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Abstract. We study various questions related to the best constants in the
following inequalities established in [1, 2, 3];˛̨

˛
Z
Γ

�ϕ · �t
˛̨
˛ ≤ Cn‖∇ϕ‖Ln |Γ| ,

and ˛̨
˛
Z
Rn

�ϕ · �µ
˛̨
˛ ≤ Cn‖∇ϕ‖Ln‖�µ‖ ,

where Γ is a closed curve in Rn, �ϕ ∈ C∞
c (Rn;Rn) and �µ is a bounded measure

on Rn with values into Rn such that div �µ = 0. In 2d the answers are rather
complete and closely related to the best constants for Sobolev and isoperimetric
inequalities.

1. Estimates for curves and divergence-free vector fields

In general, functions in the Sobolev space W1,n(Rn) do not need be bounded

continuous functions. However, it was shown recently that in circulation integrals,

such functions behave as if they were bounded continuous functions:

Theorem 1 (Bourgain, Brezis and Mironescu [4]). There exists C > 0 de-
pending only on n such that if Γ is a closed rectifiable oriented curve whose tangent
vector is �t, for every �ϕ ∈ C∞

c (Rn;Rn),

(1.1)

∣∣∣∫
Γ

�ϕ · �t
∣∣∣ ≤ C‖∇�ϕ‖Ln(Rn)|Γ| ,
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2 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN

Here and in the sequel, the subscript c in C∞
c (Rn;Rn) means compact support.

The original proof of Theorem 1 relied on a Littlewood–Paley decomposition; an

elementary proof was given by the second author [18].

In two-dimensional space, this estimate follows easily from the classical isoperi-

metric theorem. This is not anymore the case in higher dimensions, but the in-

equality still retains some isoperimetric flavour.

The aim of this paper is to present various problems concerning optimal con-

stants in Theorem 1. A first family of problems consists in fixing the curve Γ and

finding the optimal constant AΓ and the optimal vector field �ϕ. Such a vector field

always exists. In two dimensions, the value of the associated optimal constant can

even be given in terms of the area enclosed by Γ.

The next problem consists in optimizing AΓ over all possible curves i.e., study-

ing A = supΓ AΓ. In R2, one merely needs to maximize the area under a constraint

on the perimeter; the classical isoperimetric theorem then yields a circle as the

optimal curve. Similar results in higher dimensions would be desirable. However,

none of the two-dimensional arguments work. The question whether the optimal

constant is attained is even open.

As explained by Bourgain and Brezis [2], the optimal constant A in Theorem 1

is the same as the optimal constant in

Theorem 2 (Bourgain and Brezis [2, 3]). There exists C > 0 such that if �µ is
a divergence-free bounded measure, then for every �ϕ ∈ C∞

c (Rn;Rn),

(1.2)

∣∣∣∫
Rn

�ϕ · �µ
∣∣∣ ≤ C‖∇�ϕ‖Ln(Rn)‖�µ‖ .

Theorem 2 also has a direct proof by Littlewood–Paley decompostion [3], and

an elementary proof [17]. The latter inequality provides thus a relaxed problem for

the optimal constants, which could be more tractable.

This paper is organized as follows. In section 2, we explain how for a given

curve, one can find an optimal vector field, how this leads to the optimal problem,

how the problem of the optimal constant for divergence-free measures is the same

as the problem for closed curves. We end this sections by some problems related

to the confinement of the inequalities to domains. In section 3, we show that for

a given divergence-free vector measure, one can find an optimal vector field. We

then raise various questions concerning the optimal constant in the inequality.

2. The two-dimensional case

2.1. Curves in 2d. Throughout this section, we assume that Γ is a simple,

closed, smooth, oriented curve with tangent vector �t. The optimal constant for the

inequality of Theorem 1 is given by

AΓ = sup
{∫

Γ

�ϕ · �t : �ϕ ∈ C∞
c (R2;R2) and

∫
R2

|∇�ϕ|2 ≤ 1
}

,

where |·| denotes the Euclidean norm (of a vector or a matrix). By Theorem 1, this

can be rewritten as

AΓ = sup
{∫

Γ

�ϕ · �t : �ϕ ∈ Ḣ1(R2;R2) and

∫
R2

|∇�ϕ|2 ≤ 1
}

,

where

Ḣ1(R2;R2) =
{

�ϕ ∈ W
1,1
loc(R

2;R2) : ∇�ϕ ∈ L2(R2;R2×2)
}
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CIRCULATION INTEGRALS AND CRITICAL SOBOLEV SPACES 3

is the completion of C∞
c (R2;R2) equipped with the norm ‖∇�ϕ‖L2 . Note that there

are two possible definitions for
∫
Γ

�ϕ · �t when �ϕ ∈ Ḣ1(R2;R2). The first one is in

the sense of traces; secondly, starting from (1.1), one can define
∫
Γ

�ϕ · �t abstractly

via density. Both definitions coincide.

