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Abstract. The existence of at least one classical T-periodic solution is
proved for differential equations of the form

(φ(u′))′ − g(x, u) = h(x)

when φ : (−a, a)→ R is an increasing homeomorphism, g is a Carathé-
odory function T-periodic with respect to x, 2π-periodic with respect
to u, of mean value zero with respect to u, and h ∈ L1

loc(R) is T-
periodic and has mean value zero. The problem is reduced to finding
a minimum for the corresponding action integral over a closed convex
subset of the space of T-periodic Lipschitz functions, and then to show,
using variational inequalities techniques, that such a minimum solves the
differential equation. A special case is the “relativistic forced pendulum
equation” “ u′

√
1− u′2

”′
+A sinu = h(x).

1. Introduction

The first global result for the existence of periodic solutions of the forced
pendulum equation started with the rigorous mathematical study of the
equation

u′′ +A sinu = h(x) (1.1)
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802 Häım Brezis and Jean Mawhin

initiated in 1922 by Hamel, in a paper of the special issue of the Mathe-
matische Annalen dedicated to Hilbert’s sixtieth birthday anniversary [9].
Hamel proved the existence of a 2π-periodic solution of equation (1.1) with
h(x) = B sinx, by showing that the corresponding action integral

A(u) :=
∫ 2π

0

[u′(x)2

2
+A cosu(x) +Bu(x) sinx

]
dx

has a minimum over the space of 2π-periodic C1-functions, and his argument
easily extends to the case where B sinx is replaced by a continuous 2π-
periodic function h(x) with mean value h equal to zero.

In the late nineteen seventies, Fučik wrote in his monograph [8] that “the
description of the set P of h for which equation (1.1) has a 2π-periodic
solution seems to remain a terra incognita.” Motivated by this remark, but
also unaware of the existence of Hamel’s paper, Castro [6] (for |A| ≤ 1),
Dancer [7] and Willem [16], independently (for arbitrary A), reintroduced
in the early nineteen eighties the use of the direct method of the calculus
of variations, in the setting of Sobolev spaces. One can consult [11] for a
survey and a bibliography of the recent developments in this direction.

On the other hand, periodic solutions of differential equations of the form

(φ(u′))′ = f(x, u, u′),

with φ : (−a, a) → R an increasing homeomorphism satisfying φ(0) = 0,
have been recently studied by in [3, 4], using a fixed-point reduction and
Leray-Schauder degree. The motivation came from the special case where
φ(s) = s√

1−s2 , which occurs in the dynamics of special relativity. Using
the Schauder fixed-point theorem, Torres [14, 15] has recently proved, for
the relativistic pendulum equation with continuous T-periodic forcing h and
arbitrary dissipation f

(φ(u′))′ + f(u)u′ +A sinu = h(x),

the existence of at least two T-periodic solution when

aT < 2
√

3 and |h| < A
(

1− aT

2
√

3

)
,

and of at least one T-periodic solution when

aT = 2
√

3 and h = 0,
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where h denotes the mean value of h over [0, T ]. Those assumptions have
been respectively improved in [2] to

aT < π
√

3 and |h| < A cos
( aT

2
√

3

)
,

and

aT = π
√

3 and h = 0,

using Leray-Schauder degree arguments. It is also proved in [2], using
lower and upper solutions, that at least two T-periodic solutions exist when
||h||∞ < A, and at least one when ‖h‖∞ = A.

The aim of this paper is to use the direct method of the calculus of vari-
ations to prove, for equations of the type

(φ(u′))′ +A sinu = h(x), (1.2)

with h locally integrable and T-periodic, the existence of a T-periodic so-
lution under the sole restriction that h = 0, i.e. to fully extend to the
relativistic forced pendulum the result of Hamel-Dancer-Willem mentioned
above.

It is straightforward to write the action integral associated to this problem,
and quite standard to prove that this integral has a minimum u in the set of
T-periodic Lipschitz functions such that ‖u′‖∞ ≤ a. This is done in Section
2 (Theorem 1). The corresponding variational inequality satisfied by any
minimizer is established in Section 3 (Lemma 2). To go from this variational
inequality to the Euler-Lagrange differential equation, and so to prove that
the minimizer u is a classical solution of equation (1.2) (Theorem 2) requires
showing that ‖u′‖ < a. This is done in Section 5, using a preliminary result
proved in Section 4 (Lemma 3). Although technically different, the approach
is in the spirit of the pioneering paper [5] on the regularity of weak solutions
of some elliptic variational inequalities (see also [10]).

