Reduced measures on the boundary

Haïm Brezisa,b,∗, Augusto C. Poncec

aLaboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boîte courrier 187, 75252 Paris Cedex 05, France
bDepartment of Mathematics, Rutgers University, Hill Center, Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854, USA
cInstitute for Advanced Study, Princeton, NJ 08540, USA

Received 7 December 2004; accepted 7 December 2004
Communicated by H. Brezis
Available online 8 February 2005

Abstract

We study the existence of solutions of the nonlinear problem

\[
\begin{align*}
-\Delta u + g(u) &= 0 \quad \text{in } \Omega, \\
u &= \mu \quad \text{on } \partial \Omega,
\end{align*}
\]

where μ is a bounded measure and $g : \mathbb{R} \to \mathbb{R}$ is a nondecreasing continuous function with $g(t) = 0$, $\forall t \leq 0$. Problem (0.1) admits a solution for every $\mu \in L^1(\partial \Omega)$, but this need not be the case when μ is a general bounded measure. We introduce a concept of reduced measure μ^* (in the spirit of Brezis et al. (Ann. Math. Stud., to appear)); this is the “closest” measure to μ for which (0.1) admits a solution.

© 2004 Elsevier Inc. All rights reserved.

MSC: 31B35; 35J60

Keywords: Elliptic equations; Reduced measures; Boundary value problems

∗ To appear in J. Funct. Anal.
∗ Corresponding author. Université Pierre et Marie Curie, Laboratoire Jacques-Louis Lions, B.C. 187, 4, place Jussieu, 75252 Paris cedex 05, France. Fax: +33 01 44 27 72 00.

E-mail addresses: brezis@ccr.jussieu.fr, brezis@math.rutgers.edu (H. Brezis), augponce@math.ias.edu (A.C. Ponce).

0022-1236/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
1. Introduction

Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a smooth bounded domain. Let $g : \mathbb{R} \to \mathbb{R}$ be a continuous, nondecreasing function such that $g(0) = 0$. In this paper, we are interested in the problem

$$
\begin{cases}
-\Delta u + g(u) = 0 & \text{in } \Omega, \\
u = \mu & \text{on } \partial \Omega,
\end{cases}
$$

(1.1)

where μ is a bounded measure on $\partial \Omega$. The right concept of weak solution of (1.1) is the following:

$$
\begin{cases}
u \in L^1(\Omega), \ g(u)\rho_0 \in L^1(\Omega) \text{ and} \\
-\int_{\Omega} u\Delta \zeta + \int_{\Omega} g(u)\zeta = -\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} \ d\mu \ \forall \zeta \in C^2_0(\overline{\Omega}),
\end{cases}
$$

(1.2)

where $\rho_0(x) = d(x, \partial \Omega)$, $\forall x \in \Omega$, $\frac{\partial}{\partial n}$ denotes the derivative with respect to the outward normal of $\partial \Omega$, and $C^2_0(\overline{\Omega}) = \{\zeta \in C^2(\overline{\Omega}); \zeta = 0 \text{ on } \partial \Omega\}$.

If u is a solution of (1.1), then $u \in W^{2,p}_{\text{loc}}(\Omega)$, $\forall p < \infty$ (see [3, Theorem 5]).

It has been proved by Brezis (1972, unpublished; see [15]) that (1.1) admits a unique weak solution when μ is any L^1-function (for a general nonlinearity g). When g is a power, the study of (1.1) for measures was initiated by Gmira–Véron [15] (in the same spirit as [1]). They proved that if $g(t) = |t|^{p-1}t$ and $1 < p < \frac{N+1}{N-1}$, then (1.1) has a solution for any measure μ. They also showed that if $p \geq \frac{N+1}{N-1}$ and $\mu = \delta_a$, $a \in \partial \Omega$, then (1.1) has no solution. The set of measures μ for which (1.1) has a solution has been completely characterized when $p \geq \frac{N+1}{N-1}$. In this case, (1.1) has a solution if and only if $\mu(A) = 0$ for every Borel set $A \subset \partial \Omega$ such that $C_{2/p,p'}(A) = 0$, where $C_{2/p,p'}$ denotes the Bessel capacity on $\partial \Omega$ associated to $W^{2/p,p'}$. This result was established by Le Gall [17] (for $p = 2$) and by Dynkin–Kuznetsov [12] (for $p < 2$) using probabilistic tools and by Marcus–Véron [20] (for $p > 2$) using purely analytical methods; see also Marcus–Véron [21] for a unified approach for any $p \geq \frac{N+1}{N-1}$. We refer the reader to [18,19,22] for other related results.

Our goal in this paper is to develop for (1.1) the same program as in [4] for the problem

$$
\begin{cases}
-\Delta u + g(u) = \lambda & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
$$

(1.3)

where λ, in this case, is a measure in Ω. We shall analyze the nonexistence mechanism behind (1.1) for a general nonlinearity g. In [4] we have shown that the Newtonian
(H^1) capacity in \(\Omega \), \(\text{cap}_{H^1} \), plays a major role in the study of (1.3); one of the main results there asserts that (1.3) has a solution for every \(g \) if and only if \(\lambda(E) = 0 \) for every Borel set \(E \subset \Omega \) such that \(\text{cap}_{H^1}(E) = 0 \). For problem (1.1), the analogous quantity is the Hausdorff measure \(\mathcal{H}^{N-1} \) on \(\partial\Omega \) (i.e., \((N-1)\)-dimensional Lebesgue measure on \(\partial\Omega \)). In fact, many of the results in [4] remain valid provided one replaces in the statements the \(H^1 \)-capacity by the \((N-1)\)-Hausdorff measure. Some of the proofs, however, have to be substantially modified.

Concerning the function \(g \) we will assume throughout the rest of the paper that \(g : \mathbb{R} \to \mathbb{R} \) is continuous, nondecreasing, and that
\[
g(t) = 0 \quad \forall t \leq 0. \tag{1.4}
\]

The space of bounded measures on \(\partial\Omega \) is denoted by \(\mathcal{M}(\partial\Omega) \) and is equipped with the standard norm
\[
\|\mu\|_{\mathcal{M}} = \sup \left\{ \int_{\partial\Omega} \phi \, d\mu; \, \phi \in C(\partial\Omega) \text{ and } \|\phi\|_{L^\infty} \leq 1 \right\}.
\]

By a (weak) solution \(u \) of (1.1) we mean that (1.2) holds. A (weak) subsolution of (1.1) is a function \(v \) satisfying
\[
\begin{cases}
 v \in L^1(\Omega), \quad g(v)\rho_0 \in L^1(\Omega) \quad \text{and} \\
 -\int_{\Omega} v\Delta \zeta + \int_{\Omega} g(v)\zeta \leq -\int_{\partial\Omega} \frac{\partial \zeta}{\partial n} \, d\mu \quad \forall \zeta \in C_0^2(\overline{\Omega}), \ \zeta \geq 0 \quad \text{in } \Omega.
\end{cases} \tag{1.5}
\]

We will say that \(\mu \in \mathcal{M}(\partial\Omega) \) is a good measure if (1.1) admits a solution. If \(\mu \) is a good measure, then Eq. (1.1) has exactly one solution \(u \) (see [20]; although this result is stated there when \(g \) is a power, the proof remains unchanged for a general nonlinearity \(g \)). We denote by \(\mathcal{G} \) the set of good measures (relative to \(g \)); when we need to make explicit the dependence on \(g \) we shall write \(\mathcal{G}(g) \). Recall that \(L^1 \)-functions on \(\partial\Omega \) belong to \(\mathcal{G}(g) \) for every \(g \).