Since the space Ḣ1(R2;R2) modulo constants is a Hilbert space, one has

Proposition 2.1. There exists a unique �ϕ ∈ Ḣ1(R2;R2) (modulo constants)
such that ∫

Γ

�ϕ · �t = AΓ ,(2.1) ∫
R2

|∇�ϕ|2 = 1 .(2.2)

The vector field �ϕ satisfies the equation,

−∆�ϕ =
�t

AΓ
H1�Γ in R2 ,(2.3)

div �ϕ = 0 in R2 ,(2.4)

�ϕ ∈ (L∞ ∩ C)(R2;R2) ,(2.5)

where H1�Γ denotes the 1–dimensional Hausdorff measure restricted to Γ.

Note that the additional property (2.5) allows to give a classical meaning to∫
Γ

�ϕ · �t.

Proof of Proposition 2.1. Since Ḣ1(R2;R2) is a Hilbert space, there exists

a unique �ϕ such that∫
Γ

�ϕ · �t = AΓ and

∫
R2

|∇�ϕ|2 = 1 .

The vector field �ϕ satisfies the Euler equation

−λ∆�ϕ = �tH1�Γ

for some Lagrange multiplier λ ∈ R. Obviously λ = AΓ. In particular, div �ϕ
satisfies

−∆ div �ϕ = 0 .

Since div �ϕ ∈ L2(R2), one has necessarily div �ϕ = 0. Finally, since −∆�ϕ is a

divergence-free bounded measure, the boundedness and the continuity of �ϕ follow

from the results of Bourgain and Brezis (see [2, Remark 5] and [3, Theorem 3]). �

The constant AΓ can be determined explicitely:

Proposition 2.2. If Γ = ∂Σ, then

AΓ = |Σ| 1
2 .

Proof. To fix the ideas, we shall assume that Γ is positively oriented. Apply-

ing successively Stokes’ theorem and the Cauchy–Schwarz inequality, we obtain∫
Γ

�ϕ · �t =

∫
Σ

∇ ∧ �ϕ ≤ |Σ|1/2
(∫

R2
|∇ ∧ �ϕ|2

) 1
2

≤ |Σ|1/2
(∫

R2
|∇ ∧ �ϕ|2 + |div �ϕ|2

) 1
2

= |Σ|1/2
(∫

R2
|∇�ϕ|2

) 1
2

,

(2.6)

35
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4 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN

where ∇ ∧ �ϕ = ∂1ϕ2 − ∂2ϕ1. This proves that AΓ ≤ |Σ| 1
2 .

In order to obtain the equality, choose �ϕ ∈ Ḣ1(R2;R2) to be the solution of⎧⎪⎨⎪⎩
∇ ∧ �ϕ = 1 in Σ ,

∇ ∧ �ϕ = 0 in R2 \ Σ ,

div �ϕ = 0 in R2 .

By construction, �ϕ realizes the equality in (2.6); hence, AΓ = |Σ| 1
2 . �

The main result is

Proposition 2.3. One has

(2.7) AΓ ≤ |Γ|
2
√

π
.

Moreover, equality holds in (2.7) if, and only if, Γ is a circle.

Proof. Writing Γ = ∂Σ, we combine Proposition 2.2 together with the clas-

sical isoperimetric inequality, in order to obtain

AΓ = |Σ| 1
2 ≤ |Γ|

2
√

π
.

Moreover, one has equality if and only if Γ = ∂Σ is a circle. �
2.2. A relaxed problem. Let �µ be a bounded R2–valued vector measure

such that div �µ = 0 in the sense of distributions, and set

A�µ = sup
{∫

R2
�ϕ · �µ : �ϕ ∈ C∞

c (R2;R2) and

∫
R2

|∇�ϕ|2 ≤ 1
}

.

A particular case is when Γ is as in Section 2.1 and the measure is �µ = �tH1�Γ; one

has then A�µ = AΓ.