2. Minimization problem

Let a > 0, Φ : [−a, a]→ R satisfy the following conditions:
(HΦ) : Φ is continuous on [−a, a], of class C1 on (−a, a), strictly convex,

and φ := Φ′ : (−a, a)→ R is a homeomorphism such that φ(0) = 0.
This easily implies that

φ(s)s > 0 for all s ∈ (−a, a) \ {0}. (2.1)

Let g : R2 → R satisfy the following conditions:
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(Hg) : g is a Carathéodory function, bounded on R2, g(·, u) is T-periodic
for any u ∈ R and some T > 0, g(x, ·) is 2π-periodic for a.e. x ∈ R,
G(x, u) :=

∫ u
0 g(x, s) ds is bounded on R2, and G(x, ·) is 2π-periodic for a.e.

x ∈ R.
Let LipT (R) = C0,1

T (R) denote the space of functions u : R → R which
are T-periodic and Lipschitz with Lipschitz constant

[u]0,1 := sup
x,y∈[0,T ],x 6=y

|u(x)− u(y)|
|x− y|

<∞.

With the norm

‖u‖0,1 := max
x∈[0,T ]

|u(x)|+ [u]0,1,

LipT (R) is a Banach space. Any element of LipT (R) is almost everywhere
differentiable and u′ corresponds to the distributional derivative of u.

Given h ∈ L1
T (R), where L1

T (R) denotes the space of locally Lebesgue
integrable and T-periodic functions normed by ‖h‖1 =

∫ T
0 |h(x)| dx, we write

h :=
1
T

∫ T

0
h(x) dx, h̃ = h− h,

so that ∫ T

0
h̃(x) dx = 0.

Notice that, if u ∈ LipT (R), then ũ vanishes at some y ∈ [0, T ], and hence,
for all x ∈ [0, T ] (and consequently all x ∈ R), we have

|ũ(x)| = |ũ(x)− ũ(y)| ≤
∫ T

0
|u′(t)| dt ≤ T [u]0,1. (2.2)

For h ∈ L∞(R) and T-periodic, we denote the usual norm by ‖h‖∞.
If K denotes the closed convex subset of LipT (R) defined by

K := {u ∈ LipT (R) : |u′(x)| ≤ a for a.e. x ∈ R},

then the action integral

I(u) :=
∫ T

0
{Φ[u′(x)] +G(x, u(x)) + h(x)u(x)} dx (2.3)

is well defined on K. This happens for example when

Φ(s) = −
√

1− s2, G(x, v) = A cos v
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for some A > 0, in which case (2.3) can be seen as the action integral
associated to the relativistic forced pendulum.

The following lemma is useful to prove the lower semi-continuity of I.

Lemma 1. If assumption (HΦ) holds, then, for any sequence (uj)j∈N in K
which converges uniformly on [0, T ] to some u ∈ K, one has

lim inf
j→∞

∫ T

0
Φ[u′j(x)] dx ≥

∫ T

0
Φ[u′(x)] dx. (2.4)

Proof. For any λ ∈ (0, 1), we have, by assumption (HΦ),∫ T

0
Φ[u′j(x)] dx ≥

∫ T

0
Φ[λu′(x)] dx+

∫ T

0
φ[λu′(x)][u′j(x)− λu′(x)] dx. (2.5)

On the other hand, u′j converges to u′ for the w*-topology σ(L∞, L1). Since
φ(λu′) ∈ L∞(0, T ), we deduce from (2.5) that

lim inf
j→∞

∫ T

0
Φ[u′j(x)] dx ≥

∫ T

0
Φ[λu′(x)] dx+ (1− λ)

∫ T

0
φ[λu′(x)]u′(x) dx.

Applying (2.1) we obtain

lim inf
j→∞

∫ T

0
Φ[u′j(x)] dx ≥

∫ T

0
Φ[λu′(x)] dx,

which gives (2.4) by letting λ→ 1. �

We now prove the existence of a minimum to I when h = 0.

Theorem 1. If assumptions (HΦ) and (Hg) hold, then, for any h ∈ L1
T such

that

h = 0, (2.6)

I has a minimum over K.