In the sequel we denote by \((g_k)\) a sequence of functions \(g_k : \mathbb{R} \to \mathbb{R} \) which are continuous, nondecreasing and satisfy the following conditions:
\[
0 \leq g_1(t) \leq g_2(t) \leq \cdots \leq g(t) \quad \forall t \in \mathbb{R}, \tag{1.6}
\]
\[
g_k(t) \to g(t) \quad \forall t \in \mathbb{R}. \tag{1.7}
\]

We assume in addition that each \(g_k \) has subcritical growth, i.e., that there exist \(C > 0 \) and \(p < \frac{N+1}{N-1} \) (possibly depending on \(k \)) such that
\[
g_k(t) \leq C(|t|^p + 1) \quad \forall t \in \mathbb{R}. \tag{1.8}
\]

A good example to keep in mind is \(g_k(t) = \min \{ g(t), k \}, \forall t \in \mathbb{R} \).
Since (1.8) holds, then for every $\mu \in \mathcal{M}(\partial \Omega)$ there exists a unique solution u_k of
\[
\begin{aligned}
-\Delta u_k + g_k(u_k) &= 0 \quad \text{in } \Omega, \\
 u_k &= \mu \quad \text{on } \partial \Omega.
\end{aligned}
\] (1.9)

The convergence of the sequence (u_k) follows from the next result, established in [4, Section 9.3]:

Theorem 1. As $k \uparrow \infty$, $u_k \downarrow u^*$ in $L^1(\Omega)$, with $g(u^*)\rho_0 \in L^1(\Omega)$, and u^* satisfies
\[
\begin{aligned}
-\Delta u^* + g(u^*) &= 0 \quad \text{in } \Omega, \\
 u^* &= \mu^* \quad \text{on } \partial \Omega
\end{aligned}
\] (1.10)

for some $\mu^* \in \mathcal{M}(\partial \Omega)$ such that $\mu^* \leq \mu$. In addition, u^* is the largest subsolution of (1.1).

Remark 1. An alternative approximation mechanism consists of keeping g fixed and considering a sequence of functions $\mu_k \in L^1(\partial \Omega)$ weakly converging to μ. Let v_k be the solution of (1.1) associated to μ_k. It would be interesting to prove that $v_k \rightarrow u^*$ in $L^1(\Omega)$ for some appropriate choices of sequences (μ_k) (for measures in Ω, see [4, Theorem 11]).

An important consequence of Theorem 1 is that u^*—and thus μ^*—does not depend on the choice of the truncating sequence (g_k). We call μ^* the reduced measure associated to μ. If g has subcritical growth, then $\mu^* = \mu$ for every $\mu \in \mathcal{M}(\partial \Omega)$ (see Example 1 below). However, if g has critical or supercritical growth, then μ^* might be different from μ. In this case, μ^* depends both on the measure μ and on the nonlinearity g.

By definition, μ^* is a good measure $\leq \mu$ (since (1.10) has a solution u^*). One of the main properties satisfied by μ^* is the following:

Theorem 2. The reduced measure μ^* is the largest good measure $\leq \mu$.

A consequence of Theorem 2 is

Corollary 1. There exists a Borel set $\Sigma \subset \partial \Omega$ with $\mathcal{H}^{N-1}(\Sigma) = 0$ such that
\[
(\mu - \mu^*)(\partial \Omega \setminus \Sigma) = 0.
\] (1.11)

To see this, let μ_a and μ_s denote, respectively, the absolutely continuous and the singular parts of μ with respect to \mathcal{H}^{N-1}. Since $\mu_a \in L^1(\partial \Omega)$, then μ_a is good. Thus, $\mu_a - \mu_s^-$ is also a good measure (see Proposition 1 below). We then conclude from
Theorem 2 that $\mu_a - \mu_s^- \leq \mu^* \leq \mu$. Hence,

$$0 \leq \mu - \mu^* \leq \mu - \mu_a + \mu_s^- = \mu_s^+$$

and so $\mu - \mu^*$ is concentrated on a set of zero \mathcal{H}^{N-1}-measure.

Remark 2. Corollary 1 is the “best one can say” about $\mu - \mu^*$ for a general nonlinearity g. In fact, given any measure $\mu \geq 0$ concentrated on a set of zero \mathcal{H}^{N-1}-measure, there exists some g such that $\mu^* = 0$ (see Theorem 7 below). In particular, $\mu - \mu^*$ can be any nonnegative measure concentrated on a set of zero \mathcal{H}^{N-1}-measure in $\partial \Omega$.

It is not difficult to see that if $\mu \in \mathcal{M}(\partial \Omega)$ and $\mu^+ \in L^1(\partial \Omega)$, then $\mu \in \mathcal{G}(g)$ for every g (see Proposition 5 below). The converse is also true:

Theorem 3. Let $\mu \in \mathcal{M}(\partial \Omega)$. If $\mu \in \mathcal{G}(g)$ for every g, then $\mu^+ \in L^1(\partial \Omega)$.

A key ingredient in the proof of Theorem 3 is the following:

Theorem 4. For every compact set $K \subset \partial \Omega$, we have

$$\mathcal{H}^{N-1}(K) = \inf \left\{ \int_{\Omega} | \nabla \zeta |; \zeta \in C^2_0(\overline{\Omega}), -\frac{\partial \zeta}{\partial n} \geq 1 \text{ in some neighborhood of } K \right\}.$$

Remark 3. As we have already pointed out, the measure \mathcal{H}^{N-1} plays here the same role as cap_{H^1} in [4]. There, for every compact set $K \subset \Omega$ we showed that

$$\text{cap}_{H^1}(K) = \frac{1}{2} \inf \left\{ \int_{\Omega} | \nabla \varphi |; \varphi \in C^\infty_c(\Omega), \varphi \geq 1 \text{ in some neighborhood of } K \right\},$$

which is the counterpart of Theorem 4.

We now address a different question. Could it happen that, for some fixed g_0, the only good measures μ are those satisfying $\mu^+ \in L^1(\partial \Omega)$? The answer is negative. In fact,

Theorem 5. For any g, there exists a good measure $\mu \geq 0$ such that $\mu \notin L^1(\partial \Omega)$.

A natural question is to combine the results of [4] with those in the present paper, i.e., consider the problem

$$\begin{cases}
-\Delta u + g(u) = \lambda & \text{in } \Omega, \\
u = \mu & \text{on } \partial \Omega,
\end{cases}$$

(1.12)
where \(\lambda \in \mathcal{M}(\Omega) \) and \(\mu \in \mathcal{M}(\partial\Omega) \). We say that the pair \((\lambda, \mu)\) is good if (1.12) has a solution in the usual weak sense (with \(g(u)\rho_0 \in L^1(\Omega) \)). Surprisingly, the problem “uncouples”. More precisely,

Theorem 6. Let \(\lambda \in \mathcal{M}(\Omega) \) and \(\mu \in \mathcal{M}(\partial\Omega) \). The pair \((\lambda, \mu)\) is good if and only if \(\lambda \) is a good measure for (1.3) and \(\mu \) is a good measure for (1.1). Furthermore,
\[
(\lambda, \mu)^* = (\lambda^*, \mu^*).
\]

This paper is organized as follows. In the next section we prove Theorem 2. In Section 3, we present several properties satisfied by the mapping \(\mu \mapsto \mu^* \) and by the set of good measures \(\mathcal{G} \). Theorem 4 will be established in Section 4. We show in Section 5 that for every singular measure \(\mu \geq 0 \) there exists some \(g \) such that \(\mu^* = 0 \); we then deduce Theorem 3 as a corollary. Theorem 5 will be proved in Section 6. In Section 7, we give the explicit value of \(\mu^* \) in the case where \(g(t) = t^p, t \geq 0 \), for any \(p > 1 \). In the last section we present the proof of Theorem 6.

Some of the results in this paper were announced in [4].

2. Proof of Theorem 2

The main ingredient in the proof of Theorem 2 is the following:

Lemma 1. Given \(f \in L^1(\Omega; \rho_0 \, dx) \), \(\lambda \in \mathcal{M}(\Omega) \) and \(\mu \in \mathcal{M}(\partial\Omega) \), let \(w \in L^1(\Omega) \) be the unique solution of

\[
- \int_{\Omega} w \Delta \zeta = \int_{\Omega} f \zeta + \int_{\Omega} \zeta \, d\lambda - \int_{\partial\Omega} \frac{\partial \zeta}{\partial n} \, d\mu \quad \forall \zeta \in C_0^2(\Omega).
\]

If \(w \geq 0 \) a.e. in \(\Omega \), then \(\mu \geq 0 \) on \(\partial\Omega \).

This result is fairly well-known. We present a proof for the convenience of the reader. For measures in \(\Omega \), the counterpart of Lemma 1 is the “Inverse” maximum principle of [8] (see [4]).

