_n) \le I(u).$$

Let $v_k \in C^1(\bar{\Omega})$ be such that

$$v_k \to u \quad \text{in } L^1(\Omega) \quad \text{and} \quad I(v_k) \to I(u).$$
 (2.26)

For each k, let n_k be such that

$$\left|\Psi_n(v_k) - I(v_k)\right| \le 1/k \quad \text{if } n > n_k. \tag{2.27}$$

Without loss of generality, one may assume that (n_k) is an increasing sequence with respect to k. Define

$$u_n = v_k$$
 if $n_k < n \le n_{k+1}$.

Combining (2.26) and (2.27) yields

$$u_n \to u$$
 in $L^1(\Omega)$ and $\lim_{n \to +\infty} \Psi_n(u_n) = I(u)$. \square

In fact, a property stronger than (G1) holds.

Proposition 7. For every $u \in L^1(\Omega)$ and for every sequence $(u_n) \subset L^1(\Omega)$ such that $u_n \rightharpoonup u$ weakly in $L^1(\Omega)$ as $n \to +\infty$, one has

$$\liminf_{n \to +\infty} \Psi_n(u_n) \ge I(u).$$
(2.28)

Proof. We adapt a suggestion of E. Stein (personal communication to H. Brezis) described in [5]. Let (μ_k) be a sequence of smooth mollifiers such that $\mu_k \geq 0$ and supp $\mu_k \subset B_{1/k} = B_{1/k}(0) = B(0, 1/k)$. Fix D an arbitrary smooth open subset of Ω such that $\bar{D} \subset \Omega$ and let $k_0 > 0$ be large enough such that $B(x, 1/k_0) \subset \Omega$ for every $x \in D$. Given $v \in L^1(\Omega)$, define in D

$$v_k = \mu_k * v \quad \text{for } k \ge k_0.$$

We have

$$\int_{D} \int_{D} \frac{|v_{k}(x) - v_{k}(y)|^{1+\varepsilon_{n}}}{|x - y|^{1+\varepsilon_{n}}} \rho_{n}(|x - y|) dx dy
= \int_{D} \int_{D} \frac{|\mu_{k} * v(x) - \mu_{k} * v(y)|^{1+\varepsilon_{n}}}{|x - y|^{1+\varepsilon_{n}}} \rho_{n}(|x - y|) dx dy
= \int_{D} \int_{D} \frac{\left| \int_{B(0, 1/k)} \mu_{k}(z) \left(v(x - z) - v(y - z) \right) dz \right|^{1+\varepsilon_{n}}}{|x - y|^{1+\varepsilon_{n}}} dx dy
\leq \int_{D} \int_{D} \frac{\int_{B(0, 1/k)} \mu_{k}(z) \left| v(x - z) - v(y - z) \right|^{1+\varepsilon_{n}}}{|x - y|^{1+\varepsilon_{n}}} \rho_{n}(|x - y|) dx dy,$$

by Hölder's inequality. A change of variables implies, for $k \geq k_0$,

$$\int_{D} \int_{D} \frac{|v_{k}(x) - v_{k}(y)|^{1+\varepsilon_{n}}}{|x - y|^{1+\varepsilon_{n}}} \rho_{n}(|x - y|) dx dy \le \int_{D} \int_{D} \frac{|v(x) - v(y)|^{1+\varepsilon_{n}}}{|x - y|^{1+\varepsilon_{n}}} \rho_{n}(|x - y|) dx dy. \tag{2.29}$$

Applying (2.29) to $v = u_n$ we find

$$\int_{D} \int_{D} \frac{|u_{k,n}(x) - u_{k,n}(y)|^{1+\varepsilon_{n}}}{|x - y|^{1+\varepsilon_{n}}} \rho_{n}(|x - y|) dx dy \le \Psi_{n}^{1+\varepsilon_{n}}(u_{n}), \tag{2.30}$$

where $u_{k,n} = \mu_k * u_n$ is defined in D for every n and every $k \ge k_0$. Since $u_n \rightharpoonup u$ weakly in $L^1(\Omega)$ we know that for each fixed k,

$$u_{k,n} \to \mu_k * u$$
 strongly in $L^1(D)$ as $n \to +\infty$.

Passing to the limit in (2.29) as $n \to +\infty$ (and fixed k) and applying Proposition 5 (Property (G1)) we find that

$$\liminf_{n \to +\infty} \int_D \int_D \frac{|u_{k,n}(x) - u_{k,n}(y)|^{1+\varepsilon_n}}{|x - y|^{1+\varepsilon_n}} \rho_n(|x - y|) dx dy \ge \gamma_d \int_D |\nabla(\mu_k * u)|. \tag{2.31}$$

Combining (2.30) and (2.31) yields

$$\liminf_{n \to +\infty} \Psi_n(u_n) \ge \gamma_d \int_D |\nabla(\mu_k * u)| \quad \forall \, k \ge k_0.$$

Letting $k \to +\infty$, we obtain

$$\liminf_{n \to +\infty} \Psi_n(u_n) \ge \gamma_d \int_D |\nabla u|.$$

Since D is arbitrary, Proposition 7 follows. \square

2.4. Functionals with roots in image processing

We give here the

Proof of Proposition 6. For each fixed n, the functional E_n defined on $L^q(\Omega)$ by (1.18) is convex and lower semicontinuous (l.s.c.) for the strong L^q -topology (note that Ψ_n is l.s.c. by Fatou's lemma). Thus E_n is also l.s.c. for the weak L^q -topology. Since q > 1, L^q is reflexive and $\inf_{u \in L^q(\Omega)} E_n(u)$ is achieved. Uniqueness of the minimizer follows from strict convexity.

We next establish the second statement. Since q > 1, one may assume that $u_{n_k} \rightharpoonup u_0$ weakly in $L^q(\Omega)$ for some subsequence (u_{n_k}) . We claim that

$$u_0 = v. (2.32)$$

By Proposition 5 (Property (G2)), there exists $(v_n) \subset L^1(\Omega)$ such that $v_n \to v$ in $L^1(\Omega)$ and

$$\limsup_{n \to \infty} \Psi_n(v_n) \le I(v). \tag{2.33}$$

Set, for A > 0 and $s \in \mathbb{R}$,

$$T_A(s) = \begin{cases} s & \text{if } |s| \le A, \\ A & \text{if } s > A, \\ -A & \text{if } s < -A. \end{cases}$$
 (2.34)

We have, since u_n is a minimizer of E_n ,

$$E_n(u_n) \le E_n(T_A v_n) = \int_{\Omega} |T_A v_n - f|^q + \Psi_n(T_A v_n) \le \int_{\Omega} |T_A v_n - f|^q + \Psi_n(v_n).$$
 (2.35)

Letting $n \to \infty$ and using (2.33), we derive

$$\lim_{n \to +\infty} \sup E_n(u_n) \le \int_{\Omega} |T_A v - f|^q + I(v).$$

This implies, by letting $A \to +\infty$,

$$\lim_{n \to +\infty} \sup E_n(u_n) \le E_0(v). \tag{2.36}$$

On the other hand, we have by Proposition 7,

$$\lim_{n_k \to +\infty} \inf \Psi_{n_k}(u_{n_k}) \ge I(v), \tag{2.37}$$

and therefore

$$E_0(u_0) \le \liminf_{n_k \to +\infty} E_{n_k}(u_{n_k}). \tag{2.38}$$

From (2.36) and (2.38), we obtain claim (2.32).

