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Abstract

The existence of at least one classical T-periodic solutions is proved
for differential equations of the form

(φ(u′))′ − g(x, u) = h(x)

when φ : (−a, a) → R is an increasing homeomorphism, g is a Carathé-
odory function T-periodic with respect to x, 2π-periodic with respect to
u, of mean value zero with respect to u, and h ∈ L1

loc(R) is T-periodic
and has mean value zero. The problem is reduced to finding a minimum
for the corresponding action integral over a closed convex subset of the
space of T-periodic Lipschitzian functions, and then to show, using varia-
tional inequalities techniques, that such a minimum solves the differential
equation. A special case if the ‘relativistic forced pendulum equation’(

u′√
1− u′2

)′
+A sinu = h(x).
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1 Introduction

The first global result for the existence of periodic solutions of the forced pen-
dulum equation started with the rigorous mathematical study of equation

u′′ +A sinu = h(x) (1)
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initiated in 1922 by Hamel, in a paper of the special issue of the Mathematische
Annalen dedicated to Hilbert’s sixtieth birthday anniversary [9]. Hamel proved
the existence of a 2π-periodic solution of equation (1) with h(x) = B sinx, by
showing that the corresponding action integral

A(u) :=

∫ 2π

0

[
u′(x)2

2
+A cosu(x) +Bu(x) sinx

]
dx

has a minimum over the space of 2π-periodic C1-functions, and his argument
easily extends to the case where B sin t is replaced by a continuous 2π-periodic
function h(t) with mean value h equal to zero.

In the late nineteen seventies, Fučik wrote in his monograph [8] that ‘the
description of the set P of h for which equation (1) has a 2π-periodic solution
seems to remain a terra incognita.’ Motivated by this remark, but also unaware
of the existence of Hamel’s paper, Castro [6] (for |A| ≤ 1), Dancer [7] and
Willem [16], independently (for arbitrary A), reintroduced in the early nineteen
eighties the use of the direct method of the calculus of variations, in the setting
of Sobolev spaces. One can consult [11] for a survey and a bibliography of the
recent developments in this direction.

On the other hand, periodic solutions of differential equations of the form

(φ(u′))′ = f(t, u, u′)

with φ : (−a, a) → R an increasing homeomorphism satisfying φ(0) = 0, have
been recently studied by in [3, 4], using a fixed point reduction and Leray-
Schauder degree. The motivation came from the special case where φ(s) =

s√
1−s2 , which occurs in the dynamics of special relativity. Using Schauder fixed

point theorem, Torres [14, 15] has recently proved, for the relativistic pendulum
equation with continuous T-periodic forcing h and arbitrary dissipation f

(φ(u′))′ + f(u)u′ +A sinu = h(t),

the existence of at least two T-periodic solution when

aT < 2
√

3 and |h| < A

(
1− aT

2
√

3

)
,

and of as least one T-periodic solution when

aT = 2
√

3 and h = 0,

where h denotes the mean value of h over [0, T ]. Those assumptions have been
respectively improved in [2] to

aT < π
√

3 and |h| < A cos

(
aT

2
√

3

)
,
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and

aT = π
√

3 and h = 0,

using Leray-Schauder degree arguments. It is also proved in [2], using lower and
upper solutions, that at least two T-periodic solutions exist when ||h||∞ < A,
and at least one when ‖h‖∞ = A.

The aim of this paper is to use the direct method of the calculus of variations
to prove, for equations of the type

(φ(u′))′ +A sinu = h(t) (2)

with h locally integrable and T-periodic, the existence of a T-periodic solution
under the sole restriction that h = 0, i.e. to fully extend to the relativistic
forced pendulum the result of Hamel-Dancer-Willem mentioned above.

It is straighforward to write the action integral associated to this problem,
and quite standard to prove that this integral has a minimum u in the set
of T-periodic Lipschitzian functions such that ‖u′‖∞ ≤ a. This is done in
Section 2 (Theorem 1). The corresponding variational inequality satisfied by
any maximizer is established in Section 3 (Lemma 2). To go from this variational
inequality to the Euler-Lagrange differential equation, and so to prove that the
minimizer u is a classical solution of equ. (2) (Theorem 2) requires to show
that ‖u′‖ < a. This is done in Section 5, using some preliminary result proved
in Section 4 (Lemma 3). Although technically different, the approach is in the
spirit of the pioneering paper [5] on the regularity of weak solutions of some
elliptic variational inequalities (see also [10]).