By Theorem 2, the integral
∫
R2 �ϕ · �µ is well-defined when �ϕ ∈ Ḣ1(R2;R2) as

an extension of a linear functional1. One can thus relax the supremum to

A�µ = sup
{∫

R2
�ϕ · �µ : �ϕ ∈ Ḣ1(R2;R2) and

∫
R2

|∇�ϕ|2 ≤ 1
}

.

As previously, one can show that if �µ �= 0, A�µ is attained by a vector field

�ϕ ∈ (Ḣ1 ∩ L∞)(R2;R2) that satisfies

(2.8) −∆�ϕ =
1

A�µ
�µ ,

so that in particular div �ϕ = 0. By the result of Bourgain and Brezis mentioned

above, �ϕ is a bounded continuous vector field.

One can also compute explicitely the value A�µ. Recall that by the Sobolev–

Nirenberg embedding, if �µ is divergence-free, it can be written as �µ = ∇⊥ζ, for

some unique ζ ∈ L2(R2), where ∇⊥ζ = (∂2ζ,−∂1ζ).

Proposition 2.4. Let �µ and ζ be as above, then

A�µ =
(∫

R2
|ζ|2
) 1

2
.

1In fact, one can even show using Theorem 2 that null sets for the H1 capacity in R2 are
null sets for the variation |�µ| of �µ, so that every H1– quasicontinuous function is �µ–measurable.

In particular, the integral makes sense for every �ϕ ∈ (Ḣ1 ∩ L∞)(R2;R2).
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CIRCULATION INTEGRALS AND CRITICAL SOBOLEV SPACES 5

Proof. One has, by the Cauchy-Schwarz inequality, for every �ϕ ∈ C∞
c (R2;R2),∫

R2
�ϕ · �µ =

∫
R2

∇⊥ζ · �ϕ =

∫
R2

ζ(∇ ∧ �ϕ)

≤
(∫

R2
|ζ|2
) 1

2
(∫

R2
|∇ ∧ �ϕ|2

) 1
2

≤
(∫

R2
|ζ|2
) 1

2
(∫

R2
|∇ ∧ �ϕ|2 + |div �ϕ|2

) 1
2

=
(∫

R2
|ζ|2
) 1

2
(∫

R2
|∇�ϕ|2

) 1
2

,

whence one obtains an upper bound

A�µ ≤
(∫

R2
|ζ|2
) 1

2
.

For the equality, observe that the solution �ϕ ∈ Ḣ1(R2;R2) to{∇ ∧ �ϕ = ζ ,

div �ϕ = 0 ,

achieves equality in the above inequality. �

Proposition 2.5. One has

(2.9) A�µ ≤ ‖�µ‖
2
√

π
,

where

‖�µ‖ = sup
{∫

R2
�ϕ · �µ : ∀x ∈ R2, |�ϕ(x)| ≤ 1

}
.

Moreover, equality holds in (2.9) if, and only if,

�µ = λ∇⊥χB(x,r)

for some λ ∈ R, x ∈ R2 and r > 0.

Proof. By the optimal Sobolev–Nirenberg inequality, one has

‖ζ‖L2(R2) ≤ 1

2
√

π
‖∇ζ‖L1(R2;R2) =

1

2
√

π
‖�µ‖ ,

with equality if and only if ζ is a multiple of a characteristic function of a ball; this

result is originaly due to H. Federer and W. H.Fleming [8], and independently to

V. G. Maz’ya [13], see e.g. [14, Lemma 3.2.3/1] and also [6, 9]. �

Remark 2.6. In view of the result of Smirnov [16] representing any divergence-

free measure �µ with ‖�µ‖ = 1 as a “convex combination” of measures of the form

�tH1�Γ

|Γ| ,

it is clear that (2.7) implies (2.9). The main interest of Proposition 2.5 is that the

relaxation to Lipschitz curves (having possibly self-intersections), or to divergence-

free measures, does not introduce new maximizers.

There is a slight improvement of Proposition 2.5

37
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6 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN

Corollary 2.7. For every �ϕ ∈ Ḣ1(R2;R2),∫
R2

�ϕ · �µ ≤ ‖�µ‖
2
√

π

(∫
R2

|∇ ∧ �ϕ|2
) 1

2
.

Moreover there is equality in the nontrivial case if, and only if,

(2.10) �µ = λ∇⊥χB(x,r)

and

(2.11) ∇ ∧ �ϕ = νλχB(x,r) ,

for some λ ∈ R and ν > 0, x ∈ R2 and r > 0.

Proof. Given �ϕ ∈ Ḣ1(R2;R2), let �ψ solve{
∇ ∧ �ψ = ∇ ∧ �ϕ ,

div �ψ = 0 .