Proof. We first observe that, because of the 2π-periodicity of G(x, ·) and
condition (2.6), we have, for all u ∈ K,

I(u+ 2π) = I(u),

so that, if u∗ minimizes I over K, the same is true for u∗ + 2jπ for any
integer j. Hence, without loss of generality, we can search for a minimizer u∗

such that u∗ ∈ [0, 2π]; i.e., we can minimize I in the convex set

K̂ := {u ∈ LipT (R) : u ∈ [0, 2π], |u′(x)| ≤ a for a.e. x ∈ R}.
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Now, if u ∈ K̂, we have for all x ∈ R, using (2.2),

|u(x)| ≤ |u|+ |ũ(x)| ≤ 2π + T [u]0,1 = 2π + Ta,

so that K̂ is a bounded and equicontinuous subset of the space of continu-
ous T-periodic functions. If (uj)j∈N is a minimizing sequence for I in K̂, we
can assume, using Arzelá-Ascoli’s theorem and going if necessary to a subse-
quence, that (uj)j∈N converges uniformly in R to some continuous T-periodic
u∗. From the relations

|uj(x)− uj(y)|
|x− y|

≤ a (x 6= y, j ∈ N)

we easily get that u∗ ∈ K̂. Consequently, using Lemma 1, we have

infbK I = lim
j→∞

I(uj) ≥ I(u∗)

so that u∗ minimizes I over K̂. �

3. Variational inequality

The following lemma provides the variational inequality satisfied by a
minimizer of I.

Lemma 2. If u minimizes I over K, then∫ T

0

(
Φ[v′(x)]− Φ[u′(x)] + {g[x, u(x)] + h(x)}[v(x)− u(x)]

)
dx

≥ 0 for all v ∈ K. (3.1)

Proof. Let v ∈ K. By assumption, we have, for all λ ∈ (0, 1],

I(u) ≤ I[u+ λ(v − u)];

i.e.,∫ T

0
{Φ[u′(x) + λ(v′(x)− u′(x))]− Φ[u′(x)] +G[x, u(x) + λ(v(x)− u(x))]

−G[x, u(x)] + λh(x)[v(x)− u(x)]} dx ≥ 0.

Applying the convexity of Φ we deduce that∫ T

0

{
Φ[v′(x)]− Φ[u′(x)] + λ−1{G[x, u(x) + λ(v(x)− u(x))]−G[x, u(x)]}

+h(x)[v(x)− u(x)]} dx ≥ 0.
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By the Lebesgue dominated convergence theorem, we obtain, when λ↘ 0,∫ T

0
{Φ[v′(x)]− Φ[u′(x)] + g[x, u(x)][v(x)− u(x)]

+h(x)[v(x)− u(x)]} dx ≥ 0. �

4. Auxiliary problem

To obtain further information about the minimizer u, let us introduce the
auxiliary problem

(φ(u′))′ − u = f(x), u is T − periodic, (4.1)

where φ satisfies Assumption (HΦ) and f ∈ L1
T (R). A (classical) solution

of (4.1) is a T-periodic function u ∈ C1(R) such that φ ◦ u′ is absolutely
continuous and (4.1) holds almost everywhere on R.

The existence part of the following lemma and the estimate for u′ is es-
sentially a special case of Corollary 3 of [4]. The proof given there for f
continuous, based upon a reduction to a fixed-point problem and Leray-
Schauder degree, can immediately be adapted to the case where f ∈ L1

T (R).

Lemma 3. For any f ∈ L1
T (R), problem (4.1) has a unique classical solution

u, and ‖u′‖∞ < a.

Proof. It remains to prove the uniqueness. If u and v are two solutions of
(4.1), then we obtain∫ T

0
{[φ(u′(x))− φ(v′(x))]′[u(x)− v(x)]− [u(x)− v(x)]2} dx = 0

and hence, integrating the first term by parts and using T-periodicity,∫ T

0
{[φ(u′(x))− φ(v′(x))][u′(x)− v′(x)] + [u(x)− v(x)]2} dx = 0.

The monotonicity of φ implies the conclusion. �

Lemma 4. For any f ∈ L1
T (R), the unique solution u of (4.1) belongs to K

and satisfies the variational inequality∫ T

0

{
Φ[v′(x)]− Φ[u′(x)] + [u(x) + f(x)][v(x)− u(x)]

}
dx ≥ 0 for all v ∈ K.