Proof of Lemma 1. Given \(\phi \in C^\infty(\partial\Omega) \), \(\phi \geq 0 \) on \(\partial\Omega \), let \(\zeta \in C_0^2(\overline{\Omega}) \), \(\zeta > 0 \) in \(\Omega \), be such that \(-\frac{\partial \zeta}{\partial n} = \phi \) on \(\partial\Omega \). Let \(\delta_j \downarrow 0 \) be a sequence of regular values of \(\zeta \). For each \(j \geq 1 \), set \(\zeta_j = \zeta - \delta_j \) and \(\omega_j = [\zeta > \delta_j] \). In particular, \(\zeta_j \in C_0^2(\overline{\omega_j}) \), \(\zeta_j \geq 0 \) in \(\omega_j \), and \(-\frac{\partial \zeta_j}{\partial n} \geq 0 \) on \(\partial\omega_j \). By standard elliptic estimates (see [25]), we know that \(w \in W^{1,p}_{\text{loc}}(\Omega) \), \(\forall p < \frac{N}{N-1} \); thus, \(w \) has a nonnegative \(L^1 \)-trace on \(\partial\omega_j \). Therefore,

\[
- \int_{\omega_j} w \Delta \zeta_j = \int_{\omega_j} f \zeta_j + \int_{\omega_j} \zeta_j \, d\lambda - \int_{\partial\omega_j} \frac{\partial \zeta_j}{\partial n} \, w \geq \int_{\omega_j} f \zeta_j + \int_{\omega_j} \zeta_j \, d\lambda.
\]
As $j \to \infty$, we conclude that

$$\int_{\Omega} w \Delta \zeta + \int_{\Omega} f \zeta + \int_{\Omega} \zeta \, d\lambda \leq 0.$$

Thus,

$$\int_{\partial \Omega} \phi \, d\mu = -\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} \, d\mu = -\left(\int_{\Omega} w \Delta \zeta + \int_{\Omega} f \zeta + \int_{\Omega} \zeta \, d\lambda \right) \geq 0.$$

Since $\phi \geq 0$ was arbitrary, we conclude that $\mu \geq 0$. □

We can now establish Theorem 2:

Proof of Theorem 2. Assume ν is a good measure $\leq \mu$. Let ν denote the solution of

$$\begin{cases}
-\Delta \nu + g(\nu) = 0 & \text{in } \Omega, \\
\nu = \nu & \text{on } \partial \Omega.
\end{cases}$$

Since $\nu \leq \mu$, it follows that ν is a subsolution of (1.1). Thus, by Theorem 1, $\nu \leq u^*$ a.e. Applying Lemma 1 to the function $w = u^* - \nu$, we then conclude that $u^* - \nu \geq 0$. □

3. Some properties of G and μ^*

Here is a list of properties which can be established exactly as in [4]. For this reason, we shall omit their proofs.

Proposition 1. Suppose μ_1 is a good measure. Then, any measure $\mu_2 \leq \mu_1$ is also a good measure.

Proposition 2. If μ_1, μ_2 are good measures, then so is $\text{sup} \{\mu_1, \mu_2\}$.

Proposition 3. The set G of good measures is convex.

Proposition 4. We have

$$G + L^1(\partial \Omega) \subset G.$$

Proposition 5. Let $\mu \in \mathcal{M}(\partial \Omega)$. Then, $\mu \in G$ if and only if $\mu^+ \in G$.

Proposition 6. Let $\mu \in \mathcal{M}(\partial \Omega)$. Then, $\mu \in G$ if and only if $\mu_s \in G$, where μ_s denotes the singular part of μ with respect to \mathcal{H}^{N-1}.
Proposition 7. Let \(\mu \in \mathcal{M}(\partial \Omega) \). Then, \(\mu \in \mathcal{G} \) if and only if there exist functions \(f_0 \in L^1(\Omega; \rho_0 \, dx) \) and \(v_0 \in L^1(\Omega) \) such that \(g(v_0) \in L^1(\Omega; \rho_0 \, dx) \) and
\[
\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} \, d\mu = \int_{\Omega} f_0 \zeta + \int_{\Omega} v_0 \Delta \zeta \quad \forall \zeta \in C^2_0(\overline{\Omega}).
\] (3.1)

Proposition 7 is the analog of a result of Gallouët–Morel [14]; see also [4, Theorem 6].

Proposition 8. For every measure \(\mu \), we have
\[
0 \leq \mu - \mu^* \leq \mu^+. \tag{3.2}
\]

Proposition 9. For every measure \(\mu \), we have
\[
(\mu^*)^+ = (\mu^+)^* \quad \text{and} \quad (\mu^*)^- = \mu^- \tag{3.3}
\]

Proposition 10. Let \(\mu \in \mathcal{M}(\partial \Omega) \). Then,
\[
\|\mu - \mu^*\|_{\mathcal{M}} = \min_{\nu \in \mathcal{G}} \|\mu - \nu\|_{\mathcal{M}}. \tag{3.4}
\]

Moreover, \(\mu^* \) is the unique good measure which achieves the minimum in (3.4).

Proposition 11. Let \(\mu \in \mathcal{M}(\partial \Omega) \) and \(h \in L^1(\Omega; \rho_0 \, dx) \). The problem
\[
\begin{cases}
-\Delta v + g(v) = h & \text{in } \Omega, \\
v = \mu & \text{on } \partial \Omega,
\end{cases}
\tag{3.5}
\]
has a solution if and only if \(\mu \in \mathcal{G}(g) \).

By a solution \(v \) of (3.5) we mean that \(v \in L^1(\Omega) \) satisfies \(g(v) \in L^1(\Omega; \rho_0 \, dx) \) and
\[
-\int_{\Omega} v \Delta \zeta + \int_{\Omega} g(v) \zeta = \int_{\Omega} h \zeta - \int_{\partial \Omega} \frac{\partial \zeta}{\partial n} \, dv \quad \forall \zeta \in C^2_0(\overline{\Omega}). \tag{3.6}
\]

In view of Lemma 2 below such a solution, whenever it exists, is unique.

The proofs of Propositions 7 and 11 require an extra argument. We shall present a proof based on Lemmas 2–6 below.

Given \(h \in L^1(\Omega; \rho_0 \, dx) \), let \(\mathcal{A}_h(h) \) denote the set of measures \(\mu \) for which (3.5) has a solution. By Lemma 2 below, \(\mathcal{A}_h(h) \) is closed with respect to the strong topology in
Our goal is to show that $A_g(h)$ is independent of h and $A_g(h) = G(g)$, $\forall h$. In the sequel, we shall denote by ζ_0 the solution of

$$\begin{cases}
-\Delta \zeta_0 = 1 & \text{in } \Omega, \\
\zeta_0 = 0 & \text{on } \partial \Omega.
\end{cases}$$

We start with the following:

Lemma 2. Let $h_i \in L^1(\Omega; \rho_0 \,dx)$, $i = 1, 2$. Given $\mu_i \in A_g(h_i)$, let v_i denote the solution of (3.5) corresponding to h_i, μ_i. Then,

$$\int_{\Omega} |v_1 - v_2| + \int_{\Omega} |g(v_1) - g(v_2)| \zeta_0 \leq \int_{\partial \Omega} |h_1 - h_2| \zeta_0 + C \int_{\partial \Omega} |\mu_1 - \mu_2|.$$ (3.7)

Proof. Apply Lemma 1.5 in [20].

Lemma 3. Assume g satisfies

$$g(t) \leq C(|t|^p + 1) \quad \forall t \in \mathbb{R},$$

for some $p < \frac{N+1}{N-1}$. Then, for every $h \in L^1(\Omega; \rho_0 \,dx)$, we have $A_g(h) = \mathcal{M}(\partial \Omega)$.

Proof. This result is established in [15] for $h = 0$. The same proof there also applies for $h \in L^\infty(\Omega)$. The general case when $h \in L^1(\Omega; \rho_0 \,dx)$ then follows by density using Lemma 2 above.

Given $\mu \in \mathcal{M}(\partial \Omega)$, let v_k be the solution of

$$\begin{cases}
-\Delta v_k + g_k(v_k) = h & \text{in } \Omega, \\
v_k = \mu & \text{on } \partial \Omega,
\end{cases}$$

where (g_k) is a sequence of functions satisfying (1.6)–(1.8).