2 Minimization problem

Let a > 0, Φ : [−a, a]→ R satisfy the following conditions :

(HΦ) : Φ is continuous on [−a, a], of class C1 on (−a, a), strictly convex,
and φ := Φ′ : (−a, a)→ R is a homeomorphism such that φ(0) = 0.

This easily implies that

φ(s)s > 0 for all s ∈ (−a, a) \ {0}. (3)

Let g : R2 → R satisfy the following conditions :

(Hg) : g is a Carathéodory function, bounded on R2, g(·, u) is T-periodic for
any u ∈ R and some T > 0, g(x, ·) is 2π-periodic for a.e. x ∈ R, G(x, u) :=∫ u

0
g(x, s) ds is bounded on R2, and G(x, ·) is 2π-periodic for a.e. x ∈ R.

Let LipT,a(R) = C0,1
T,a(R) denote the space of functions u : R→ R which are

T-periodic and Lipschitzian with Lipschitz constant

[u]0,1 := sup
x,y∈[0,T ],x 6=y

|u(x)− u(y)|
|x− y|

≤ a.
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With the norm

‖u‖0,1 := max
x∈[0,T ]

|u(x)|+ [u]0,1,

LipT,a(R) is a Banach space. Any element of LipT,a(R) is a.e. differentiable
and u′ corresponds to the distributional derivative of u.

Given h ∈ L1
T (R), where L1

T (R) denotes the space of locally Lebesgue inte-

grable and T-periodic functions normed by ‖h‖1 =
∫ T

0
|h(x)| dx, we write

h :=
1

T

∫ T

0

h(x) dx, h̃ = h− h,

so that ∫ T

0

h̃(x) dx = 0.

Notice that if u ∈ LipT,a(R), then ũ vanishes at some y ∈ [0, T ], and hence, for
all x ∈ [0, T ] (and consequently all x ∈ R), we have

|ũ(x)| = |ũ(x)− ũ(y)| ≤
∫ T

0

|u′(t)| dt ≤ T [u]0,1. (4)

For h ∈ L∞(R) and T-periodic, we denote the usual norm by ‖h‖∞.

If K denotes the closed convex subset of LipT,a(R) defined by

K := {u ∈ LipT,a(R) : |u′(x)| ≤ a for a.e. x ∈ R},

then the action integral

I(u) :=

∫ T

0

{Φ[u′(x)] +G(x, u(x)) + h(x)u(x)} dx (5)

is well defined on K. This happens for example when

Φ(s) = −
√

1− s2, G(x, v) = A cos v

for some A > 0, in which case (5) can be seen as the action integral associated
to the relativistic forced pendulum.

The following lemma is useful to prove the lower semi-continuity of I.

Lemma 1 If assumption (HΦ) holds, then, for any sequence (uj)j∈N in K which
converges uniformly on [0, T ] to some u ∈ K, one has

lim inf
j→∞

∫ T

0

Φ[u′j(x)] dx ≥
∫ T

0

Φ[u′(x)] dx. (6)
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Proof. For any λ ∈ (0, 1), we have, by assumption (HΦ),∫ T

0

Φ[u′j(x)] dx ≥
∫ T

0

Φ[λu′(x)] dx+

∫ T

0

φ[λu′(x)][u′j(x)− λu′(x)] dx. (7)

On the other hand, u′j converges to u′ for the w*-topology σ(L∞, L1). Since
φ(λu′) ∈ L∞(0, T ), we deduce from (7) that

lim inf
j→∞

∫ T

0

Φ[u′j(x)] dx ≥
∫ T

0

Φ[λu′(x)] dx+ (1− λ)

∫ T

0

φ[λu′(x)]u′(x) dx.

Applying (3) we obtain

lim inf
j→∞

∫ T

0

Φ[u′j(x)] dx ≥
∫ T

0

Φ[λu′(x)] dx,

which gives (6) by letting λ→ 1.

We now prove the existence of a minimum to I when h = 0.

Theorem 1 If assumptions (HΦ) and (Hg) hold, then, for any h ∈ L1
T such

that

h = 0, (8)

I has a minimum over K.