Next we write

$$\int_{\Omega} |u_n - f|^q = E_n(u_n) - \Psi_n(u_n). \tag{2.39}$$

Combining (2.39) with (2.36) and (2.37) gives

$$\lim_{n_k \to +\infty} \int_{\Omega} |u_{n_k} - f|^q \le E_0(v) - I(v) = \int_{\Omega} |v - f|^q.$$
 (2.40)

Since we already know that $u_{n_k} \to v$ weakly in $L^q(\Omega)$, we deduce from (2.40) that $u_{n_k} \to v$ strongly in $L^q(\Omega)$. The uniqueness of the limit implies that $u_n \to v$ strongly in $L^q(\Omega)$, so that

$$\liminf_{n \to +\infty} E_n(u_n) \ge \int_{\Omega} |v - f|^q + I(v) = E_0(v).$$

Returning to (2.36) yields

$$\lim_{n \to +\infty} E_n(u_n) = E_0(v). \quad \Box$$

Remark 1. There is an alternative proof of Proposition 6 which holds when $d \geq 2$ (and also when d = 1 provided that we make a mild additional assumptions on (ρ_n)). Instead of Proposition 7, one may rely on a compactness argument based on

Proposition 8. Let (u_n) be a bounded sequence in $L^1(\Omega)$ such that

$$\sup_{n} \Psi_n(u_n) < +\infty. \tag{2.41}$$

When d=1, we also assume that for each n the function $t\mapsto \rho_n(t)$ is non-increasing. Then (u_n) is relatively compact in $L^1(\Omega)$.

Proof. From (2.1), (2.2) and (2.41), we have

$$I_n(u_n) \leq C \quad \forall n.$$

We may now invoke a result of J. Bourgain, H. Brezis, P. Mironescu in [2] when ρ_n is non-increasing. A. Ponce in [24] established that the monotonicity of ρ_n is not necessary when $d \geq 2$.

Proof of Proposition 6 revisited. Using Proposition 8 we can assume that $u_{n_k} \rightharpoonup u_0$ weakly in $L^q(\Omega)$ and strongly in $L^1(\Omega)$. We may then rely on Proposition 5 instead of Proposition 7. The rest is unchanged. \square

3. A second approximation of the BV-norm

Motivated by a suggestion of G. Gilboa and S. Osher in [13], G. Leoni and D. Spector [15,16] studied the following functionals

$$\Phi_n(u) = \int_{\Omega} dx \left[\int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dy \right]^{1/p} \le +\infty \quad \text{for } u \in L^1(\Omega)$$
 (3.1)

where $1 and <math>(\rho_n)$ satisfies (1.1)–(1.3). In [16], they established that (Φ_n) converges to J in the sense of Γ -convergence in $L^1(\Omega)$, where J is defined by

$$J(u) := \begin{cases} \gamma_{p,d} \int_{\Omega} |\nabla u| & \text{if } u \in BV(\Omega), \\ +\infty & \text{if } u \in L^{1}(\Omega) \setminus BV(\Omega). \end{cases}$$
(3.2)

Here, for any $e \in \mathbb{S}^{d-1}$,

$$\gamma_{p,d} := \left(\int_{\mathbb{S}^{d-1}} |\sigma \cdot e|^p \, d\sigma \right)^{1/p}. \tag{3.3}$$

In particular,

$$\gamma_{p,1} = 2^{1/p}. (3.4)$$

When there is no confusion, we simply write γ instead of $\gamma_{p,d}$. [In fact, G. Leoni and D. Spector considered more general functionals involving a second parameter $1 \leq q < +\infty$ and they prove that it Γ -converges

in $L^1(\Omega)$ to $\int_{\Omega} |\nabla u|^q$ up to a positive constant. Here we are concerned only with the most delicate case q=1 which produces the BV-norm in the asymptotic limit.]

Pointwise convergence of the sequence (Φ_n) turns out to be quite complex and not yet fully understood (which confirms again the importance of Γ -convergence). Several claims in [15] concerning the pointwise convergence of (Φ_n) were not correct as was pointed out in [16].

This section is organized as follows. In Sections 3.1–3.3, we describe various results (both positive and negative) concerning pointwise convergence. The case d=1 is of special interest because the situation there is quite satisfactory (the only remaining open problem appears in Remark 3). Our results for the case $d \geq 2$ are not as complete; see e.g. important open problems mentioned in Remarks 5 and 8. We then present a new proof of Γ -convergence in Section 3.4; as we already mentioned, this result is due to G. Leoni and D. Spector, but our proof is simpler. Finally, in Section 3.5, we discuss variational problems similar to (1.18) (where Ψ_n is replaced by Φ_n) with roots in Image Processing.

3.1. Some positive facts about the sequence (Φ_n)

A general result concerning the pointwise convergence of (Φ_n) is the following.

Proposition 9. We have

$$\lim_{n \to \infty} \Phi_n(u) = J(u) \quad \forall u \in W^{1,p}(\Omega)$$
(3.5)

and

$$\liminf_{n \to \infty} \Phi_n(u) \ge J(u) \quad \forall u \in L^1(\Omega). \tag{3.6}$$

Proof. The proof is divided into three steps.

Step 1: Proof of (3.5) for $u \in C^2(\bar{\Omega})$. We have

$$|u(x) - u(y) - \nabla u(x) \cdot (x - y)| \le C|x - y|^2 \quad \forall x, y \in \Omega,$$

for some positive constant C independent of x and y. It follows that

$$|u(x) - u(y)| \le |\nabla u(x) \cdot (x - y)| + C|x - y|^2 \quad \forall x, y \in \Omega$$
(3.7)

and

$$|\nabla u(x) \cdot (x - y)| \le |u(x) - u(y)| + C|x - y|^2 \quad \forall x, y \in \Omega.$$
(3.8)

From (3.7), we derive that

$$\left(\int_{\Omega} \frac{|u(x) - u(y)|^{p}}{|x - y|^{p}} \rho_{n}(|x - y|) \, dy\right)^{1/p} \leq \left(\int_{\Omega} \frac{|\nabla u(x) \cdot (y - x)|^{p}}{|x - y|^{p}} \rho_{n}(|x - y|) \, dy\right)^{1/p} + C\left(\int_{\Omega} |x - y|^{p} \rho_{n}(|x - y|) \, dy\right)^{1/p};$$

which implies, by (1.2) and (1.3),

$$\left(\int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dy\right)^{1/p} \le \gamma |\nabla u(x)| + o(1). \tag{3.9}$$

Here and in what follows in this proof, o(1) denotes a quantity which converges to 0 (independently of x) as $n \to +\infty$. We derive that

$$\Phi_n(u) \le \gamma \int_{\Omega} |\nabla u(x)| \, dx + o(1). \tag{3.10}$$

For the reverse inequality, we consider an arbitrary open subset D of Ω such that $\bar{D} \subset \Omega$. For a fixed $x \in D$, using (1.2), (1.3) and (3.8) one can verify as in (3.9) that

$$\gamma |\nabla u(x)| \le \left(\int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dy \right)^{1/p} + o(1).$$

It follows that

$$\gamma \int_{D} |\nabla u(x)| \, dx \le \Phi_n(u) + o(1). \tag{3.11}$$

Combining (3.10) and (3.11) yields

$$\gamma \int_{D} |\nabla u(x)| \, dx \le \liminf_{n \to +\infty} \Phi_n(u) \le \limsup_{n \to +\infty} \Phi_n(u) \le \gamma \int_{\Omega} |\nabla u(x)| \, dx.$$

The conclusion of Step 1 follows since D is arbitrary.