Lemma 4. Given $\mu \in A_g(h)$, let v denote the solution of (3.5). Assume v_k satisfies (3.9). Then,

$$v_k \to v \quad \text{in } L^1(\Omega) \quad \text{and} \quad g_k(v_k) \to g(v) \quad \text{in } L^1(\Omega; \rho_0 \,dx).$$ (3.10)

Proof. The lemma follows by mimicking the proof of Proposition 3 in [4] and using Lemma 2 above.

Lemma 5. Let $h_1, h_2 \in L^1(\Omega; \rho_0 \,dx)$. If $h_1 \leq h_2$ a.e., then $A_g(h_1) \supset A_g(h_2)$.
Proof. Let \(\mu \in \mathcal{A}_g(h_2) \) and let \((g_k) \) be a sequence satisfying (1.6)–(1.8). Denote by \(v_{i,k}, \ i = 1, 2, \) the solution of
\[
\begin{cases}
-\Delta v_{i,k} + g_k(v_{i,k}) = h_i & \text{in } \Omega, \\
v_{i,k} = \mu & \text{on } \partial \Omega.
\end{cases}
\]
Let \(v_i \) be such that \(v_{i,k} \downarrow v_i \) in \(L^1(\Omega) \) as \(k \uparrow \infty \). By Lemma 4 above, we have
\[g_k(v_{2,k}) \to g(v_2) \text{ in } L^1(\Omega; \rho_0 \, dx). \]
By [4, Corollary B.2], \(h_1 \leq h_2 \) a.e. implies \(v_{1,k} \leq v_{2,k} \) a.e.; thus, \(g_k(v_{1,k}) \leq g_k(v_{2,k}) \) a.e. It then follows by dominated convergence that
\[g_k(v_{1,k}) \to g(v_1) \text{ in } L^1(\Omega; \rho_0 \, dx). \]
Therefore, \(\mu \in \mathcal{A}_g(h_1) \). This concludes the proof of the lemma. \(\square \)

Lemma 6. Assume \(\mu \) satisfies (3.1) for some \(f_0 \in L^1(\Omega; \rho_0 \, dx) \) and \(v_0 \in L^1(\Omega) \), with \(g(v_0) \in L^1(\Omega; \rho_0 \, dx) \). Then, problem (3.5) has a solution for every \(h \in L^1(\Omega; \rho_0 \, dx) \).

Proof. Fix \(\varepsilon < 1 \). Given \(m \geq 1 \), let \(M_m = \frac{m\|\xi_0\|_\infty}{1-\varepsilon} \). Since
\[\varepsilon v_0 + m\xi_0 \leq v_0 \text{ a.e. on the set } [v_0 \geq M_m], \]
we have \(g(\varepsilon v_0 + m\xi_0) \in L^1(\Omega; \rho_0 \, dx) \); moreover,
\[-\int_\Omega (\varepsilon v_0 + m\xi_0) \Delta \zeta = \int_\Omega (\varepsilon f_0 + m)\zeta - \varepsilon \int_{\Omega \cap \partial} \frac{\partial \zeta}{\partial n} \, d\mu \quad \forall \zeta \in C^2_0(\overline{\Omega}). \]
Thus, \(\varepsilon \mu \in \mathcal{A}_g(\tilde{h}_m) \), where
\[\tilde{h}_m = \varepsilon f_0 + m + g(\varepsilon v_0 + m\xi_0). \]
Given \(h \in L^1(\Omega; \rho_0 \, dx) \), let
\[h_m = \min \{h, \tilde{h}_m\}. \]
Since \(h_m \leq \tilde{h}_m \) a.e., it follows from Lemma 5 that \(\varepsilon \mu \in \mathcal{A}_g(h_m) \), \(\forall m \geq 1 \). Note that \(h_m \to h \) in \(L^1(\Omega; \rho_0 \, dx) \) as \(m \to \infty \); thus, by Lemma 2 we get \(\varepsilon \mu \in \mathcal{A}_g(h) \). Since this holds true for every \(\varepsilon < 1 \), we must have \(\mu \in \mathcal{A}_g(h) \). \(\square \)
Proof of Proposition 7. Clearly, if μ is a good measure, then (3.1) holds. Conversely, assume μ satisfies (3.1) for some v_0, f_0. It then follows from the previous lemma that (3.5) has a solution for $h = 0$. In other words, μ is good. □

Proof of Proposition 11. If μ is good, then (3.1) holds. Thus, by Lemma 6 above we conclude that problem (3.5) has a solution for every $h \in L^1(\Omega; \rho_0 \, dx)$. Conversely, if (3.5) has a solution for some $h \in L^1(\Omega; \rho_0 \, dx)$, then (3.1) holds. Applying Proposition 7, we deduce that μ is good. □

4. Proof of Theorem 4

Given a compact set $K \subset \partial \Omega$, we define the capacity

$$ c_{\partial \Omega}(K) = \inf \left\{ \int_{\Omega} |\Delta \zeta|; \zeta \in C^2_0(\Omega), -\frac{\partial \zeta}{\partial n} \geq 1 \text{ in some neighborhood of } K \right\}. $$

In order to establish Theorem 4 we will need a few preliminary results. We start with

Lemma 7. Let $K \subset \partial \Omega$ be a compact set. Given $\varepsilon > 0$, there exists $\psi \in C^2_0(\Omega)$ such that $\psi \geq 0$ in Ω, $-\frac{\partial \psi}{\partial n} \geq 1$ in some neighborhood of K and

$$ \int_{\Omega} |\Delta \psi| \leq c_{\partial \Omega}(K) + \varepsilon. $$

(4.1)

Proof. Given $\varepsilon > 0$, let $\zeta \in C^2_0(\Omega)$ be such that $-\frac{\partial \zeta}{\partial n} \geq 1$ in some neighborhood of K and

$$ \int_{\Omega} |\Delta \zeta| \leq c_{\partial \Omega}(K) + \frac{\varepsilon}{2}. $$

(4.2)

We now extend ζ as a C^2-function in the whole space \mathbb{R}^N. We then let

$$ f_k(x) = \int_{\mathbb{R}^N} \rho_k(x - y) |\Delta \zeta(y)| \, dy \quad \forall x \in \Omega, $$

where (ρ_k) is any sequence of nonnegative modifiers such that $\text{supp} \rho_k \subset B_{1/k}$, $\forall k \geq 1$. As $k \to \infty$, we have

$$ f_k \to |\Delta \zeta| \quad \text{uniformly in } \Omega. $$

(4.3)
Let \(v_k \in C^2_0(\Omega) \) be the solution of
\[
\begin{cases}
-\Delta v_k = f_k & \text{in } \Omega, \\
v_k = 0 & \text{on } \partial \Omega.
\end{cases}
\]
Since \(f_k \geq 0 \), we have \(v_k \geq 0 \) in \(\Omega \). Moreover, (4.3) implies
\[
\frac{\partial v_k}{\partial n} \to \frac{\partial v}{\partial n} \text{ uniformly on } \partial \Omega,
\]
where \(v \) is the solution of
\[
\begin{cases}
-\Delta v = \vert \Delta \zeta \vert & \text{in } \Omega, \\
v = 0 & \text{on } \partial \Omega.
\end{cases}
\]
By the maximum principle, \(\zeta \leq v \) in \(\Omega \). Since \(\zeta = v = 0 \) on \(\partial \Omega \), we have
\[
-\frac{\partial \zeta}{\partial n} \leq -\frac{\partial v}{\partial n} \text{ on } \partial \Omega,
\]
which implies that \(-\frac{\partial v}{\partial n} \geq 1 \) in some neighborhood of \(K \). In view of (4.4), we can fix \(k_0 \geq 1 \) sufficiently large so that \(\frac{\partial v_k}{\partial n} \geq \alpha \) in some neighborhood of \(K \), where \(\alpha < 1 \). We may also assume that
\[
\int_{A_{k_0}} \vert \Delta \zeta \vert < \frac{\varepsilon}{4},
\]
where \(A_{k_0} = \mathcal{N}_{k_0}(\Omega) \setminus \overline{\Omega} \).
Set
\[
\psi = \frac{1}{\alpha} v_{k_0},
\]
so that \(\psi \geq 0 \) in \(\Omega \) and \(-\frac{\partial \psi}{\partial n} \geq 1 \) in some neighborhood of \(K \). Moreover,
\[
\int_{\Omega} \vert \Delta \psi \vert = \frac{1}{\alpha} \int_{\Omega} \vert \Delta v_{k_0} \vert \leq \frac{1}{\alpha} \left(\int_{\Omega} \vert \Delta \zeta \vert + \frac{\varepsilon}{4} \right) \leq \frac{1}{\alpha} \left(c_{\partial \Omega}(K) + \frac{3\varepsilon}{4} \right).
\]
Therefore, by taking
\[
\alpha = \frac{c_{\partial \Omega}(K) + \frac{3\varepsilon}{4}}{c_{\partial \Omega}(K) + \varepsilon} < 1,
\]
we conclude that \(\psi \) satisfies (4.1). \(\Box \)
We next prove