Proof. We have, using integration by parts and (4.1),∫ T

0
{Φ[v′(x)]− Φ[u′(x)]} dx ≥

∫ T

0
φ[u′(x)][v′(x)− u′(x)] dx
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= −
∫ T

0
(φ[u′(x)])′[v(x)− u(x)] dx

= −
∫ T

0
[u(x) + f(x)][v(x)− u(x)] dx. �

5. Periodic solutions of relativistic pendulum-like equations

We can now combine the results of the previous sections to obtain condi-
tions for the existence of at least one (classical) T-periodic solution for the
differential equation

(φ(u′))′ − g(x, u) = h(x). (5.1)

A classical T-periodic solution of (5.1) is a T-periodic function u ∈ C1(R)
such that φ ◦ u′ is absolutely continuous and (5.1) holds almost everywhere
on R.

Theorem 2. If assumptions (HΦ) and (Hg) hold, then, for any h ∈ L1
T

such that h = 0, equation (5.1) has at least one T -periodic solution which
minimizes I over K.

Proof. Let u be a minimizer of I over K. Then, by Lemma 2, u satisfies
the variational inequality (3.1). This variational inequality can be written∫ T

0
{Φ[v′(x)]− Φ[u′(x)] + u(x)[v(x)− u(x)]

+[g[x, u(x)] + h(x)− u(x)][v(x)− u(x)]} dx ≥ 0 for all v ∈ K,

so that u is a solution of the variational inequality∫ T

0
{Φ[v′(x)]− Φ[u′(x)] + u(x)[v(x)− u(x)]

+fu(x)[v(x)− u(x)]} dx ≥ 0 for all v ∈ K, (5.2)

where

fu = g[·, u(·)] + h− u ∈ L1
T (R).

Now, given any w ∈ K, the unique solution ûw of problem (4.1) with f = fw
satisfies, by Lemma 4,∫ T

0
{Φ[v′(x)]− Φ[û′w(x)] + ûw(x)[v(x)− ûw(x)]

+fw(x)[v(x)− ûw(x)]} dx ≥ 0 for all v ∈ K. (5.3)
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Choosing v = ûu in (5.2), w = v = u (u the minimizer of I over K) in (5.3),
and adding the resulting inequalities, we obtain∫ T

0
[u(x)− ûu(x)]2 dx ≤ 0. (5.4)

It follows from (5.4) that u = ûu and hence that ‖u′‖∞ = ‖(ûu)′‖∞ < a.
Moreover, u is a classical T-periodic solution of (5.1), since ûu is a classical
T-periodic solution of (4.1) with f = fu. �

Corollary 1. For any T > 0, A ∈ R, and h ∈ L1
T (R) such that h = 0, the

relativistic pendulum equation( u′√
1− u′2

)′
+A sinu = h(x)

has at least one classical T-periodic solution.

Proof. It suffices to take Φ(s) = −
√

1− s2, so that φ(s) = s√
1−s2 , and

G(x, u) = A cosu, so that g(x, u) = −A sinu. Assumptions HΦ with a = 1
and Hg hold. �

Remark 1. It would be interesting to investigate similar questions in higher
dimensions, for example

Minu∈K
∫

TN

{
−
√

1− |∇u|2 +G[x, u(x)] + h(x)u(x)
}
dx,

where TN denotes the N-dimensional torus,

K := {u ∈ Lip(TN ) : |∇u(x)| ≤ 1 for a.e. x ∈ TN}.
Bartnik and Simon [1] have studied related questions under Dirichlet bound-
ary conditions.
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[8] S. Fučik, “Solvability of Nonlinear Equations and Boundary Value Problems,” Reidel,
Dordrecht, 1980.

[9] G. Hamel, Ueber erzwungene Schingungen bei endlischen Amplituden, Math. Ann.,
86 (1922), 1–13.

[10] D. Kinderlehrer and G. Stampacchia, “An Introduction to Variational Inequalities
and Their Applications,” Academic Press, New York, 1980.

[11] J. Mawhin, Global results for the forced pendulum equation, in Handbook of Differen-
tial Equations : Ordinary Differential Equations, vol. 1, A. Canada, P. Drábek, A.
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