Step 2: Proof of (3.6). We follow the same strategy as in the proof of Proposition 7. Let (μ_k) be a sequence of smooth mollifiers such that $\mu_k \geq 0$ and supp $\mu_k \subset B_{1/k}$. Fix D an arbitrary smooth open subset of Ω such that $\bar{D} \subset \Omega$ and let $k_0 > 0$ be large enough such that $B(x, 1/k_0) \subset\subset \Omega$ for every $x \in D$. Given $u \in L^1(\Omega)$, define in D

$$u_k = \mu_k * u \quad \text{for } k \ge k_0.$$

We have, for $k \geq k_0$,

$$\int_{D} \left(\int_{D} \frac{|u_{k}(x) - u_{k}(y)|^{p}}{|x - y|^{p}} \rho_{n}(|x - y|) \, dy \right)^{1/p} dx \le \Phi_{n}(u) \quad \forall \, n.$$
(3.12)

Letting $n \to +\infty$ (for fixed k and fixed D), we find, using Step 1 on D, that, for $k \ge k_0$,

$$\lim_{n \to +\infty} \int_D \left(\int_D \frac{|u_k(x) - u_k(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dy \right)^{1/p} dx = \gamma \int_D |\nabla u_k(x)| \, dx.$$

We derive from (3.12) that

$$\liminf_{n \to +\infty} \Phi_n(u) \ge \gamma \int_{\mathcal{D}} |\nabla u_k(x)| \, dx, \tag{3.13}$$

for $k \geq k_0$. Letting $k \to +\infty$, we obtain

$$\liminf_{n \to +\infty} \Phi_n(u) \ge \gamma \int_D |\nabla u(x)| \, dx.$$
(3.14)

We deduce (3.6) since D is arbitrary.

Step 3: Proof of (3.5) for $u \in W^{1,p}(\Omega)$. By Hölder's inequality, we have

$$\Phi_n(u) \le |\Omega|^{1-1/p} \left(\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dx \, dy \right)^{1/p}. \tag{3.15}$$

We may then invoke a result of [2] to conclude that

$$\Phi_n(u) \le C \|\nabla u\|_{L^p(\Omega)} \quad \forall u \in W^{1,p}(\Omega), \tag{3.16}$$

with C > 0 independent of n. We next write, using triangle inequality,

$$|\Phi_n(u) - \Phi_n(\tilde{u})| \le \Phi_n(u - \tilde{u}) \le C \|\nabla(u - \tilde{u})\|_{L^p(\Omega)} \quad \forall u, \, \tilde{u} \in W^{1,p}(\Omega).$$

This implies

$$\begin{split} |\varPhi_n(u) - J(u)| &\leq |\varPhi_n(u) - \varPhi_n(\tilde{u})| + |\varPhi_n(\tilde{u}) - J(\tilde{u})| + |J(\tilde{u}) - J(u)| \\ &\leq C \|\nabla(u - \tilde{u})\|_{L^p(\Omega)} + |\varPhi_n(\tilde{u}) - J(\tilde{u})|. \end{split}$$

Using the density of $C^2(\bar{\Omega})$ in $W^{1,p}(\Omega)$, we obtain (3.5). \square

By choosing a special sequence (ρ_n) , we may greatly improve the conclusion of Proposition 9. More precisely, let (δ_n) be a positive sequence converging to 0 and define

$$\rho_n(t) = \frac{(p+d)}{\delta_n^{p+d}} t^p \mathbb{1}_{(0,\delta_n)}(t). \tag{3.17}$$

We have

Proposition 10. Let $d \ge 1$ and assume that either

$$1$$

or

$$1 and $d = 1$,$$

and let (ρ_n) be defined by (3.17). Then

$$\Phi_n(u) \le C \int_{\Omega} |\nabla u| \quad \forall \, n, \, \forall \, u \in L^1(\Omega),$$
(3.18)

for some positive constant C depending only on d, p, and Ω , and

$$\lim_{n \to +\infty} \Phi_n(u) = J(u) \quad \forall u \in W^{1,1}(\Omega). \tag{3.19}$$

On the other hand, there exists some nontrivial $v \in BV(\Omega)$ such that

$$\lim_{n \to +\infty} \Phi_n(v) = \alpha_p J(v) \quad with \ \alpha_p > 1. \tag{3.20}$$

Remark 2. The restriction $p \le d/(d-1)$ in the case $d \ge 2$ is quite natural if the goal is to prove (3.18) since the Sobolev embedding $W^{1,1}(\Omega) \subset L^{d/(d-1)}$ is sharp. In fact, this requirement is necessary. Let $d \ge 2$, fix $x_0 \in \Omega$, and assume that $\operatorname{diam}(\Omega) < 1/2$ for notational ease. Set $u(x) = |x - x_0|^{1-d} \ln^{-2} |x - x_0|$. One can verify that $u \in W^{1,1}(\Omega)$ and for $x \in \Omega$ with $|x - x_0| < \delta_n/2$

$$\int_{\Omega \atop |x-y| < \delta_n} |u(x) - u(y)|^p \, dy = +\infty$$

since p > d/(d-1). It follows that

$$\gamma \int_{\Omega} |\nabla u(x)| dx < +\infty = \Phi_n(u) \quad \forall n.$$

Remark 3. We do not know whether it is possible to construct a sequence (ρ_n) such that (3.19) holds for every $u \in BV(\Omega)$. The problem is open even when d = 1.

The proof of Proposition 10 relies on the following inequality which is just a rescaled version of the standard Sobolev one. Let B_R be a ball of radius R, then for any $p \in [1, d/(d-1)]$,

$$\left(\int_{B_R} \left| u(y) - \int_{B_R} u \right|^p dy \right)^{1/p} \le CR^{\alpha} \int_{B_R} \left| \nabla u(z) \right| dz \quad \forall u \in L^1(B_R), \tag{3.21}$$

for some positive constant C depending only on d and p, where $\alpha := (d/p) + 1 - d \ge 0$.

Proof of Proposition 10. Since $\Phi_n(u) = \Phi_n(u+c)$ for any constant c, without loss of generality, one may assume that $\int_{\Omega} u = 0$. Consider an extension of u to \mathbb{R}^d which is still denoted by u such that

$$||u||_{W^{1,1}(\mathbb{R}^d)} \le C_{\Omega} ||u||_{W^{1,1}(\Omega)} \le C_{\Omega} ||\nabla u||_{L^1(\Omega)}. \tag{3.22}$$

In view of (3.17), we have

$$\Phi_n(u) \le \frac{(p+d)^{1/p}}{\delta_n^{1+d/p}} \int_{\Omega} \left(\int_{B(x,\delta_n)} |u(x) - u(y)|^p \, dy \right)^{1/p} dx. \tag{3.23}$$

We have, for $y \in B(x, \delta_n)$,

$$|u(x) - u(y)| \le |u(x) - \int_{B(x,\delta_n)} u| + |u(y) - \int_{B(x,\delta_n)} u|.$$
 (3.24)

It follows from the triangle inequality that

$$\left(\int_{B(x,\delta_n)} |u(x) - u(y)|^p \, dy\right)^{1/p} \leq C \delta_n^{d/p} \left| u(x) - \int_{B(x,\delta_n)} u \right| + \left(\int_{B(x,\delta_n)} \left| u(y) - \int_{B(x,\delta_n)} u \right|^p \, dy\right)^{1/p}. (3.25)$$