Lemma 8. Let $K \subset \partial \Omega$ be a compact set. Given $\varepsilon > 0$, there exists $\psi \in C^2_0(\overline{\Omega})$ such that $0 \leq \psi \leq \varepsilon$ in Ω, $-\frac{\partial \psi}{\partial n} \geq 1$ in some neighborhood of K,

$$\int_{\Omega} |\Delta \psi| \leq \mathcal{H}^{N-1}(K) + \varepsilon \quad \text{and} \quad \left\| \frac{\psi}{\rho_0} \right\|_{L^\infty} \leq 1 + \varepsilon. \quad (4.5)$$

Proof. Let $\delta > 0$ be such that

$$\mathcal{H}^{N-1}(N_\delta(K) \cap \partial \Omega) \leq \mathcal{H}^{N-1}(K) + \varepsilon.$$

We now fix $\zeta \in C^2_0(\overline{\Omega})$ such that $\zeta > 0$ in Ω, $-\frac{\partial \zeta}{\partial n} = 1$ in $N_\frac{\delta}{2}(K) \cap \partial \Omega$, $\frac{\partial \zeta}{\rho_0} = 0$ in $\partial \Omega \setminus N_\delta(K)$, $0 \leq -\frac{\partial \zeta}{\partial n} \leq 1$ on $\partial \Omega$, and $\left\| \frac{\zeta}{\rho_0} \right\|_{L^\infty} \leq 1 + \varepsilon$. Let $a \in (0, \varepsilon)$ be sufficiently small so that

$$\int_{[\zeta < a]} |\Delta \zeta| < \varepsilon.$$

Let

$$u = a - (a - \zeta)^+ \quad \text{in} \quad \overline{\Omega}.$$

In particular, $0 \leq u < \varepsilon$ in Ω. It is easy to see that $\Delta u \in \mathcal{M}(\Omega)$ and $\Delta u = \Delta \zeta$ in $[\zeta < a]$. Since u is bounded and achieves its maximum everywhere on the set $[\zeta \geq a]$, we can apply Corollary 1.3 in [5] to deduce that

$$-\Delta u \geq 0 \quad \text{in} \quad [\zeta \geq a],$$

in the sense of measures. Thus,

$$\|\Delta u\|_{\mathcal{M}} = -\int_{[\zeta \geq a]} \Delta u + \int_{[\zeta < a]} |\Delta \zeta| \leq -\int_{\Omega} \Delta u + 2 \int_{[\zeta < a]} |\Delta \zeta| \leq -\int_{\Omega} \Delta u + 2\varepsilon. \quad (4.6)$$

On the other hand, proceeding as in the proof of Lemma 7, one can find $\psi \in C^2_0(\overline{\Omega})$ such that $0 \leq \psi \leq \varepsilon$ in Ω, $-\frac{\partial \psi}{\partial n} \geq 1$ on $\partial \Omega$,

$$\left\| \frac{\psi}{\rho_0} \right\|_{L^\infty} \leq \left\| \frac{u}{\rho_0} \right\|_{L^\infty} + \varepsilon \leq 1 + 2\varepsilon \quad (4.7)$$
By (4.6) and (4.8), we have
\begin{equation}
\int_\Omega |\Delta \psi| \leq - \int_\Omega \Delta u + 3\varepsilon.
\end{equation}

Since \(u = \zeta \) in a neighborhood of \(\partial \Omega \),
\begin{equation*}
\int_\Omega \Delta u = \int_{\partial \Omega} \frac{\partial u}{\partial n} = \int_{\partial \Omega} \frac{\partial \zeta}{\partial n}.
\end{equation*}

Thus,
\begin{equation*}
\int_\Omega |\Delta \psi| \leq - \int_{\partial \Omega} \frac{\partial \zeta}{\partial n} + 3\varepsilon \leq H^{-1}(N_\delta(K) \cap \partial \Omega) + 3\varepsilon \leq H^{-1}(K) + 4\varepsilon.
\end{equation*}

This concludes the proof of the lemma. \(\square \)

Proof of Theorem 4. Given \(\varepsilon > 0 \), let \(\psi \in C^2_0(\overline{\Omega}) \) be the function given by Lemma 7. Since \(\psi \geq 0 \) in \(\Omega \), we have \(-\frac{\partial \psi}{\partial n} \geq 0 \) on \(\partial \Omega \). Thus, integrating by parts and using (4.1) we get
\begin{equation*}
H^{-1}(K) \leq - \int_{\partial \Omega} \frac{\partial \psi}{\partial n} = - \int_{\partial \Omega} \Delta \psi \leq \int_{\partial \Omega} |\Delta \psi| \leq c_{\partial \Omega}(K) + \varepsilon.
\end{equation*}

Since \(\varepsilon > 0 \) was arbitrary, we deduce that
\begin{equation*}
H^{-1}(K) \leq c_{\partial \Omega}(K).
\end{equation*}

The reverse inequality immediately follows from Lemma 8. \(\square \)

5. Nonnegative measures which are good for every \(g \) must belong to \(L^1(\partial \Omega) \)

We start with

Theorem 7. Given a Borel set \(\Sigma \subset \partial \Omega \) of zero \(\mathcal{H}^N \)-measure, there exists \(g \) such that
\begin{equation*}
\mu^+ = -\mu^- \quad \text{for every measure} \ \mu \ \text{concentrated on} \ \Sigma.
\end{equation*}
In particular, for every nonnegative $\mu \in \mathcal{M}(\partial \Omega)$ concentrated on a set of zero \mathcal{H}^{N-1}-measure, there exists some g such that $\mu^* = 0$.

Proof. Let $\Sigma \subset \partial \Omega$ be a Borel set such that $\mathcal{H}^{N-1}(\Sigma) = 0$. Let (K_k) be an increasing sequence of compact subsets of Σ such that

$$\mu^+(\Sigma \setminus \bigcup_k K_k) = 0. \quad (5.1)$$

For each $k \geq 1$, K_k has zero \mathcal{H}^{N-1}-measure. By Lemma 8, one can find $\psi_k \in C^2_0(\overline{\Omega})$ such that $0 \leq \psi_k \leq \min \{ \frac{1}{k}, 2\rho_0 \}$ in Ω, $-\frac{\partial \psi_k}{\partial n} \geq 1$ in some neighborhood of K_k, and

$$\int_{\Omega} |\nabla \psi_k| \leq \frac{1}{k} \quad \forall k \geq 1.$$

In particular,

$$\frac{\Delta \psi_k}{\rho_0} \to 0 \quad \text{in} \quad L^1(\Omega; \rho_0 \, dx).$$

Passing to a subsequence if necessary, we may assume that

$$\frac{\Delta \psi_k}{\rho_0} \to 0 \quad \text{a.e. and} \quad \frac{|\nabla \psi_k|}{\rho_0} \leq G \in L^1(\Omega; \rho_0 \, dx) \quad \forall k \geq 1.$$

According to a theorem of De La Vallée-Poussin (see [6, Remarque 23] or [7, Théorème II.22]), there exists a convex function $h : [0, \infty) \to [0, \infty)$ such that $h(0) = 0$, $h(s) > 0$ for $s > 0$,

$$\lim_{t \to \infty} \frac{h(t)}{t} = +\infty, \quad \text{and} \quad h(G) \in L^1(\Omega; \rho_0 \, dx).$$

Set $h(s) = +\infty$ for $s < 0$. Let $g = h^*$ be the convex conjugate of h. Note that h^* is finite in view of the coercivity of h, and we have $h^*(t) = 0$ if $t \leq 0$.