One then has∫
R2

�ϕ · �µ =

∫
R2

�ψ · �µ ≤ ‖�µ‖
2
√

π

(∫
R2

|∇�ψ|2
) 1

2

=
‖�µ‖
2
√

π

(∫
R2

|∇ ∧ �ψ|2
) 1

2
=

‖�µ‖
2
√

π

(∫
R2

|∇ ∧ �ϕ|2
) 1

2
.

If equality holds, one has by Proposition 2.5,

�µ = λ∇⊥χB(x,r) ,

so that, by (2.8),

−∆�ψ = ν�µ = νλ∇⊥χB(x,r) .

On the other hand,

∇⊥(∇ ∧ �ϕ) = ∇⊥(∇ ∧ �ψ) = −∆�ψ

since div �ψ = 0. Therefore,

∇⊥(∇ ∧ �ϕ) = νλ∇⊥χB(x,r)

and consequently ∇ ∧ �ϕ = νλχB(x,r). �

2.3. Confinement to domains. Let Ω ⊂ R2 be a smooth, bounded, simply

connected domain with normal vector field �n. We will work with the class of

measures on Ω̄ satisfying div �µ = 0 in Ω and �µ · �n = 0 on ∂Ω. This class is defined

as

M#
0 (Ω̄,R2) =

{
�µ ∈ C(Ω̄;R2)∗ : ∀ζ ∈ C1(Ω̄),

∫
Ω̄

∇ζ · �µ = 0
}

.

Note that
∫
Ω̄

�µ = 0 for every �µ ∈ M#
0 (Ω̄,R2) (just take ζ(x) = xi, i = 1, 2 in the

definition).

Proposition 2.8. For every �ϕ ∈ H1(Ω) ∩ C(Ω̄) and �µ ∈ M#
0 (Ω̄,R2)

(2.12)

∫
Ω

�ϕ · �µ ≤ ‖�µ‖
2
√

π
‖∇ ∧ �ϕ‖L2(Ω) .

Equality holds in the nontrivial cases if �µ = λ�tH1�∂B(x, r) with ∂B(x, r) ⊂ Ω̄ and
�ϕ satisfies (2.11) for ν > 0.

38
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CIRCULATION INTEGRALS AND CRITICAL SOBOLEV SPACES 7

Proof. Let �ψ ∈ Ḣ1(R2;R2) satisfy⎧⎪⎪⎨⎪⎪⎩
∇ ∧ �ψ = ∇ ∧ �ϕ in Ω ,

∇ ∧ �ψ = 0 in R2 \ Ω ,

div �ψ = 0 in R2 ,

and define the measure �η ∈ M(R2) by∫
R2

�ϑ · �η =

∫
Ω̄

�ϑ · �µ ,

for every �ϑ ∈ Cc(R2;R2). One has, by Corollary 2.7,∫
Ω̄

�ϕ · �µ =

∫
R2

�ψ · �η ≤ ‖�η‖
2
√

π

(∫
R2

|∇ ∧ �ψ|2
) 1

2
=

‖�µ‖
2
√

π

(∫
Ω

|∇ ∧ �ϕ|2
) 1

2
.

The equality cases follow again from the conclusion of Corollary 2.7. �

Remark 2.9. If Ω is not simply connected, the inequality∫
Ω

�ϕ · �µ ≤ C‖�µ‖ ‖∇ ∧ �ϕ‖L2(Ω)

cannot be true. Indeed, assume that 0 belongs to a bounded connected component

of R2 \ Ω. Take Γ ⊂ Ω to be any closed curve of index 1 with respect to 0, and set

�µ = �tH1�Γ and �ϕ(x) = x⊥
|x|2 . One then has∫

Ω

�ϕ · �µ = 2π ,

while

∇ ∧ �ϕ = 0

in Ω. �

From (2.12), we also have

(2.13)

∫
Ω

�ϕ · �µ ≤ ‖�µ‖√
2π

‖∇�ϕ‖L2(Ω)

since

‖∇ ∧ �ϕ‖L2(Ω) ≤
√

2‖∇�ϕ‖L2(Ω).

For every �µ ∈ M#
0 (Ω̄,R2), let

(2.14) A�µ,Ω = sup
{∫

Ω̄

�ϕ · �µ : �ϕ ∈ H1(R2;R2) and

∫
Ω

|∇�ϕ|2 ≤ 1
}

;

of course the supremum in (2.14) is achieved by some unique �ϕ ∈ H1(Ω;R2) modulo

constants; moreover, �ϕ ∈ (L∞ ∩ C)(Ω̄;R2) by Theorem 2 in [5] (when �µ is an L1

function — the case of measures is similar).