Here and in what follows in this proof, C denotes a positive constant depending only on d, p, and Ω . Inserting (3.21) in (3.25) yields

$$\left(\int_{B(x,\delta_n)} |u(x) - u(y)|^p \, dy\right)^{1/p} \le C\delta_n^{d/p} \left| u(x) - \int_{B(x,\delta_n)} u \right| + C\delta_n^{\alpha} \int_{B(x,\delta_n)} |\nabla u(z)| \, dz. \tag{3.26}$$

We claim that

$$\int_{\Omega} \left| u(x) - \int_{B(x,\delta_n)} u \right| dx \le C\delta_n \int_{\Omega} |\nabla u| \tag{3.27}$$

and

$$\int_{\Omega} dx \int_{B(x,\delta_n)} |\nabla u(z)| dz \le C\delta_n^d \int_{\Omega} |\nabla u|. \tag{3.28}$$

Indeed, we have, for R large enough,

$$\int_{\Omega} \left| u(x) - \int_{B(x,\delta_n)} u \right| dx \le C \delta_n^{-d} \int_{B_R} \int_{B_R} |u(x) - u(y)| dx dy$$
$$\le C \delta_n \int_{B_R} |\nabla u| \le C \delta_n \int_{\Omega} |\nabla u|,$$

by the BBM formula applied to $\rho_n(t) = (d+1)\delta_n^{-(d+1)}t\mathbb{1}_{(0,\delta_n)}$ and by (3.22). On the other hand,

$$\int_{\Omega} \int_{B(x,\delta_n)} |\nabla u(z)| \, dz \, dx \le \int_{B_R} \int_{B_R} |\nabla u(z)| \, dz \, dx \le C \delta_n^p \int_{\Omega} |\nabla u(x)| \, dx,$$

$$|x-z| < \delta_n$$

by (3.22). Combining (3.26)-(3.28) yields

$$\int_{\Omega} \left(\int_{B(x,\delta_n)} |u(x) - u(y)|^p \, dy \right)^{1/p} dx \le C \delta_n^{1+d/p} \int_{\Omega} |\nabla u(z)| \, dz \tag{3.29}$$

(recall that $\alpha + d = 1 + d/p$). It follows from (3.23) that

$$\Phi_n(u) \leq C \|\nabla u\|_{L^1(\Omega)};$$

which is (3.18).

Assertion (3.19) is deduced from (3.18) via a density argument as in the proof of Proposition 9.

It remains to prove (3.20). For simplicity, take $\Omega = (-1/2, 1/2)$ and consider $v(x) = \mathbb{1}_{(0,1/2)}(x)$. Then, for n sufficiently large,

$$\Phi_n(v) = 2 \frac{(p+1)^{1/p}}{\delta_n^{1/p}} \int_0^{\delta_n} \left(\int_0^{\delta_n - x} dy \right)^{1/p} dx = \frac{2(p+1)^{1/p}}{\delta_n^{1+1/p}} \int_0^{\delta_n} (\delta_n - x)^{1/p} dx
= \frac{2(p+1)^{1/p}}{\delta_n^{1+1/p}} \frac{\delta_n^{1+1/p}}{1 + 1/p} = \frac{2p}{(p+1)^{1-1/p}} > 2^{1/p} = J(v).$$

Indeed, since p + 1 < 2p, it follows that $(p + 1)^{1-1/p} < (2p)^{1-1/p}$ and thus

$$\frac{2p}{(p+1)^{1-1/p}} > (2p)^{1/p} > 2^{1/p}.$$

3.2. More about the pointwise convergence of (Φ_n) when d=1

In this section, we assume that d=1 and $\Omega=(-1/2,1/2)$.

Proposition 11. Assume that (ρ_n) satisfies (1.1)–(1.3). Then, for every q > 1, we have

$$\Phi_n(u) \le C_q \|u'\|_{L^q(\Omega)} \quad \forall u \in W^{1,q}(\Omega),$$

for some positive constant C_q depending only on q. Moreover,

$$\lim_{n \to +\infty} \Phi_n(u) = J(u) \quad \forall u \in \bigcup_{q>1} W^{1,q}(\Omega).$$

Proof. Since $\Phi_n(u) = \Phi_n(u+c)$ for any constant c, without loss of generality, one may assume that $\int_{\Omega} u = 0$. Consider an extension of u to \mathbb{R} which is still denoted by u, such that

$$||u||_{W^{1,q}(\mathbb{R})} \le C_q ||u||_{W^{1,q}(\Omega)} \le C_q ||u'||_{L^q(\Omega)}.$$

Let M(f) denote the maximal function of f defined in \mathbb{R} , i.e.,

$$M(f)(x) := \sup_{r>0} \int_{x-r}^{x+r} |f(s)| ds.$$

From the definition of Φ_n , we have

$$\Phi_n(u) \le C \int_{\Omega} \left(\int_{\Omega} |M(u')(x)|^p \rho_n(|x-y|) \, dy \right)^{1/p} dx \le C \int_{\Omega} M(u')(x) \, dx.$$

The first statement now follows from the fact that $||M(f)||_{L^q(\mathbb{R})} \leq C_q ||f||_{L^q(\mathbb{R})}$ since q > 1. The second statement is derived from the first statement via a density argument as in the proof of Proposition 9.

Our next result shows that Proposition 11 is sharp and cannot be extended to q = 1 (for a general sequence (ρ_n)).

Proposition 12. For every p > 1, there exist a sequence (ρ_n) satisfying (1.1)–(1.3) and some function $v \in W^{1,1}(\Omega)$ such that

$$\Phi_n(v) = +\infty \quad \forall n.$$

Proof. Fix $\alpha > 0$ and $\beta > 1$ such that

$$\alpha + \beta/p < 1. \tag{3.30}$$

Since p > 1 such α and β exist. Let (δ_n) be a sequence of positive numbers converging to 0 and consider

$$\rho_n(t) := A_n \frac{1}{t |\ln t|^{\beta}} \mathbb{1}_{(0,\delta_n)}.$$

Here A_n is chosen in such a way that (1.3) holds, i.e., $A_n \int_0^{\delta_n} \frac{dt}{t |\ln t|^{\beta}} = 1$. Set

$$v(x) = \begin{cases} 0 & \text{if } -1/2 < x < 0, \\ |\ln x|^{-\alpha} & \text{if } 0 < x < 1/2. \end{cases}$$

Clearly, $v \in W^{1,1}(\Omega)$. We have

$$\Phi_n(v) = \int_{-1/2}^{1/2} \left(\int_{-1/2}^{1/2} \frac{|v(x) - v(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dy \right)^{1/p} dx
\geq \int_0^{\delta_n} A_n^{1/p} |v(x)| \left(\int_0^{\delta_n - x} \frac{1}{|x + y|^p} \rho_n(x + y) \, dy \right)^{1/p} dx.$$
(3.31)

We have, for $0 < x < \delta_n/2$,

$$\int_0^{\delta_n - x} \frac{1}{|x + y|^p} \rho_n(x + y) \, dy \ge \int_x^{\delta_n} \frac{dt}{t^{p+1} |\ln t|^{\beta}} \ge \int_x^{2x} \frac{dt}{t^{p+1} |\ln t|^{\beta}} \ge \frac{C_{p,\beta}}{x^p |\ln x|^{\beta}};$$

and thus

$$\left(\int_{0}^{\delta_{n}-x} \frac{1}{|x+y|^{p}} \rho_{n}(x+y) \, dy\right)^{1/p} \ge \frac{C_{p,\beta}}{x|\ln x|^{\beta/p}}.$$
(3.32)

Since, by (3.30),

$$\int_0^{\delta_n/2} \frac{1}{x|\ln x|^{\beta/p+\alpha}} dx = +\infty,$$

it follows from (3.31) and (3.32) that

$$\Phi_n(v) = +\infty \quad \forall n. \quad \Box$$

Remark 4. D. Spector [26] has noticed that the sequence (ρ_n) and the function v constructed by A. Ponce (presented in [17]) satisfy (1.1)–(1.3), $v \in W^{1,1}(\Omega)$, $\Phi_n(v) < +\infty$ for all n, and $\lim_{n \to +\infty} \Phi_n(v) = +\infty$. In our construction, the pathology is even more dramatic since $\Phi_n(v) = +\infty$ for all n.