We claim that g satisfies all the required properties. In fact, let μ be any measure concentrated on Σ and set $\nu = (\mu^*)^+$, where the reduced measure μ^* is computed with respect to g. By Proposition 5, ν is a good measure. Let $u \in L^1(\Omega)$, $u \geq 0$ a.e., be such that $g(u) \rho_0 \in L^1(\Omega)$ and

$$-\int_{\Omega} u \Delta \zeta + \int_{\Omega} g(u) \zeta = -\int_{\partial \Omega} \frac{\partial \zeta}{\partial n} \, d\nu \quad \forall \zeta \in C^2_0(\overline{\Omega}). \quad (5.2)$$
Recall that $\psi_k \geq 0$ in Ω and $\psi_k = 0$ on $\partial \Omega$; thus, $-\frac{\partial \psi_k}{\partial n} \geq 0$ on $\partial \Omega$. Using ψ_k as a test function in (5.2), we get

$$v(K_k) \leq -\int_{\partial \Omega} \frac{\partial \psi_k}{\partial n} \, d\nu \leq -\int_{\Omega} |u\Delta \psi_k + g(u)\psi_k|. \quad (5.3)$$

Note that

$$|u\Delta \psi_k + g(u)\psi_k| \to 0 \quad \text{a.e.}$$

and

$$|u\Delta \psi_k + g(u)\psi_k| \leq u \frac{|\Delta \psi_k|}{\rho_0} + g(u)\frac{\psi_k}{\rho_0} \rho_0$$

$$\leq g(u)\rho_0 + h \left(\frac{|\Delta \psi_k|}{\rho_0} \right) \rho_0 + 2g(u)\rho_0$$

$$\leq 3g(u)\rho_0 + G \rho_0 \in L^1(\Omega).$$

By dominated convergence, we conclude that the right-hand side of (5.3) converges to 0 as $k \to \infty$. Thus,

$$(\mu^*)^+(K_k) = v(K_k) = 0 \quad \forall k \geq 1,$$

so that, by (5.1) and Proposition 8, $(\mu^*)^+(\Sigma) = 0$. Since μ is concentrated on Σ, we have $(\mu^*)^+ = 0$; thus, by Proposition 9,

$$\mu^* = (\mu^*)^+ - (\mu^*)^- = -\mu^-,$$

which is the desired result. □

We now present the

Proof of Theorem 3. Assume $\mu \in \mathcal{M}(\partial \Omega)$ is good for every g. Given a Borel set $\Sigma \subset \partial \Omega$ of zero \mathcal{H}^{N-1}-measure, let $v = \mu^+ |_\Sigma$. By Theorem 7, there exists some g_0 such that $v^* = 0$. On the other hand, by Propositions 1 and 5, v is good for g_0. Thus, $v = v^* = 0$. In other words,

$$\mu^+(\Sigma) = 0 \quad \text{for every Borel set } \Sigma \subset \partial \Omega \text{ such that } \mathcal{H}^{N-1}(\Sigma) = 0.$$ We conclude that $\mu^+ \in L^1(\partial \Omega)$. □
6. How to construct good measures which are not in $L^1(\partial \Omega)$

In this section, we establish Theorem 5. We shall closely follow the strategy used in [24] to construct good measures for problem (1.3) which are not diffuse.

Let (ℓ_k) be a decreasing sequence of positive numbers such that

$$\ell_1 < \frac{1}{2} \quad \text{and} \quad \ell_{k+1} < \frac{1}{2} \ell_k \quad \forall k \geq 1. \quad (6.1)$$

We start by briefly recalling the construction of the Cantor set $F \subset [-\frac{1}{2}, \frac{1}{2}]^{N-1}$ associated to the subsequence (ℓ_{kj}). We refer the reader to [24, Section 2] for details.

We proceed by induction as follows. Let $F_0 = [-\frac{1}{2}, \frac{1}{2}]^{N-1}$, $\ell_0 = 1$ and $k_0 = 0$. Let F_j be the set obtained after the jth step; F_j is the union of $2^{(N-1)kj}$ cubes Q_i of side ℓ_{kj}. Inside each Q_i, select $2^{(N-1)(kj+1-k_j)}$ cubes $Q_{i,n}$ of side ℓ_{kj+1} uniformly distributed in Q_i; the distance between the centers of any two cubes $Q_{i,n}$ is $\gtrsim \ell_{kj}^{2(k_j+1-k_j)}$. Let

$$F_{j+1} = \bigcup_{i,n} Q_{i,n}.$$

The set F is given by

$$F = \bigcap_{j=0}^{\infty} F_j.$$

We now fix a diffeomorphism

$$\Phi: (-1, 1)^{N-1} \to \Phi((-1, 1)^{N-1}) \subset \partial \Omega$$

and define $\hat{F} = \Phi(F)$. From now on, we shall identify \hat{F} with F, and simply denote \hat{F} by F. For each $j \geq 1$, let

$$\mu_j = \frac{1}{\mathcal{H}^{N-1}(F_{j+1})} \mathcal{H}_{F_{j+1}};$$

in particular, $\mu_j \in L^1(\partial \Omega)$. The uniform measure concentrated on F, μ_F, is the weak* limit of (μ_j) in $\mathcal{M}(\partial \Omega)$ as $j \to \infty$. In particular, $\mu_F \geq 0$ and $\mu_F(\partial \Omega) = 1$. An important property satisfied by μ_F is given by the next
Lemma 9. For every \(x \in \partial \Omega \), we have

\[
\mu_F(B_r(x) \cap \partial \Omega) \lesssim \begin{cases}
\frac{1}{2} \frac{(N-1)k_{j+1}}{(N-1)k_j} & \text{if } \ell_{k_{j+1}} \lesssim r \lesssim 2^{(k_{j+1} - k_j)} \\
\frac{1}{2} \left(\frac{r}{\ell_{k_j}} \right)^{N-1} & \text{if } \frac{\ell_{k_j}}{2^{(k_{j+1} - k_j)}} \lesssim r \lesssim \ell_{k_j}.
\end{cases}
\tag{6.2}
\]

We say that \(a \lesssim b \) if there exists \(C > 0 \), depending only on \(N \), such that \(a \leq Cb \). By \(a \sim b \), we mean that \(a \lesssim b \) and \(b \lesssim a \). We refer the reader to [24] for a proof of Lemma 9; although a slightly stronger assumption than (6.1) is made there, the proof of (6.2) remains unchanged.

Let \(v \in L^1(\Omega) \) be the unique solution of

\[
\begin{cases}
-\Delta v = 0 & \text{in } \Omega, \\
v = \mu_F & \text{on } \partial \Omega.
\end{cases}
\tag{6.3}
\]

Our next step is to establish the following:

Proposition 12. Let \(F \subset \partial \Omega \) be the Cantor set associated to the subsequence \((\ell_{k_j}) \) and let \(v \) be the solution of (6.3). Assume that

\[
\frac{2^{k_{j+1}} \ell_{k_{j+1}}}{2^{k_j} \ell_{k_j}} \sim 1 \quad \forall \ j \geq 1.
\tag{6.4}
\]

Then, there exists \(C > 0 \) such that

\[
v(x) \leq C \left\{ \frac{1}{\ell_{k_1}^{N-1}} + \sum_{i=1}^{j} \frac{1}{2^{(N-1)k_i} \ell_{k_i}^{N-1}} \left(\frac{\ell_{k_j}}{\ell_{k_i}} \right) + \sum_{i=j+1}^{\infty} \frac{1}{2^{(N-1)k_i} \ell_{k_i}^{N-1}} \left(\frac{\ell_{k_i}}{\ell_{k_{j+1}}} \right)^{N+1} \right\}
\tag{6.5}
\]

for every \(x \in \Omega \) such that \(\ell_{k_{j+1}} < d(x, \partial \Omega) \leq \ell_{k_j}, \ j \geq 1 \).