Proof. We first observe that, because of the 2π-periodicity of G(x, ·) and con-
dition (8), we have, for all u ∈ K,

I(u+ 2π) = I(u),

so that, if u∗ minimizes I over K, the same if true for u∗ + 2jπ for any integer
j. Hence, without loss of generality, we can search for a minimizer u∗ such that
u∗ ∈ [0, 2π], i.e. we can minimize I in the convex set

K̂ := {u ∈ LipT,a(R) : u ∈ [0, 2π], |u′(x)| ≤ a for a.e. x ∈ R}.

Now, if u ∈ K̂, we have for all x ∈ R, using (4),

|u(x)| ≤ |u|+ |ũ(x)| ≤ 2π + T [u]0,1 = 2π + Ta,

so that K̂ is a bounded and equicontinuous subset of the space of continuous
T-periodic functions. If (uj)j∈N is a minimizing sequence for I in K̂, we can
assume, using Arzelá-Ascoli’s theorem and going if necessary to a subsequence,
that (uj)j∈N converges uniformly in R to some continuous T-periodic u∗. From
the relations

|uj(x)− uj(y)|
|x− y|

≤ a (x 6= y, j ∈ N)

we easily get that u∗ ∈ K̂. Consequently, using Lemma 1, we have

inf
K̂
I = lim

j→∞
I(uj) ≥ I(u∗)

so that u∗ minimizes I over K̂.
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3 Variational inequality

The following lemma provides the variational inequality satisfied by a minimizer
of I.

Lemma 2 If u minimizes I overs K, then∫ T

0

(Φ[v′(x)]− Φ[u′(x)] + {g[x, u(x)] + h(x)}[v(x)− u(x)]) dx

≥ 0 for all v ∈ K. (9)

Proof. Let v ∈ K. By assumption, we have, for all λ ∈ (0, 1],

I(u) ≤ I[u+ λ(v − u)],

i.e.∫ T

0

{Φ[u′(x) + λ(v′(x)− u′(x))]− Φ[u′(x)] +G[x, u(x) + λ(v(x)− u(x))]

−G[x, u(x)] + λh(x)[v(x)− u(x)]} dx ≥ 0.

Applying the convexity of Φ we deduce that∫ T

0

{
Φ[v′(x)]− Φ[u′(x)] + λ−1{G[x, u(x) + λ(v(x)− u(x))]−G[x, u(x)]}

+h(x)[v(x)− u(x)]} dx ≥ 0.

By Lebesgue dominated convergence theorem, we obtain, when λ↘ 0,∫ T

0

{Φ[v′(x)]− Φ[u′(x)] + g[x, u(x)][v(x)− u(x)]

+h(x)[v(x)− u(x)]} dx ≥ 0.

4 Auxiliary problem

To obtain further information about the minimizer u, let us introduce the aux-
iliary problem

(φ(u′))′ − u = f(x), u is T − periodic, (10)

where φ satisfies Assumption (HΦ) and f ∈ L1
T (R). A (classical) solution of (10)

is a T-periodic function u ∈ C1(R) such that φ ◦u′ is absolutely continuous and
(10) holds a.e. on R.

The existence part of the following Lemma and the estimate for u′ is essen-
tially a special case of Corollary 3 of [4]. The proof given there for f continuous,
based upon a reduction to a fixed point problem and Leray-Schauder degree,
can immediately be adapted to the case where f ∈ L1

T (R).
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Lemma 3 For any f ∈ L1
T (R), problem (10) has a unique classical solution u,

and ‖u′‖∞ < 1.

Proof. It remains to prove the uniqueness. If u and v are two solutions of (10),
then we obtain∫ T

0

{[φ(u′(x))− φ(v′(x))]′[u(x)− v(x)]− [u(x)− v(x)]2} dx = 0

and hence, integrating the first term by parts and using T-periodicity,∫ T

0

{[φ(u′(x))− φ(v′(x))][u′(x)− v′(x)] + [u(x)− v(x)]2} dx = 0.

The monotonicity of φ implies the conclusion.

Lemma 4 For any f ∈ L1
T (R), the unique solution u of (10) belongs to K and

verifies the variational inequality∫ T

0

{Φ[v′(x)]− Φ[u′(x)] + [u(x) + f(x)][v(x)− u(x)]} dx

≥ 0 for all v ∈ K.