3.3. More about the pointwise convergence of (Φ_n) when $d \geq 2$

In this section, we present two "improvements" of (3.5) concerning the (pointwise) convergence of $\Phi_n(u)$ to J(u). In the first one (Proposition 13) (ρ_n) is a general sequence (satisfying (1.1)–(1.3)), but the assumption on u is quite restrictive: $u \in W^{1,q}(\Omega)$ with $q > q_0$ where q_0 is defined in (3.33). In the second one (Proposition 14) there is an additional assumption on (ρ_n) , but pointwise convergence holds for a large (more natural) class of u's: $u \in W^{1,q}(\Omega)$ with $q > q_1$ where $q_1 < q_0$ is defined in (3.44).

Proposition 13. Let p > 1 and assume that (ρ_n) satisfies (1.1)–(1.3). Set

$$q_0 := pd/(d+p-1),$$
 (3.33)

so that $1 < q_0 < p$. Then

$$\Phi_n(u) \le C \|\nabla u\|_{L^q} \quad \forall u \in W^{1,q}(\Omega) \text{ with } q > q_0,$$
(3.34)

for some positive constant $C = C_{p,q,\Omega}$ depending only on p,q, and Ω . Moreover,

$$\lim_{n \to +\infty} \Phi_n(u) = J(u) \quad \forall u \in W^{1,q}(\Omega) \text{ with } q > q_0.$$
(3.35)

Proof. Since $\Phi_n(u) = \Phi_n(u+c)$ for any constant c, without loss of generality, one may assume that $\int_{\Omega} u = 0$. Consider an extension of u to \mathbb{R}^d which is still denoted by u, such that

$$||u||_{W^{1,q}(\mathbb{R}^d)} \le C_{q,\Omega} ||u||_{W^{1,q}(\Omega)} \le C_{q,\Omega} ||\nabla u||_{L^q(\Omega)}.$$

For simplicity of notation, we assume that $diam(\Omega) \leq 1/2$. Then

$$\Phi_n(u) \le \int_{\Omega} \left[\int_{\mathbb{S}^{d-1}} \int_0^1 \frac{|u(x+r\sigma) - u(x)|^p}{r^p} \rho_n(r) r^{d-1} \, dr \, d\sigma \right]^{1/p} dx.$$

We have

$$|u(x+r\sigma)-u(x)| \leq \left|u(x+r\sigma)-\int_{\mathbb{S}^{d-1}} u(x+r\sigma')\,d\sigma'\right| + \left|u(x)-\int_{\mathbb{S}^{d-1}} u(x+r\sigma')\,d\sigma'\right|$$

$$\leq \int_{\mathbb{S}^{d-1}} |u(x+r\sigma)-u(x+r\sigma')|\,d\sigma' + \int_{\mathbb{S}^{d-1}} |u(x)-u(x+r\sigma')|\,d\sigma'.$$

It follows that

$$\Phi_n(u) \lesssim T_1 + T_2,\tag{3.36}$$

where

$$T_{1} = \int_{\Omega} \left[\int_{0}^{1} \int_{\mathbb{S}^{d-1}} \int_{\mathbb{S}^{d-1}} |u(x+r\sigma) - u(x+r\sigma')|^{p} d\sigma' d\sigma \, \rho_{n}(r) r^{d-1-p} dr \right]^{1/p} dx$$

and

$$T_2 = \int_{\Omega} \left[\int_0^1 \left(\int_{S^{d-1}} |u(x) - u(x + r\sigma')| \, d\sigma' \right)^p \rho_n(r) r^{d-1-p} \, dr \right]^{1/p} dx.$$

In this proof the notation $a \lesssim b$ means that $a \leq Cb$ for some positive constant C depending only on p, q, and Ω .

We first estimate T_1 . Let B_1 denotes the open unit ball of \mathbb{R}^d . By (3.33) we know that the trace mapping $u \mapsto u_{|\partial B_1|}$ is continuous from $W^{1,q_0}(B_1)$ into $L^q(\partial B_1)$. It follows that

$$\int_{\mathbb{S}^{d-1}} \int_{\mathbb{S}^{d-1}} |u(x+r\sigma) - u(x+r\sigma')|^p d\sigma' d\sigma \lesssim \|\nabla u(x+r\cdot)\|_{L^{q_0}(B_1)}^p \lesssim r^p M^{p/q_0}(|\nabla u|^{q_0})(x)$$

(recall that M(f) denotes the maximal function of a function f defined in \mathbb{R}^d). Using (1.2), we derive that

$$T_1 \lesssim \int_{\Omega} \left[\int_0^1 M^{p/q_0}(|\nabla u|^{q_0})(x) \rho_n(r) r^{d-1} dr \right]^{1/p} dx \lesssim \int_{\Omega} M^{1/q_0}(|\nabla u|^{q_0})(x) dx. \tag{3.37}$$

Since $q > q_0$, it follows from the theory of maximal functions that

$$\int_{\Omega} M^{1/q_0}(|\nabla u|^{q_0})(x) \, dx \lesssim \|\nabla u\|_{L^q(\Omega)}. \tag{3.38}$$

Combining (3.37) and (3.38) yields

$$T_1 \lesssim \|\nabla u\|_{L^q(\Omega)}.\tag{3.39}$$

We next estimate T_2 . We have

$$\int_{\mathbb{S}^{d-1}} |u(x) - u(x + r\sigma')| \, d\sigma' \le \int_{\mathbb{S}^{d-1}} \int_0^r |\nabla u(x + s\sigma')| \, ds \, d\sigma'.$$

Applying Lemma 1, we obtain, for 0 < r < 1 and $x \in \Omega$,

$$\int_{\mathbb{S}^{d-1}} \int_0^r |\nabla u(x+s\sigma')| \, ds \, d\sigma' \le CrM(|\nabla u|)(x). \tag{3.40}$$

We derive that

$$T_2 \lesssim \int_{Q} M(|\nabla u|)(x) \, dx \lesssim \|\nabla u\|_{L^q} \tag{3.41}$$

by the theory of maximal functions since q > 1. Combining (3.36), (3.39) and (3.41) yields (3.34).

Assertion (3.35) follows from (3.34) via a density argument as in the proof of Proposition 9. \Box In the proof of Proposition 13, we used the following elementary.

Lemma 1. Let $d \geq 1, r > 0, x \in \mathbb{R}^d$, and $f \in L^1_{loc}(\mathbb{R}^d)$. We have

$$\int_{\mathbb{S}^{d-1}} \int_0^r |f(x+s\sigma)| \, ds \, d\sigma \le C_d r M(f)(x), \tag{3.42}$$

for some positive constant C_d depending only on d.