Proof. We shall suppose for simplicity that \(\Omega = \mathbb{R}_+^N \) is the upper-half space. In this case, the solution \(v \) of (6.3) can be explicitly written as (see Lemma 10 below)

\[
v(z, t) = Nc_N \int_0^\infty \frac{st}{(s^2 + t^2)^{N+1}} \mu_F(B_s(z) \cap \partial \mathbb{R}_+^N) \, ds \quad \forall z \in \mathbb{R}_+^{N-1} \quad \forall t > 0,
\]
where \(c_N = \frac{\Gamma(N/2)}{\pi^{N/2}} \). Applying Lemma 9, we have

\[
v(z, t) \lesssim \sum_{i=1}^{\infty} (A_i + B_i) + C_0,
\]

where

\[
A_i = \frac{1}{2(N-1)k_i} \int_{\frac{\ell_{k_i}}{2(N-1)k_i}}^{\ell_{k_i+1}} \frac{s t}{(s^2 + t^2)^{N/2} + 1} ds,
\]

\[
B_i = \frac{t}{2(N-1)k_i} \int_{\frac{\ell_{k_i}}{2(N-1)k_i}}^{\ell_{k_i+1}} \frac{s^N}{(s^2 + t^2)^{N/2} + 1} ds,
\]

\[
C_0 = \int_{\ell_{k_1}}^{\infty} \frac{s t}{(s^2 + t^2)^{N/2} + 1} ds.
\]

An elementary (but tedious) computation using (6.4) shows that

\[
A_i \lesssim \begin{cases}
\frac{1}{2(N-1)k_i} \left(\frac{\ell_{k_i+1}}{t} \right)^{N+1} & \text{if } t > \ell_{k_i+1}, \\
\frac{1}{2(N-1)k_i} \left(\frac{t}{\ell_{k_i+1}} \right) & \text{if } t \leq \ell_{k_i+1},
\end{cases}
\]

(6.7)

\[
B_i \lesssim \begin{cases}
\frac{1}{2(N-1)k_i} \left(\frac{\ell_{k_i}}{t} \right)^{N+1} & \text{if } \ell_{k_i+1} < t \leq \ell_{k_i}, \\
\frac{1}{2(N-1)k_i} & \text{if } \ell_{k_i+1} < t \leq \ell_{k_i},
\end{cases}
\]

(6.8)

\[
C_0 \lesssim \begin{cases}
\frac{1}{t^{N-1}} & \text{if } t > \ell_{k_1}, \\
\frac{t}{\ell_{k_1}^N} & \text{if } t \leq \ell_{k_1},
\end{cases}
\]

(6.9)
We now assume that $\ell_{k+1} < t \leq \ell_k$. Inserting (6.7)–(6.9) into (6.6), we obtain (6.5).

In order to conclude the proof of Proposition 12, we establish the following:

Lemma 10. Given $v \in \mathcal{M}(\mathbb{R}^{N-1})$, let w be the solution of

\[
\begin{cases}
-\Delta w = 0 & \text{in } \mathbb{R}^{N}_+, \\
w = v & \text{on } \partial \mathbb{R}^{N}_+.
\end{cases}
\]

(6.10)

Then,

\[
w(z, t) = N c_N \int_0^\infty \frac{st}{(s^2 + t^2)^{N/2 + 1}} v(\tilde{B}_s(z)) \, ds \quad \forall z \in \mathbb{R}^{N-1} \quad \forall t > 0,
\]

(6.11)

where $\tilde{B}_s(z)$ denotes the ball in $\partial \mathbb{R}^{N}_+$ of radius s centered at z.

Proof. Assume $\mu = f \in C_\infty(\mathbb{R}^{N-1})$. Then, w is given as the Poisson integral of f:

\[
w(z, t) = c_N \int_{\mathbb{R}^{N-1}} \frac{t}{(|x - z|^2 + t^2)^{N/2}} f(x) \, dx \quad \forall z \in \mathbb{R}^{N-1} \quad \forall t > 0.
\]

Thus,

\[
w(z, t) = c_N \int_0^\infty \frac{t}{(s^2 + t^2)^{N/2}} \left(\int_{\tilde{B}_s(z)} f \right) \, ds
\]

\[= c_N \int_0^\infty \frac{t}{(s^2 + t^2)^{N/2}} \frac{d}{ds} \left(\int_{\tilde{B}_s(z)} f \right) \, ds.
\]

Integrating by parts with respect to s, we obtain (6.11) for $\mu = f$. This establishes (6.11) when μ is a smooth function. The general case easily follows using a density argument (see, e.g., [20, Lemma 1.4]). \(\square\)

We may now turn to the

Proof of Theorem 5. Let (k_j) be an increasing sequence of positive integers such that

\[g(2^{Nj}) \leq 2^{2k_j} \quad \forall j \geq 1.
\]

(6.12)

Let (ℓ_k) be any sequence satisfying (6.1) and such that

\[\ell_{k_j} = \frac{1}{2^{j+k_j}} \quad \forall j \geq 1.
\]
Let F be the Cantor set associated to (ℓ_{kj}). Since

$$2^{(N-1)kj} \ell_{kj}^{N-1} = \frac{1}{2^{(N-1)j}} \to 0 \text{ as } j \to \infty,$$

we have $|F| = 0$; thus, $\mu_F \notin L^1(\partial \Omega)$. We claim that μ_F is a good measure. In fact, let v be the solution of (6.3). A simple computation shows that

$$\sum_{i=1}^j \frac{1}{2^{(N-1)k_i} \ell_{k_i}^{N-1}} \left(\frac{\ell_{kj}}{\ell_{k_i}} \right) + \sum_{i=j+1}^{\infty} \frac{1}{2^{(N-1)k_i} \ell_{k_i}^{N-1}} \left(\frac{\ell_{k_i}}{\ell_{kj}^{N-1}} \right)^{N+1} \leq C 2^{(N-1)j}$$

for some constant $C > 0$ sufficiently large. It follows from Proposition 12 that

$$v(x) \leq \tilde{C} 2^{(N-1)j} \text{ if } \ell_{kj+1} < d(x, \partial \Omega) \leq \ell_{kj} \; \forall \; j \geq 1.$$

Denoting $\Omega_j = \{ x \in \Omega; d(x, \partial \Omega) > \ell_{kj} \}$, we then have

$$\int_{\Omega} g(v) \rho_0 = \sum_{j=1}^{\infty} \int_{\Omega \setminus \Omega_j} g(v) \rho_0 + \int_{\Omega_j} g(v) \rho_0 \leq C \sum_{j=1}^{\infty} g(\tilde{C} 2^{(N-1)j}) \ell_{kj} |\Omega_{j+1} \setminus \Omega_j| + O(1).$$

Since $|\Omega_{j+1} \setminus \Omega_j| \leq C \ell_{kj}$, we get

$$\int_{\Omega} g(v) \rho_0 \leq C \sum_{j=1}^{\infty} \frac{g(\tilde{C} 2^{(N-1)j})}{2^{2(j+1)k_j}} + O(1). \quad (6.13)$$

Note that, for $j \geq 1$ sufficiently large, we have $\tilde{C} 2^{(N-1)j} \leq 2^{Nj}$. We deduce from (6.12) and (6.13) that $g(v) \in L^1(\Omega; \rho_0 dx)$. By Proposition 7, we conclude that μ_F is a good measure. □

7. The case where $g(t) = t^p$

We describe here some examples where the measure μ^* can be explicitly identified.

Example 1. $g(t) = t^p$, $t \geq 0$, with $1 < p < \frac{N+1}{N-1}$.

In this case, every measure is good (see [15]); thus, $\mu^* = \mu$, $\forall \mu \in \mathcal{M}(\partial \Omega)$.
Example 2. \(g(t) = t^p, \ t \geq 0, \) with \(p \geq \frac{N+1}{N-1}. \)

By [21], a nonnegative measure \(v \) is good if and only if \(v(A) = 0 \) for every Borel set \(A \subseteq \partial \Omega \) such that \(C_{2/p,p'}(A) = 0. \) Recall (see [13]) that any measure \(\mu \) can be uniquely decomposed as

\[
\mu = \mu_1 + \mu_2,
\]

where \(\mu_1(A) = 0 \) for every Borel set \(A \subseteq \partial \Omega \) such that \(C_{2/p,p'}(A) = 0, \) and \(\mu_2 \) is concentrated on a set of zero \(C_{2/p,p'} \)-capacity. Using the same argument as in [4, Section 8], one then shows that for every \(\mu \in \mathcal{M}(\partial \Omega) \) we have

\[
\mu^* = \mu - \mu_2^+.
\]

Here is an interesting

Open Problem 1. Let \(N = 2 \) and \(g(t) = e^t - 1, \ t \geq 0. \) Is there a simple characterization of the set of good measures relative to \(g? \) Is there an explicit formula of \(\mu^* \) in terms of \(\mu? \)

There are some partial results in this direction; see [16] and also [23].