Proof. We have, using integration by parts and (10),∫ T

0

{Φ[v′(x)]− Φ[u′(x)]} dx ≥
∫ T

0

φ[u′(x)][v′(x)− u′(x)] dx

= −
∫ T

0

(φ[u′(x)])′[v(x)− u(x)] dx = −
∫ T

0

[u(x) + f(x)][v(x)− u(x)] dx.

5 Periodic solutions of relativistic pendulum-li-
ke equations

We can now combine the results of the previous sections to obtain conditions
for the existence of at least one (classical) T-periodic solution for the differential
equation

(φ(u′))′ − g(x, u) = h(x). (11)

A classical T-periodic solution of (11) is a T-periodic function u ∈ C1(R) such
that φ ◦ u′ is absolutely continuous and (11) holds a.e. on R.

Theorem 2 If assumptions (HΦ) and (Hg) hold, then, for any h ∈ L1
T such

that h = 0, equation (11) has at least one T-periodic solution which minimizes
I over K.
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Proof. Let u be a minimizer of I over K. Then, by Lemma 2, u satisfies the
variational inequality (9). This variational inequality can be written∫ T

0

{Φ[v′(x)]− Φ[u′(x)] + u(x)[v(x)− u(x)]

+[g[x, u(x)] + h(x)− u(x)][v(x)− u(x)]} dx ≥ 0 for all v ∈ K,

so that u is a solution of the variational inequality∫ T

0

{Φ[v′(x)]− Φ[u′(x)] + u(x)[v(x)− u(x)]

+fu(x)[v(x)− u(x)]} dx ≥ 0 for all v ∈ K, (12)

where

fu = g[·, u(·)] + h− u ∈ L1
T (R).

Now, given any w ∈ K, the unique solution ûw of problem (10) with f = fw
satisfies, by Lemma 4,∫ T

0

{Φ[v′(x)]− Φ[û′w(x)] + ûw(x)[v(x)− ûw(x)]

+fw(x)[v(x)− ûw(x)]} dx ≥ 0 for all v ∈ K. (13)

Chosing v = ûu in (12), w = v = u (u the minimizer of I over K) in (13), and
adding the resulting inequalities, we obtain∫ T

0

[u(x)− ûu(x)]2 dx ≤ 0. (14)

It follows from (14) that u = ûu and hence that ‖u′‖∞ = ‖(ûu)′‖∞ < a.
Moreover u is a classical T-periodic solution of (11), since ûu is a classical T-
periodic solution of (10) with f = fu.

Corollary 1 For any T > 0, A ∈ R, and h ∈ L1
T (R) such that h = 0, the

relativistic pendulum equation(
u′√

1− u′2

)′
+A sinu = h(x)

has at least one classical T-periodic solution.

Proof. It suffices to take Φ(s) = −
√

1− s2, so that φ(s) = s√
1−s2 , and G(x, u) =

A cosu, so that g(x, u) = −A sinu. Assumptions HΦ with a = 1 and Hg hold.
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Remark 1 It would be interesting to investigate similar questions in higher
dimensions, for example

Minu∈K

∫
TN

{
−
√

1− |∇u|2 +G[x, u(x)] + h(x)u(x)
}
dx,

where TN denotes the N-dimensional torus,

K := {u ∈ Lip(TN ) : |∇u(x)| ≤ 1 for a.e. x ∈ TN}.

Bartnik and Simon [1] have studied related questions under Dirichlet boundary
conditions.
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P. Drábek, A. Fonda ed., Elsevier, Amsterdam, 2004, 533-590

[12] J. Mawhin, and M. Willem, Multiple solutions of the periodic boundary
value problem for some forced pendulum-type equations, J. Differential
Equations 52 (1984), 264-287

[13] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Sys-
tems, Springer, New York, 1989

[14] P.J. Torres, Periodic oscillations of the relativistic pendulum with friction,
Physics Letters A 372 (2008), 6386-6387.

[15] P.J. Torres, Nondegeneracy of the periodically forced Liénard differential
equation with φ-Laplacian, Commun. Contemporary Math., to appear

[16] M. Willem, Oscillations forcées de l’équation du pendule, Pub. IRMA Lille,
3 (1981), V-1-V-3

10