Proof. Set $\varphi(s) = \int_{\mathbb{S}^{d-1}} |f(x+s\sigma)| d\sigma$, so that, by the definition of M(f)(x), we have

$$\oint_{B_r(x)} |f(y)| \, dy \le M(f)(x) \quad \forall \, r > 0,$$

and thus

$$H(r) := \int_0^r \varphi(s)s^{d-1} \, ds \le |B_1|r^d M(f)(x) \quad \forall \, r > 0.$$
 (3.43)

Then $H'(r) = \varphi(r)r^{d-1}$, so that

$$\int_0^r \varphi(s) \, ds = \int_0^r \frac{H'(s)}{s^{d-1}} \, ds = \frac{H(r)}{r^{d-1}} + (d-1) \int_0^r \frac{H(s)}{s^d} \, ds \le C_d r M(f)(x),$$

by (3.43); which is precisely (3.42). (The integration by parts can be easily justified by approximation.)

Under the assumption that ρ_n is non-increasing for every n, one can replace the condition $q > q_0$ in Proposition 13 by the weaker condition $q > q_1$, where

$$q_1 := \max\{pd/(p+d), 1\},$$
 (3.44)

so that $1 \leq q_1 < q_0$. It is worth noting that the embedding $W^{1,q_1}(\Omega) \subset L^p(\Omega)$ is sharp and therefore q_1 is a natural lower bound for q (see Remark 2). In fact, we prove a slightly more general result:

Proposition 14. Let p > 1 and assume that (ρ_n) satisfies (1.1)–(1.3). Suppose in addition that there exist $\Lambda > 0$ and a sequence of non-increasing functions $(\hat{\rho}_n) \subset L^1_{loc}(0, +\infty)$ such that

$$\rho_n \le \hat{\rho}_n \quad and \quad \int_0^\infty \hat{\rho}_n(t) t^{d-1} dt \le \Lambda \quad \forall \, n.$$
(3.45)

Then

$$\Phi_n(u) \le C \|\nabla u\|_{L^q} \quad \forall u \in W^{1,q}(\Omega) \text{ with } q > q_1,$$
(3.46)

for some positive constant $C = C(p, q, \Lambda, \Omega)$ depending only on p, q, Λ , and Ω . Moreover,

$$\lim_{n \to +\infty} \Phi_n(u) = J(u) \quad \forall u \in W^{1,q}(\Omega) \text{ with } q > q_1.$$
(3.47)

Remark 5. We do not know whether the conclusions of Proposition 14 hold without assuming the existence of Λ and $(\hat{\rho}_n)$. Equivalently, we do not know whether the conclusions of Proposition 13 hold under the weaker condition $q > q_1$.

Proof. For simplicity of notation, we assume that ρ_n is non-increasing for all n and work directly with ρ_n instead of $\hat{\rho}_n$. We first prove (3.46). As in the proof of Proposition 13, one may assume that $\int_{\Omega} u = 0$. Consider an extension of u to \mathbb{R}^d which is still denoted by u such that

$$||u||_{W^{1,q}(\mathbb{R}^d)} \le C_{q,\Omega} ||u||_{W^{1,q}(\Omega)} \le C_{q,\Omega} ||\nabla u||_{L^q(\Omega)}.$$

For simplicity of notation, we also assume that diam(Ω) $\leq 1/2$. Then

$$\Phi_n(u) \le \int_{\Omega} \left[\int_{\mathbb{S}^{d-1}} \int_0^1 \frac{|u(x+r\sigma) - u(x)|^p}{r^p} \rho_n(r) r^{d-1} dr d\sigma \right]^{1/p} dx.$$

We claim that for a.e. $x \in \Omega$,

$$Z(x) = \left[\int_{\mathbb{S}^{d-1}} \int_0^1 \frac{|u(x+r\sigma) - u(x)|^p}{r^p} \rho_n(r) r^{d-1} dr d\sigma \right]^{1/p} \le C M^{1/q_1} (|\nabla u|^{q_1})(x). \tag{3.48}$$

Here and in what follows, C denotes a positive constant depending only on p, d, and Λ .

From (3.48), we deduce (3.46) via the theory of maximal functions since $q > q_1$. Assertion (3.47) follows from (3.46) by density as in the proof of Proposition 9.

It remains to prove (3.48). Without loss of generality we establish (3.48) for x = 0. The proof relies heavily on two inequalities valid for all R > 0:

$$\left[\int_{B_{\mathcal{D}}} \left| u(\xi) - \int_{B_{\mathcal{D}}} u \right|^p d\xi \right]^{1/p} \le CRM^{1/q_1}(|\nabla u|^{q_1})(0) \tag{3.49}$$

and

$$\oint_{B_R} |u(\xi) - u(0)| \, d\xi \le CRM^{1/q_1}(|\nabla u|^{q_1})(0), \tag{3.50}$$

where $B_R = B_R(0)$.

Inequality (3.49) is simply a rescaled version of the Sobolev inequality

$$\left\| u - \int_{B_1} u \right\|_{L^p(B_1)} \le C \|\nabla u\|_{L^{q_1}(B_1)},$$

which implies that

$$\left[\int_{B_R} \left| u(\xi) - \int_{B_R} u \right|^p d\xi \right]^{1/p} \leq CR \left[\int_{B_R} |\nabla u|^{q_1} \right]^{1/q_1} \leq CRM^{1/q_1} (|\nabla u|^{q_1})(0).$$

To prove (3.50), we write

$$\begin{split} \int_{B_R} |u(\xi) - u(0)| \, d\xi &= \int_0^R \int_{\mathbb{S}^{d-1}} |u(r\sigma) - u(0)| r^{d-1} \, dr \, d\sigma \\ &\leq C \int_0^R r^{d-1} \, dr \int_{\mathbb{S}^{d-1}} \int_0^r |\nabla u(s\sigma)| \, ds \, d\sigma \\ &\leq C \int_0^R r^d M(|\nabla u|)(0) \quad \text{by Lemma 1.} \end{split}$$

Thus

$$\int_{B_R} |u(\xi) - u(0)| \, d\xi \le CRM(|\nabla u|)(0) \le CRM^{1/q_1}(|\nabla u|^{q_1})(0).$$

From (3.48), we obtain

$$Z(0)^p = \sum_{i=0}^{\infty} \int_{\mathbb{S}^{d-1}} \int_{2^{-(i+1)}}^{2^{-i}} |u(r\sigma) - u(0)|^p \rho_n(r) r^{d-1-p} dr d\sigma,$$

so that

$$Z(0)^{p} \le C \sum_{i=0}^{\infty} \rho_{n}(2^{-(i+1)}) 2^{ip} \int_{\mathbb{S}^{d-1}} \int_{2^{-(i+1)}}^{2^{-i}} |u(r\sigma) - u(0)|^{p} r^{d-1} dr d\sigma.$$
(3.51)

We have

$$|u(r\sigma) - u(0)| \le |u(r\sigma) - \int_{B_{2-i}} u| + |\int_{B_{2-i}} u - u(0)|.$$
 (3.52)

Inserting (3.52) into (3.51) yields

$$Z(0)^{p} \le C \sum_{i=0}^{\infty} (U_{i} + V_{i}), \tag{3.53}$$

where

$$U_i = \rho_n(2^{-(i+1)})2^{ip} \int_{\mathbb{S}^{d-1}} \int_{2^{-(i+1)}}^{2^{-i}} \left| u(r\sigma) - \oint_{B_{2^{-i}}} u \right|^p r^{d-1} dr d\sigma$$

and

$$V_i = \rho_n(2^{-(i+1)})2^{ip} \int_{\mathbb{S}^{d-1}} \int_{2^{-(i+1)}}^{2^{-i}} \left| \oint_{B_{2^{-i}}} u - u(0) \right|^p r^{d-1} dr d\sigma.$$

