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Abstract

The existence of at least one classical T-periodic solutions is proved
for differential equations of the form

(6(u)" — g(z,u) = h(=)

when ¢ : (—a,a) — R is an increasing homeomorphism, g is a Carathé-
odory function T-periodic with respect to x, 2w-periodic with respect to
u, of mean value zero with respect to u, and h € L},.(R) is T-periodic
and has mean value zero. The problem is reduced to finding a minimum
for the corresponding action integral over a closed convex subset of the
space of T-periodic Lipschitzian functions, and then to show, using varia-
tional inequalities techniques, that such a minimum solves the differential
equation. A special case if the ‘relativistic forced pendulum equation’

o’ ' .
(W) + Asinu = h(z).
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Introduction

dulum equation started with the rigorous mathematical study of equation

v’ + Asinu = h(z)

*Rutgers University, Department of Mathematics, Hill Center, Busch Campus, 110 Frel-

inghuysen Road, Piscataway, NJ 08854, USA, brezis@math.rutgers.edu

TDepartment of Mathematics, Technion, Israel Institute of Technology, 32.000 Haifa, Israel
tDépartement de Mathématique, Université Catholique de Louvain, Chemin du Cyclotron

2, B-1348 Louvain-la-Neuve, Belgium, jean.mawhin@uclouvain.be



initiated in 1922 by Hamel, in a paper of the special issue of the Mathematische
Annalen dedicated to Hilbert’s sixtieth birthday anniversary [9]. Hamel proved
the existence of a 2m-periodic solution of equation (1) with h(z) = Bsinz, by
showing that the corresponding action integral

A(u) = /O27T [ul(;)z + Acosu(z) + Bu(z)sinz| dx

has a minimum over the space of 2m-periodic C'-functions, and his argument
easily extends to the case where Bsint is replaced by a continuous 2w-periodic
function h(t) with mean value h equal to zero.

In the late nineteen seventies, Fu¢ik wrote in his monograph [8] that ‘the
description of the set P of h for which equation (1) has a 27-periodic solution
seems to remain a terra incognita.” Motivated by this remark, but also unaware
of the existence of Hamel’s paper, Castro [6] (for |A] < 1), Dancer [7] and
Willem [16], independently (for arbitrary A), reintroduced in the early nineteen
eighties the use of the direct method of the calculus of variations, in the setting
of Sobolev spaces. One can consult [11] for a survey and a bibliography of the
recent developments in this direction.

On the other hand, periodic solutions of differential equations of the form

(6(u)" = f(t,u, )

with ¢ : (—a,a) — R an increasing homeomorphism satisfying ¢(0) = 0, have
been recently studied by in [3, 4], using a fixed point reduction and Leray-
Schauder degree. The motivation came from the special case where ¢(s) =
ﬁ, which occurs in the dynamics of special relativity. Using Schauder fixed
point theorem, Torres [14, 15] has recently proved, for the relativistic pendulum
equation with continuous T-periodic forcing h and arbitrary dissipation f

(p(u") + flu)u' + Asinu = h(t),

the existence of at least two T-periodic solution when

— al
aT < 2V3 and hl<Al1-—),
g ( 2\/§>

and of as least one T-periodic solution when
aT =2v3 and h=0,

where h denotes the mean value of h over [0, T]. Those assumptions have been
respectively improved in [2] to

— T
aT <7V3 and |h| < Acos <a> ,
2V/3



and
al =7vV3 and h=0,

using Leray-Schauder degree arguments. It is also proved in [2], using lower and
upper solutions, that at least two T-periodic solutions exist when ||h||o < A,
and at least one when ||kl = A.

The aim of this paper is to use the direct method of the calculus of variations
to prove, for equations of the type

((u')) + Asinu = h(t) (2)

with £ locally integrable and T-periodic, the existence of a T-periodic solution
under the sole restriction that h = 0, i.e. to fully extend to the relativistic
forced pendulum the result of Hamel-Dancer-Willem mentioned above.

It is straighforward to write the action integral associated to this problem,
and quite standard to prove that this integral has a minimum u in the set
of T-periodic Lipschitzian functions such that ||u/|lcc < a. This is done in
Section 2 (Theorem 1). The corresponding variational inequality satisfied by
any maximizer is established in Section 3 (Lemma 2). To go from this variational
inequality to the Euler-Lagrange differential equation, and so to prove that the
minimizer u is a classical solution of equ. (2) (Theorem 2) requires to show
that ||u/|| < a. This is done in Section 5, using some preliminary result proved
in Section 4 (Lemma 3). Although technically different, the approach is in the
spirit of the pioneering paper [5] on the regularity of weak solutions of some
elliptic variational inequalities (see also [10]).

2 Minimization problem

Let a > 0, ® : [—a,a] — R satisfy the following conditions :

(Hg) : @ is continuous on [—a,a), of class C* on (—a,a), strictly convez,
and ¢ := @' : (—a,a) = R is a homeomorphism such that ¢(0) = 0.