Thus we have for every �µ ∈ M#
0 (Ω̄,R2)

A�µ,Ω ≤ ‖�µ‖√
2π

.

Set

(2.15) AΩ = sup
{
A�µ,Ω : �µ ∈ M#

0 (Ω̄,R2) and ‖�µ‖ ≤ 1
}

.

39
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8 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN

Proposition 2.10. One has
1

2
√

π
< AΩ ≤ 1√

2π
.

Moreover, if Ω is a disc, then AΩ = 1√
2π

and supremum in (2.15) is achieved.

Proof. Let �µ = λ�tH1�∂B(x0, r) with ∂B(x0, r) ⊂ Ω and

�ϕ(x) =

{
(x − x0)

⊥ if |x − x0| ≤ r ,

(x − x0)
⊥ r2

|x−x0|2 if |x − x0| > r .

One then has∫
Ω

�ϕ · �µ =

∫
R2

�ϕ · �µ =
‖�µ‖
2
√

π

(∫
R2

|∇�ϕ|2
) 1

2
>

‖�µ‖
2
√

π

(∫
Ω

|∇�ϕ|2
) 1

2
,

so that AΩ > 1
2
√

π
. The inequality AΩ ≤ 1√

2π
follows immediately from (2.13).

Finally, assume Ω is a disc; without loss of generality, Ω = B(0, 1). One sets then

Γ = ∂B(0, 1), �µ = �tH1�Γ and �ϕ(x) = x⊥; immediate computations give∫
Ω

�ϕ · �µ = 2π ,

‖�µ‖ = 2π ,∫
Ω

|∇�ϕ|2 = 2π . �

We have no clue about the dependence of AΩ on Ω and whether the supremum

in (2.15) is achieved. The only information we have is

Proposition 2.11. Assume that AΩ = 1√
2π

and AΩ is achieved. Then Ω is a
disc.

There are two extreme scenarios:

Scenario 1. AΩ = 1√
2π

only when Ω is a disc.

Scenario 2. AΩ = 1√
2π

for every domain Ω ⊂ R2.

Problem 1. Decide between Scenario 1, Scenario 2 and intermediate scenarios.

Problem 2. Is it true that for every domain Ω, AΩ is achieved?

By Proposition 2.11, a positive answer to Problem 2 would lead to Scenario 1.

This scenario would be reminiscent of the situation of the balls who have the worst

best Sobolev inequalities [12].

There is a variant of Proposition 2.8 where the boundary condition �µ · �n = 0 is

replaced by the condition that �ϕ should vanish on ∂Ω. Set

M#(Ω,R2) =
{

�µ ∈ C(Ω;R2)∗ : ∀ζ ∈ C1
c (Ω),

∫
Ω

∇ζ · �µ = 0
}

.

Proposition 2.12. For every �µ ∈ M#(Ω;R2) and for every �ϕ ∈ H1
0(Ω;R2) ∩

C(Ω̄;R2), one has

(2.16)

∫
Ω

�ϕ · �µ ≤ SΩ‖�µ‖
(∫

Ω

|∇ ∧ �ϕ|2
) 1

2
,

40
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CIRCULATION INTEGRALS AND CRITICAL SOBOLEV SPACES 9

for every �ϕ ∈ H1
0(Ω) where

(2.17) SΩ = sup
{
‖u‖L2(Ω) : u ∈ BV(Ω), ‖∇u‖ ≤ 1 and

∫
Ω

u = 0
}

,

and ‖∇u‖ denotes the total mass of the measure ∇u. Moreover the constant SΩ in
(2.16) cannot be improved.

Proof. Inequality (2.16) is established as above, see also Theorem 2.1 in [5].

For the last statement, assume that for every �µ ∈ M#(Ω;R2) and for every �ϕ ∈
H1

0(Ω;R2) ∩ C(Ω̄;R2), one has∫
Ω

�ϕ · �µ ≤ A‖�µ‖
(∫

Ω

|∇ ∧ �ϕ|2
) 1

2
,

for some constant A. We claim that for every u ∈ BV(Ω) with
∫
Ω

u = 0, we have

‖u‖L2 ≤ A‖∇u‖ .