Clearly,

$$U_{i} \leq \rho_{n}(2^{-(i+1)})2^{ip} \int_{\mathbb{S}^{d-1}} \int_{0}^{2^{-i}} \left| u(r\sigma) - \oint_{B_{2^{-i}}} u \right|^{p} r^{d-1} dr d\sigma \leq \rho_{n}(2^{-(i+1)})2^{-id} A, \tag{3.54}$$

by (3.49), where $A = M^{p/q_1}(|\nabla u|^{q_1})(0)$. On the other hand,

$$V_{i} \le \rho_{n}(2^{-(i+1)})2^{ip} \left[\int_{B_{n-i}} |u(\xi) - u(0)| d\xi \right]^{p} 2^{-id} \le C\rho_{n}(2^{-(i+1)})2^{-id}A \quad \text{by (3.50)}.$$
 (3.55)

Combining (3.53)–(3.55), we obtain

$$Z(0)^p \le C \sum_{i=0}^{\infty} \rho_n(2^{-(i+1)}) 2^{-id} A.$$

Finally, we observe that

$$\int_0^1 \rho_n(r) r^{d-1} dr \ge \sum_{i=0}^\infty \int_{2^{-(i+2)}}^{2^{-(i+1)}} \rho_n(r) r^{d-1} dr \ge C \sum_{i=0}^\infty \rho_n(2^{-(i+1)}) 2^{-id}$$

and thus

$$Z(0)^{p} \le CM^{p/q_{1}}(|\nabla u|^{q_{1}})(0) \int_{0}^{1} \rho_{n}(r)r^{d-1} dr \le CM^{p/q_{1}}(|\nabla u|^{q_{1}})(0). \quad \Box$$

Remark 6. Assumption (3.45) holds e.g. for the sequence (ρ_n) defined in (3.17), i.e.,

$$\rho_n(t) = \frac{p+d}{\delta_n^{p+d}} t^p \mathbb{1}_{(0,\delta_n)}(t).$$

Indeed, we may choose

$$\hat{\rho}_n(t) = \frac{p+d}{\delta_n^d} \mathbb{1}_{(0,\delta_n)}(t).$$

Applying Proposition 14 we recover Proposition 10 since $q_1 = 1$ (note that $pd \le p + d$ when d = 1 and also when $d \ge 2$ provided that $p \le d/(d-1)$). Note, however that in Proposition 14 we must take $q > q_1 = 1$, while q = 1 was allowed in Proposition 10. This discrepancy is related to our next remark.

Remark 7. Assume that $d \geq 2$ and $1 , so that <math>q_1 = 1$. The conclusion of Proposition 14 fails in the borderline case $q = q_1 = 1$. More precisely, for every $p \in (1, d/(d-1)]$, there exist a sequence (ρ_n) satisfying (1.1)–(1.3) and (3.45), and a function $v \in W^{1,1}(\Omega)$ such that $\Phi_n(v) = +\infty$ for all n. The construction is similar to the one presented in the proof of Proposition 10. Indeed, let $\Omega = B_{1/2}(0)$. Fix $\alpha > 0$ and $\beta > 1$ such that

$$\alpha + \beta/p < 1. \tag{3.56}$$

Since p > 1 such α and β exist. Let (δ_n) be a sequence of positive numbers converging to 0 and consider

$$\rho_n(t) := A_n \frac{1}{t^d |\ln t|^{\beta}} \mathbb{1}_{(0,\delta_n)}.$$

Note that the functions $t \mapsto \rho_n(t)$ are non-increasing. Here A_n is chosen in such a way that (1.3) holds, i.e., $A_n \int_0^{\delta_n} \frac{dt}{t |\ln t|^\beta} = 1$. Set

$$V(x) = v(x_1) := \begin{cases} 0 & \text{if } -1/2 < x_1 < 0, \\ |\ln x_1|^{-\alpha} & \text{if } 0 < x_1 < 1/2. \end{cases}$$

Clearly, $V \in W^{1,1}(\Omega)$. We have

$$\Phi_n(V) = \int_{\Omega} \left(\int_{\Omega} \frac{|V(x) - V(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dy \right)^{1/p} dx
\gtrsim \int_{B_{1/4}(0)} A_n^{1/p} \left(\int_{|y - x| \le \delta_n} \frac{|v(x_1) - v(y_1)|^p}{|x - y|^{p+d} |\ln |x - y||^{\beta}} \, dy \right)^{1/p} dx.$$

Note that, for $0 < x_1 < \delta_n/4$,

$$\int_{|y-x| \le \delta_n} \frac{|v(x_1) - v(y_1)|^p \, dy}{|x - y|^{p+d} |\ln|x - y||^{\beta}} \gtrsim \int_{\substack{|y_1 - x_1| \le \delta_n/4 \\ |x' - y'| \le \delta_n/4}} \frac{|v(x_1) - v(y_1)|^p \, dy' \, dy_1}{\left(|x_1 - y_1|^{p+d} + |x' - y'|^{p+d}\right) |\ln|x_1 - y_1||^{\beta}}$$

$$\gtrsim \int_{|y_1 - x_1| \le \delta_n/4} \frac{|v(x_1) - v(y_1)|^p \, dy_1}{|x_1 - y_1|^{p+1} |\ln|x_1 - y_1||^{\beta}}.$$

We derive as in the proof of Proposition 12 that

$$\int_{|y-x|<\delta_n} \frac{|v(x_1) - v(y_1)|^p \, dy}{|x - y|^{p+d} |\ln |x - y||^{\beta}} \gtrsim \frac{v(x_1)^p}{x_1^p |\ln x_1|^{\beta}}.$$

It follows that

$$\Phi_n(V) \gtrsim \int_{\Omega} \int_{\Omega} A_n^{1/p} \frac{v(x_1)}{x_1 |\ln x_1|^{\beta/p}} dx = \int_{\Omega} \int_{\Omega} A_n^{1/p} \frac{1}{x_1 |\ln x_1|^{\alpha+\beta/p}} dx = +\infty,$$

(by (3.56)).

Remark 8. Assume that $d \geq 2$ and p > d/(d-1), so that $q_1 = pd/(p+d) > 1$. It is not known whether the conclusions of Proposition 14 hold in the borderline case $q = q_1$. More precisely, assume that

 $d \ge 2, p > d/(d-1)$, and that (ρ_n) satisfying (1.1)–(1.3) and (3.45). Is it true that $\lim_{n \to +\infty} \Phi_n(u) = J(u)$ for all $u \in W^{1,q_1}(\Omega)$? Take for example d=2 and p=3 so that $q_1=6/5$.

Remark 9. The technique we use in the proof of Proposition 14 is somewhat similar to the one used by D. Spector [26] (see e.g. the proof of his Theorem 1.8). However, the results are quite different in nature.

3.4. Γ -convergence

Concerning the Γ -convergence of Φ_n , G. Leoni and D. Spector proved in [16].

Proposition 15. For every p > 1 we have

$$\Phi_n \xrightarrow{\Gamma} \Phi_0(\cdot) := \gamma \int_{\Omega} |\nabla \cdot| \quad in \ L^1(\Omega),$$

where γ is given in (3.3).