This easily implies that
¢(s)s >0 forall se(—a,a)\{0}. (3)

Let g : R? — R satisfy the following conditions :

(H,) : g is a Carathéodory function, bounded on R?, g(-,u) is T-periodic for
any u € R and some T > 0, g(x,-) is 2n-periodic for a.e. x € R, G(z,u) :=
foug(:c, s)ds is bounded on R?, and G(x,-) is 2n-periodic for a.e. x € R.

Let Lipr q(R) = C’%}L(R) denote the space of functions u : R — R which are
T-periodic and Lipschitzian with Lipschitz constant

[ulo1 :==  sup Ju(z) —u(y)| <4

z,y€[0,T],z#y ‘.73 - yl B



With the norm

[wllo = Jnax, [u()] + [u]o,1,

Lipr o(R) is a Banach space. Any element of Lipr ,(R) is a.e. differentiable
and v’ corresponds to the distributional derivative of u.

Given h € LL(R), where LL(R) denotes the space of locally Lebesgue inte-
grable and T-periodic functions normed by ||kl = fOT |h(z)| dx, we write

_ 1 [T _
h::T/o h(x)dz, h=h-—h,

so that

/OT h(z)dz = 0.

Notice that if w € Lipr o(R), then @ vanishes at some y € [0, T, and hence, for
all z € [0,T] (and consequently all z € R), we have

T
)| = fi(e) — )] < | /()] e < Tl ()
For h € L*°(R) and T-periodic, we denote the usual norm by ||A]]cc-
If K denotes the closed convex subset of Lipr ,(R) defined by
K :={u € Lipr4(R) : |u/(z)| < a for a.e. x € R},

then the action integral

T
Z(u) := / {o[u'(2)] + Gz, u(x)) + h(z)u(z)} dz (5)
0
is well defined on K. This happens for example when

O(s)=—v1-52, G(z,v)=Acosv

for some A > 0, in which case (5) can be seen as the action integral associated
to the relativistic forced pendulum.

The following lemma is useful to prove the lower semi-continuity of Z.

Lemma 1 If assumption (Hg) holds, then, for any sequence (u;);jen in K which
converges uniformly on [0,T] to some u € K, one has

lim inf /O Bl ()] de > /O O[u (z)] da. (6)

j—o0



Proof. For any XA € (0,1), we have, by assumption (Hg),

T T T
/0 uj(z)] dx > /0 O\ (z)] de +/0 P (2)][uj(z) — A (z)] dz. (7)

On the other hand, u} converges to u’ for the w*-topology o(L>, L'). Since
o(Mu') € L*(0,T), we deduce from (7) that

T T T
lim it /0 Bt ()] da > /O B (2)] d + (1 — A) /0 oD ()] () dav.
Applying (3) we obtain

A r / T /

hjrgg.}f/o uj(x)] dx > /0 O ()] dx,

which gives (6) by letting A — 1. [ |

We now prove the existence of a minimum to Z when h = 0.

Theorem 1 If assumptions (He) and (Hy) hold, then, for any h € Lk such
that

T has a minimum over K.

Proof. We first observe that, because of the 2m-periodicity of G(z,-) and con-
dition (8), we have, for all u € K,
Z(u+27) = Z(u),

so that, if «* minimizes Z over K, the same if true for v* + 2j7 for any integer
j. Hence, without loss of generality, we can search for a minimizer u* such that
u* € [0, 27], i.e. we can minimize Z in the convex set

K:={ue Lipr.(R) :w € [0, 27, |/ (z)| < a for a.e. x € R}.
Now, if u € I?, we have for all z € R, using (4),
lu(z)| < [@] + |u(z)| < 27 + Tulo1 = 27 + Ta,

so that K is a bounded and equicontinuous subset of the space of continuous
T-periodic functions. If (u;);en is a minimizing sequence for Z in K, we can
assume, using Arzeld-Ascoli’s theorem and going if necessary to a subsequence,
that (u;)jen converges uniformly in R to some continuous T-periodic v*. From
the relations

|uj () — u;(y)

<a (z#y,jeEN)
|z —y|
we easily get that u* € K. Consequently, using Lemma 1, we have

infZ = lim Z(u;) > Z(u")
K J—00

so that «* minimizes Z over K. [ ]



3 Variational inequality

The following lemma provides the variational inequality satisfied by a minimizer
of T.

Lemma 2 If u minimizes T overs K, then

/OT (@' ()] = @[u' ()] + {glz, u(x)] + h(z)}[v(z) — u(z)]) dz
>0 foral veK. 9)
Proof. Let v € K. By assumption, we have, for all A € (0, 1],
Z(u) < Z[u+ A(v — u)],

/0 {O[/(z) + A (2) = u'(2))] = [u' ()] + Gla, u(z) + A(v(z) — u(z))]
=Gz, u(z)] + M(x)[v(x) — u(x)]} dz > 0.
Applying the convexity of ® we deduce that

T
/O {o[/(2)] = @[u' ()] + A\~ HCz, u(z) + A(v(w) = u(z))] - Glz, u(2)]}
+h(x)[v(z) — u(z)]} dz > 0.