Indeed, set �µ = ∇⊥u, and choose any function �ϕ ∈ H1
0(Ω)∩C(Ω̄) such that ∇∧�ϕ = u

in Ω [1, Theorem 3]. �
Problem 3. Is the supremum in (2.17) achieved by some u ∈ BV(Ω)? Or

equivalently, does equality hold in (2.16) in the nontrivial cases?

The problem has been treated on the sphere [19] and on the unit ball [11]. For a

general domain Ω ⊂ Rn, with n ≥ 3 and when BV(Ω) and L2(Ω) are replaced by the

spaces H1(Ω) and L
2n

n−2 (Ω), an affirmative answer has been given [10, Proposition

1.2].

Remark 2.13. As is well known, there is no universal bound on SΩ, even when

replacing the constraint ‖∇u‖ ≤ 1 by the constraint ‖∇u‖L2 ≤ 1. This is related

to the eigenvalue problem for the Laplacian with Neumann boundary condition. In

the similar inequality

inf
c∈R

‖u − c‖
L

n
n−1

≤ S′
Ω‖∇u‖L1 ,

the best constant S′
Ω is proportional to a relative isoperimetric constant of Ω [14,

Theorem 3.2.3 and § 6.1.7].

A consequence of Proposition 2.12 is the inequality∫
Ω

�ϕ · �µ ≤ SΩ‖�µ‖
(∫

Ω

|∇�ϕ|2
) 1

2
,

for every �µ ∈ M#(Ω;R2) and for every �ϕ ∈ H1
0(Ω;R2) ∩ C(Ω̄;R2), since∫

Ω

|∇ ∧ �ϕ|2 ≤
∫

Ω

|∇�ϕ|2 .

By analogy with the above, for �µ ∈ M#(Ω,R2), set

(2.18) A′
�µ,Ω = sup

{∫
Ω̄

�ϕ · �µ : �ϕ ∈ H1
0(R

2;R2) and

∫
Ω

|∇�ϕ|2 ≤ 1
}

;

and

(2.19) A′
Ω = sup

{
A′

�µ,Ω : �µ ∈ M#(Ω,R2) and ‖�µ‖ ≤ 1
}

,

so that

A′
Ω ≤ SΩ .

41

Licensed to Biblio University Jussieu.  Prepared on Wed Oct  8 03:00:02 EDT 2014 for download from IP 81.194.27.167.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



10 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN

The supremum in (2.18) is uniquely achieved since M#(Ω,R2) ⊂ H−1(Ω;R2), and

the maximizer is bounded and continuous [5].

In general, we do not expect having A′
Ω = SΩ. Indeed, the maximizing vector

fields �ϕ in Proposition 2.12 need not be divergence-free.

One has

Proposition 2.14. There exists α > 0 such that for every domain Ω ⊂ R2,

A′
Ω ≥ α .

Proof. Simply take some compactly supported divergence-free measure �µ ∈
M(Ω;R2), and some compactly supported vector field �ψ ∈ C∞

c (R2;R2) such that∫
R2

�ψ · �µ �= 0. By translation and dilation, one has that

A′
Ω ≥

∫
R2

�ψ · �µ
‖�µ‖‖∇�ψ‖L2

. �

This raises the question

Problem 4. Compute infΩ A′
Ω and infΩ SΩ. Are they achieved?

In [19, Question 4.1], the question was asked whether infΩ SΩ = SB(0,1).

Remember that AΩ does not have an upper bound independent of the geometry.

If we allow Ω to be multiply connected, A′
Ω has no upper bound. On the other hand,

we do not know whether A′
Ω has an upper bound independently of the geometry

for simply connected domains.

Problem 5. Does one have

sup{A′
Ω : Ω ⊂ R2 is a simply connected domain} < ∞?

3. Higher dimensions

3.1. Inequalities for curves. Throughout this section Γ ⊂ Rn is a simple,

closed, rectifiable curve. The optimal constant in Theorem 2 is

AΓ = sup
{∫

Γ

�ϕ · �t : �ϕ ∈ C∞
c (Rn;Rn) and

∫
Rn

|∇�ϕ|n ≤ 1
}

.

As in 2d, we obtain

Proposition 3.1. There exists a unique �ϕ ∈ Ẇ1,n(Rn;Rn) modulo constants
such that ∫

Γ

�ϕ · �t = AΓ ,

‖∇�ϕ‖Ln = 1 .

The vector field �ϕ satisfies

−
n∑

i=1

∂i(|∇�ϕ|n−2∂i�ϕ) =
1

AΓ

�tH1�Γ .