Their proof is quite involved. Here is a simpler proof.

Proof. For D an open subset of Ω such that $\bar{D} \subset \Omega$, set

$$\Phi_n(u, D) = \int_D dx \left[\int_D \frac{|u(x) - u(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dy \right]^{1/p} \quad \text{for } u \in L^1(D).$$

Let $u \in L^1(\Omega)$ and $(u_n) \subset L^1(\Omega)$ be such that $u_n \to u$ in $L^1(\Omega)$. We must prove that

$$\liminf_{n \to \infty} \Phi_n(u_n) \ge \gamma \int_{\Omega} |\nabla u|.$$

Let (μ_k) be a sequence of smooth mollifiers such that supp $\mu_k \subset B_{1/k}$. Let D be a smooth open subset of Ω such that $\bar{D} \subset \Omega$ and fix k_0 such that $D + B_{1/k_0} \subset \Omega$. We have as in (2.29), for $k \geq k_0$,

$$\Phi_n(\mu_k * u_n, D) \le \Phi_n(u_n). \tag{3.57}$$

Using the fact that

$$|\Phi_n(u, D) - \Phi_n(v, D)| \le C_D ||u - v||_{W^{1,\infty}(D)} \quad \forall u, v \in W^{1,\infty}(D),$$

we obtain

$$|\Phi_n(\mu_k * u_n, D) - \Phi_n(\mu_k * u, D)| \le C_{k,D} ||u_n - u||_{L^1(\Omega)}.$$

Hence

$$\Phi_n(\mu_k * u, D) \le \Phi_n(\mu_k * u_n, D) + C_{k,D} \|u_n - u\|_{L^1(\Omega)}.$$
(3.58)

Combining (3.57) and (3.58) yields

$$\gamma \int_{D} |\nabla(\mu_k * u)| \le \liminf_{n \to +\infty} \Phi_n(u_n).$$

Letting $k \to \infty$, we reach

$$\gamma \int_{D} |\nabla u| \le \liminf_{n \to +\infty} \Phi_n(u_n).$$

Since $D \subset\subset \Omega$ is arbitrary, we derive that

$$\gamma \int_{\Omega} |\nabla u| \le \liminf_{n \to +\infty} \Phi_n(u_n).$$

We next fix $u \in BV(\Omega)$ and construct a sequence (u_n) converging to u in $L^1(\Omega)$ such that

$$\limsup_{n \to +\infty} \Phi_n(u_n) \le \gamma \int_{\Omega} |\nabla u|.$$

Let $v_k \in C^1(\bar{\Omega})$ be such that

$$v_k \to u \quad \text{in } L^1(\Omega) \quad \text{and} \quad \int_{\Omega} |\nabla v_k| \to \int_{\Omega} |\nabla u|.$$
 (3.59)

For each k, let n_k be such that

$$\left| \Phi_n(v_k) - \gamma \int_{\Omega} |\nabla v_k| \right| \le 1/k \quad \text{if } n > n_k. \tag{3.60}$$

Without loss of generality, one may assume that (n_k) is an increasing sequence with respect to k. Define

$$u_n = v_k$$
 if $n_k < n \le n_{k+1}$.

We derive from (3.59) and (3.60) that

$$u_n \to u$$
 in $L^1(\Omega)$ and $\lim_{n \to +\infty} \Phi_n(u_n) = \gamma \int_{\Omega} |\nabla u|$.

The proof is complete. \Box

3.5. Functionals with roots in image processing

Set

$$\hat{E}_n(u) := \int_{\Omega} |u - f|^q + \Phi_n(u),$$

and

$$\hat{E}_0(u) := \int_{\Omega} |u - f|^q + \gamma \int_{\Omega} |\nabla u|,$$

where q > 1 and $f \in L^q(\Omega)$ is a given function. Motivated by Image Processing, we study variational problems related to \hat{E}_n . More precisely, we establish

Proposition 16. For every n, there exists a unique $u_n \in L^q(\Omega)$ such that

$$\hat{E}_n(u_n) = \min_{u \in L^q(\Omega)} \hat{E}_n(u).$$

Let u_0 be the unique minimizer of \hat{E}_0 . We have, as $n \to +\infty$,

$$u_n \to u_0$$
 in $L^q(\Omega)$

and

$$\hat{E}_n(u_n) \to \hat{E}_0(u_0).$$

Proof. The proof is similar to the one of Proposition 6. The details are left to the reader. \Box

Acknowledgments

The research of first author was partially supported by NSF grant DMS-1207793 and by ITN "FIRST" of the European Commission, Grant Number PITN-GA-2009-238702.

References

- [1] G. Aubert, P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47 (2009) 844–860.
- [2] J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, in: J.L. Menaldi, E. Rofman, A. Sulem (Eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439–455. A volume in honour of A.Bensoussan's 60th birthday.
- [3] J. Bourgain, H.-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris 343 (2006) 75–80.
- [4] A. Braides, Γ-convergence for beginners, in: Oxford Lecture Series in Mathematics and its Applications, vol. 22, Oxford University Press, Oxford, 2002.
- [5] H. Brezis, How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk 57 (2002) 59–74 (English translation in Russian Math. Surveys 57 (2002), 693–708).
- [6] H. Brezis, New approximations of the total variation and filters in Imaging, Rend. Lincei 26 (2015) 223-240.
- [7] H. Brezis, P. Mironescu, Sobolev Maps with Values Into the Circle, Chapter 7, Birkhäuser (in preparation).
- [8] H. Brezis, H.-M. Nguyen, On a new class of functions related to VMO, C. R. Acad. Sci. Paris 349 (2011) 157–160.
- [9] H. Brezis, H.-M. Nguyen, Non-local functionals related to the total variation and applications in image processing, preprint.
- [10] G. Dal Maso, An introduction to Γ-convergence, in: Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993.
- [11] J. Davila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002) 519–527.
- [12] G. Gilboa, S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul. 6 (2007) 595–630.
- [13] G. Gilboa, S. Osher, Nonlocal operators with applications to image processing, Multiscale Model, Simul. 7 (2008) 1005–1028.
- [14] S. Kindermann, S. Osher, P.W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul. 4 (2005) 1091–1115.
- [15] G. Leoni, D. Spector, Characterization of Sobolev and BV Spaces, J. Funct. Anal. 261 (2011) 2926–2958.
- [16] G. Leoni, D. Spector, Corrigendum to "Characterization of Sobolev and BV spaces", J. Funct. Anal. 266 (2014) 1106-1114.
- [17] H.-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689–720.
- [18] H.-M. Nguyen, Γ-convergence and Sobolev norms, C. R. Acad. Sci. Paris 345 (2007) 679–684.
- [19] H.-M. Nguyen, Further characterizations of Sobolev spaces, J. Eur. Math. Soc. (JEMS) 10 (2008) 191–229.
- [20] H.-M. Nguyen, Γ-convergence, Sobolev norms, and BV functions, Duke Math. J. 157 (2011) 495–533.
- [21] H.-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differential Equations 41 (2011) 483–509.
- [22] H.-M. Nguyen, Estimates for the topological degree and related topics, J. Fixed Point Theory 15 (2014) 185–215.
- [23] A. Ponce, A new approach to Sobolev spaces and connections to Γ -convergence, Calc. Var. Partial Differential Equations 19 (2004) 229–255.
- [24] A. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS) 6 (2004) 1–15.
- [25] L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992) 259–268.
- [26] D. Spector, On a generalization of L^p -differentiability, preprint, Oct. 2015.