By Lebesgue dominated convergence theorem, we obtain, when A \, 0,

T
/O {@['(2)] — @[’ ()] + glz, u(@)][v(z) — u(@)]
+h(x)[v(z) — u(z)]} dx > 0.

4 Auxiliary problem

To obtain further information about the minimizer u, let us introduce the aux-
iliary problem

(p(u')) —u= f(z), u is T — periodic, (10)

where ¢ satisfies Assumption (Hg) and f € LL(R). A (classical) solution of (10)
is a T-periodic function u € C*(R) such that ¢ou’ is absolutely continuous and
(10) holds a.e. on R.

The existence part of the following Lemma and the estimate for u’ is essen-
tially a special case of Corollary 3 of [4]. The proof given there for f continuous,
based upon a reduction to a fixed point problem and Leray-Schauder degree,
can immediately be adapted to the case where f € LL(R).



Lemma 3 For any f € LL(R), problem (10) has a unique classical solution u,
and ||u']|eo < 1.

Proof. Tt remains to prove the uniqueness. If u and v are two solutions of (10),
then we obtain

/0 {lo(/ () = ¢(v/ (2))] Tu(z) = v(2)] = [u(z) — v(2)]*} dz =0

and hence, integrating the first term by parts and using T-periodicity,

T
/O {[o(u'(2)) — ¢(v'(2))][ (2) — ' (2)] + [u(z) — v(2)]*} dz = 0.
The monotonicity of ¢ implies the conclusion. [ ]

Lemma 4 For any f € L:-(R), the unique solution u of (10) belongs to K and
verifies the variational inequality

/0 {2 (2)] — @[u/(2)] + [u(z) + f(2)][v(z) — u(@)]} dz
>0 forall vekK.

Proof. We have, using integration by parts and (10),
T T
/ ([ (2)] - B[/ ()]} dz > / ol (@ (z) — v (2)] de
0 0
T T
_ / (G @) [o(@) - u(z)]dz = — / (@) + F(2)][o(z) — u(x)) da.
0 0

5 Periodic solutions of relativistic pendulum-li-
ke equations

We can now combine the results of the previous sections to obtain conditions
for the existence of at least one (classical) T-periodic solution for the differential
equation

(6(u)" — gz, u) = h(z). (11)

A classical T-periodic solution of (11) is a T-periodic function v € C*(R) such
that ¢ o’ is absolutely continuous and (11) holds a.e. on R.

Theorem 2 If assumptions (Hg) and (Hy) hold, then, for any h € LY such
that h = 0, equation (11) has at least one T-periodic solution which minimizes
7T over K.



Proof. Let u be a minimizer of Z over K. Then, by Lemma 2, u satisfies the
variational inequality (9). This variational inequality can be written

/ (0l @)] - O (@)] + u(@)o(z) - u(o)
Halr. u(@)] + hie) ~ u@][o(e) ~ (@]} do = 0 forall ve K.

so that u is a solution of the variational inequality

/ {0l (@)] - D/ (@)] + u(@)[o(z) — u(w)
+fu(@)v(z) —u(x)]}de >0 forall veK, (12)
where
fu = gl u()] + h — u € LL(R).

Now, given any w € K, the unique solution @, of problem (10) with f = f,
satisfies, by Lemma 4,

T
/0 {2/ (2)] — @[ty ()] + U () [v(2) — Tw(2)]
+fw(@)[v(x) — Uy (x)]}de >0 forall veK. (13)

Chosing v = %y, in (12), w = v = u (u the minimizer of Z over K) in (13), and
adding the resulting inequalities, we obtain

T
/ [u(z) — Ty (x)]* dz < 0. (14)
0
It follows from (14) that v = @, and hence that |[u/|lcc = [|(Un) ]| < a.
Moreover w is a classical T-periodic solution of (11), since 4, is a classical T-
periodic solution of (10) with f = f,. [ |

Corollary 1 For any T > 0, A € R, and h € LL(R) such that h = 0, the
relativistic pendulum equation

u’ !

———— | + Asinu = h(z
(\/ 1-— u’2> @)

has at least one classical T-periodic solution.

Proof. Tt suffices to take ®(s) = —v/1 — s2, so that ¢(s) = i and G(z,u) =

Acosu, so that g(x,u) = —Asinu. Assumptions He with ¢ = 1 and H, hold.
|



Remark 1 It would be interesting to investigate similar questions in higher
dimensions, for example

Min, e i /TN {—W—i— Glz,u(z)]) + h(m)u(x)} dx,

where TV denotes the N-dimensional torus,
K :={u € Lip(T") : |Vu(z)| <1 for a.e. z € TV}.

Bartnik and Simon [1] have studied related questions under Dirichlet boundary
conditions.
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