In contrast with Proposition 2.1, we do not in general expect to have div �ϕ = 0

(find a counterexample) and we do not know whether �ϕ is a bounded continuous

vector field. This is an interesting open problem:
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Problem 6. Does one have �ϕ ∈ (L∞ ∩ C)(Rn;Rn). More generally, let �µ ∈
M(Rn;Rn) be a bounded measure such that div �µ = 0. From [2, 3], we know that

�µ ∈
(
Ẇ1,n(Rn;Rn)

)∗
and hence there exists a unique �ϕ ∈ Ẇ1,n(Rn;Rn) modulo

constants that solves

−
n∑

i=1

∂i(|∇�ϕ|n−2∂i�ϕ) = �µ .

Does one have �ϕ ∈ (L∞ ∩ C)(Rn;Rn)?

In two dimensions, Proposition 2.2 gives the exact value of AΓ in terms of

|Σ|, the area of the surface spanned by Γ. This is not anymore the case in higher

dimensions.

Let us examine what happens when Γ ⊂ Rn is planar, i.e., if Γ ⊂ Π where

Π ⊂ Rn is a (two-dimensional) plane. Recall that the trace on Π of a function

u ∈ Ẇ1,n(Rn) belongs to Ẇ
2
n ,n(Π) with

‖u|Π‖
Ẇ

2
n

,n(Π)
≤ C‖u‖Ẇ1,n(Rn).

Conversely, given any g ∈ Ẇ
2
n ,n(Π), there is an extension u to Rn such that

‖u‖Ẇ1,n(Rn) ≤ C‖g‖
Ẇ

2
n

,n(Π)

(one proceeds for example by successive harmonic extensions). As a consequence,

we have, when Γ ⊂ Π ⊂ Rn,

(3.1) AΓ � sup
{∫

Γ

�ϕ · �t : �ϕ ∈ C∞
c (Π;R2) and ‖�ϕ‖

Ẇ
2
n

,n(Π)
≤ 1
}

,

Since Ẇ1,2(R2;R2) ⊂ Ẇ
2
n ,n(R2;R2) [15, Theorem 2.2.3], we see, by Proposi-

tion 2.2, that

(3.2) |Σ| 1
2 ≤ CAΓ ,

for every planar curve Γ ⊂ Rn, where Σ ⊂ Π is the surface spanned by Γ. This

leads to the problem

Problem 7. Let Γ ⊂ Rn be a simple, closed, rectifiable curve, and let |Σ| be

the area of an area-minizing surface spanned by Γ. Does (3.2) hold?

On the other hand, one cannot find an upper bound on AΓ in terms of |Σ|:

Proposition 3.2. There exists a sequence of planar surfaces Σk and planar
curves Γk = ∂Σk such that, as k → ∞,

AΓk
→ ∞

while
|Σk| ≤ C .

In view of (3.1), the conclusion follows from

Lemma 3.3. If p > 2 and s = 2/p, then there exists a sequence of planar
surfaces Σk and planar curves Γk = ∂Σk, and a sequence of vector fields �ϕk ∈
C∞

c (R2;R2) such that, as k → ∞,∫
Γk

�ϕk · �t → ∞
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12 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN

while
|Σk| ≤ C

and
‖�ϕk‖Ws,p ≤ C .

Proof. Consider ψ ∈ C∞
c (R2) and Γ = ∂Σ ⊂ R2 such that∫

Γ

ψ t2 �= 0 ,

where t2 = �t · �e2. Set

Tk(x1, x2) = (
1

k
x1, kx2) .

and define

Γk = Tk(Γ) ,

Σk = Tk(Σ) ,

�ψk = k−s�e2(ψ ◦ T−1
k ) .

One has ∫
Γk

�ψk · �tk = k1−s

∫
Γ

ψ t2 → ∞ .

On the other hand, one has

|Σk| = |Σ| ,

and

‖�ψε‖Ẇs,p ≤ C‖ψ‖Ẇs,p . �

Let Γ ⊂ Rn be a simple closed rectifiable curve. Recall that (see [2, 18])∫
Γ

�ϕ · �t ≤ Cs,p|Γ| ‖�ϕ‖Ẇs,p

for every 0 < s < n and sp = n. Recall also that (see [7, 4.2.10])

|Γ| ≥ C|Σ| 1
2 ,

where |Σ| is the area of an area-minimizing surface spanned by Γ. A natural

question is whether for every �ϕ ∈ Ẇs,p(Rn;Rn),

(3.3)

∫
Γ

�ϕ · �t ≤ Cs,p|Σ| 1
2 ‖�ϕ‖Ẇs,p ,

with 0 < s < n and sp = n. From Lemma 3.3, we deduce that (3.3) fails when

p > 2. We ask the question whether (3.3) holds when p = 2 and s = n
2 :

Problem 8. Does (3.3) holds when p = 2 and s = n
2 ?

The final question concerning the inequality for curves is finding the optimal

constant among all curves:

Problem 9. When n ≥ 3, is

A = sup
{
AΓ : Γ ⊂ Rn is a closed rectifiable curve

}
attained? By which curve?

44
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The answer to Problem 9 is open even when Γ is a planar curve of Rn, n ≥ 3.

There are numerous variants of Problem 9. In particular, one can define

ÃΓ = sup
{∫

Γ

�ϕ · �t : �ϕ ∈ C∞
c (Rn;Rn) and

∫
Rn

|∇ ∧ �ϕ|n ≤ 1
}

,

or one could work with different norms on Ẇ1,n(Rn;Rn), or even on Ẇs,p(Rn;Rn),

with 0 < s < n and sp = n.

3.2. Inequalities for measures. As in two dimensions, we can also consider

the relaxed problem with measures. When �µ is a finite vector measure such that

div �µ = 0, define

A�µ = sup
{∫

R2
�ϕ · �µ : �ϕ ∈ C∞

c (Rn;Rn) and ‖∇�ϕ‖Ln ≤ 1
}

.

As explained in [2] and in Remark 2.6, the optimal constants in Theorems 1

and 2 are the same, i.e.

Proposition 3.4. One has

A = sup
{

A�µ : �µ is a measure,div �µ = 0 and ‖�µ‖ ≤ 1
}

.

In view of Proposition 3.4, Problem 9 can be relaxed to

Problem 10. Is the supremum in Proposition 3.4 attained? By what measure?

The advantage of the formulation of Problem 10 versus Problem 9, is that while

Γ was taken among closed curves, �µ is taken in the vector space of divergence-free

measures. One could then hope that some kind of concentration-compactness could

provide the existence of an optimizer. The divergence-free condition however is

quite rigid for this kind of approach.

In two dimensions, the maximizing measures are integrals along circles. In

higher dimensions, we ask

Problem 11. Let �µ be a maximizing measure in Proposition 3.4 (assuming

that the supremum is achived). Is �µ an integral along a curve?

A partial answer is given by

Proposition 3.5. If �µ achieves the supremum of Proposition 3.4, then �µ is an
extremal point of the unit ball in M#(Rn;Rn).

Proposition 3.5 means that maximizing measures are atomic, i.e., they do not

have any nontrivial decomposition preserving the mass into divergence-free mea-

sures. One might be tempted to claim that atomic divergence-free measures are

circulation integrals. However, as explained by Smirnov [16], there are divergence-

free atomic measure that are not circulation integrals: Consider for k ≥ 2 a k–

dimensional torus Tk and a constant vector field �v on Tk such that the equation

ẋ = �v does not have periodic solutions. If Φ : Tk → Rn maps Tk on Θ and �v on
�ϑ, one has that �µ defined by ∫

Rn

�ϕ · �µ =

∫
Θ

�ϕ · �ϑ

is atomic but is clearly not a circulation integral.
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14 HAÏM BREZIS AND JEAN VAN SCHAFTINGEN

Proof of Proposition 3.5. Since one has clearly ‖�µ‖ = 1, assume by con-

tradiction that �µ = λ�µ1 + (1 − λ)�µ2, where λ ∈ (0, 1), �µ1, �µ2 ∈ M#(Rn;Rn),

‖�µi‖ = 1 and �µi �= �µ. Let �ϕ ∈ Ẇ1,n(Rn;Rn) such that ‖∇�ϕ‖Ln = 1 and∫
Rn

�ϕ · �µ = A�µ .

Because �ϕ is a maximizer for A�µ,

−
n∑

i=1

∂i(|∇�ϕ|n−2∂i�ϕ) =
�µ

A�µ
�= �µi

A�µi

.

Therefore, �ϕ cannot be a maximizer for A�µi
, and∫

Rn

�ϕ · �µi < A�µ1 ,

whence

A = A�µ =

∫
Rn

�ϕ · �µ = λ

∫
Rn

�ϕ · �µ1 + (1 − λ)

∫
Rn

�ϕ · �µ2

< λA�µ1 + (1 − λ)A�µ1 ≤ A ,

which is a contradiction. �
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