8. Proof of Theorem 6

We start with the following:

Lemma 11. Let \(\lambda \in \mathcal{M}(\Omega) \) and \(\mu \in \mathcal{M}(\partial \Omega). \) Assume that there exists \(w \in L^1(\Omega) \) such that \(g(w) \in L^1(\Omega; \rho_0 \, dx) \) and

\[
- \int_{\Omega} w \Delta \zeta + \int_{\Omega} g(w) \zeta \geq \int_{\Omega} \zeta \, d\lambda - \int_{\partial \Omega} \frac{\partial \zeta}{\partial n} \, d\mu \quad \forall \zeta \in C_0^2(\Omega), \ \zeta \geq 0 \text{ in } \Omega. \tag{8.1}
\]

Then, the pair \((\lambda, \mu)\) is good.

Proof. Since (8.1) holds, there exist \(\mu_0 \in \mathcal{M}(\partial \Omega) \) and a locally bounded measure \(\lambda_0 \) in \(\Omega, \) with \(\int_{\Omega} \rho_0 \, d|\lambda_0| < \infty, \) such that \(\mu_0 \geq \mu \) on \(\partial \Omega, \lambda_0 \geq \lambda \) in \(\Omega, \) and

\[
- \int_{\Omega} w \Delta \zeta + \int_{\Omega} g(w) \zeta = \int_{\Omega} \zeta \, d\lambda_0 - \int_{\partial \Omega} \frac{\partial \zeta}{\partial n} \, d\mu_0 \quad \forall \zeta \in C_0^2(\Omega).
\]

(The existence of \(\lambda_0 \) and \(\mu_0 \) is sketched in [4, Remark B.1]).
Let \((g_k)\) be a sequence of bounded functions satisfying (1.6)–(1.7). Let \(u_k, w_k\) be the solutions associated to \((\lambda, \mu), (\lambda_0, \mu_0)\), resp. Then, as in the proof of Lemma 5 above, we have
\[
g_k(u_k) \leq g_k(w_k) \to g(w) \quad \text{in } L^1(\Omega; \rho_0 \, dx).
\]
On the other hand, \(u_k \downarrow u\) in \(L^1(\Omega)\). Thus, by dominated convergence,
\[
g_k(u_k) \to g(u) \quad \text{in } L^1(\Omega; \rho_0 \, dx).
\]
We conclude that \(u\) satisfies (1.12). Therefore, \((\lambda, \mu)\) is good. □

Proof of Theorem 6.

Step 1: Proof of
\[
(\lambda, \mu)^* = (\lambda^*, \mu^*). \tag{8.2}
\]
Let \(u_k\) be such that
\[
\begin{cases}
-\Delta u_k + g_k(u_k) = \lambda & \text{in } \Omega, \\
u_k = \mu & \text{on } \partial \Omega.
\end{cases}
\]
Then, \(u_k \downarrow \hat{u}\) in \(L^1(\Omega)\). By Fatou, we deduce that \(g(\hat{u}) \in L^1(\Omega; \rho_0 \, dx)\) and
\[
-\int_{\Omega} \hat{u} \Delta \zeta + \int_{\Omega} g(\hat{u}) \zeta \leq \int_{\Omega} \zeta d\lambda - \int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d\mu \quad \forall \zeta \in C_0^2(\overline{\Omega}), \quad \zeta \geq 0 \quad \text{in } \Omega.
\]
By [4, Remark B.1], there exist \(\hat{\mu} \in \mathcal{M}(\hat{\partial} \Omega)\) and a locally bounded measure \(\hat{\lambda}\) in \(\Omega\), with \(\int_{\Omega} \rho_0 \, d|\hat{\lambda}| < \infty\), such that
\[
-\int_{\Omega} \hat{\mu} \Delta \zeta + \int_{\Omega} g(\hat{u}) \zeta = \int_{\hat{\Omega}} \zeta d\hat{\lambda} - \int_{\partial \Omega} \frac{\partial \zeta}{\partial n} d\hat{\mu} \quad \forall \zeta \in C_0^2(\overline{\hat{\Omega}}).
\]
Note that \(\hat{\lambda} \leq \lambda\) in \(\Omega\) and \(\hat{\mu} \leq \mu\) on \(\hat{\partial} \Omega\). We claim that
(a) \((\hat{\lambda})_d = \lambda_d = (\lambda^*)_d\);
(b) \((\hat{\lambda})_c = (\lambda^*)_c\);
(c) \(\hat{\mu} = \mu^*\).
The subscripts “d” and “c” denote the diffuse and the concentrated parts of the measure with respect to \(\text{cap}_{H^1}\) (see [13]). We then deduce from (a) and (b) that \(\hat{\lambda} = \lambda^*\); in particular, \(\hat{\lambda} \in \mathcal{M}(\Omega)\).
Proof of (a): The second equality in (a) is established in [4]. Proceeding exactly as in the proof of Lemma 1 there, one shows that
\[\hat{\lambda} \geq \lambda_d - \lambda_c^- . \]
Thus, \((\hat{\lambda})_d \geq \lambda_d\). Since \(\hat{\lambda} \leq \lambda\), we conclude that \((\hat{\lambda})_d = \lambda_d\).

Proof of (b): Since the pair \((\lambda^*, 0)\) is good, it follows from Lemma 11 above that \((\hat{\lambda}^*, -\mu^-)\) is also good. Let \(v_1\) be the solution of (1.12) corresponding to \((\lambda^*, -\mu^-)\).

By [4, Corollary B.2], we have \(v_1 \leq u_k\) a.e., \(\forall k \geq 1\). Thus,
\[v_1 \leq \hat{u}\ a.e. \]

By the "Inverse" maximum principle (see [8]), we obtain
\[(\hat{\lambda}^*)_c = (-\Delta v_1)_c \leq (-\Delta \hat{u})_c = (\hat{\lambda})_c . \] (8.3)

We conclude from (a) and (8.3) that
\[\lambda^* \leq \hat{\lambda} \leq \lambda. \]

In particular, \(\hat{\lambda} \in M(\Omega)\). Since \((\hat{\lambda}, \hat{\mu})\) is good, we can apply Lemma 11 to deduce that \((\hat{\lambda}, - (\hat{\mu})^-)\) is also good. Let \(v_2\) denote the corresponding solution. Clearly, \(v_2\) is a subsolution of (1.3). Thus,
\[v_2 \leq v^* \ a.e., \]
where \(v^*\) is the largest subsolution of (1.3), i.e., \(v^*\) is the solution of (1.3) with data \(\lambda^*\). Applying the "Inverse" maximum principle, we conclude that
\[(\hat{\lambda})_c = (-\Delta v_2)_c \leq (-\Delta v^*)_c = (\lambda^*)_c . \] (8.4)

We deduce from (8.3) and (8.4) that \((\hat{\lambda})_c = (\lambda^*)_c\).

Proof of (c): The argument in this case is the same as in the proof of (b) and is omitted (one should use Lemma 1 in Section 2 above, instead of the "Inverse" maximum principle).

It now follows from (a)-(c) that \(\hat{\lambda} = \lambda^*\) and \(\hat{\mu} = \mu^*\). This concludes the proof of Step 1.

Step 2: Proof of the theorem completed.

Assume \((\lambda, \mu)\) is good. Thus, \((\lambda, \mu)^* = (\lambda, \mu)\). We deduce from the previous step that \(\lambda^* = \lambda\) and \(\mu^* = \mu\). In other words, \(\lambda\) is a good measure for (1.3) and \(\mu\) is good for (1.1). Similarly, the converse follows. The proof of Theorem 6 is complete. \(\square\)
Open Direction 1. In all the problems above, the equation in Ω is nonlinear but the boundary condition is the usual Dirichlet condition. It might be interesting to investigate problems involving nonlinear boundary conditions. Here is a typical example:

$$
\begin{aligned}
-\Delta u + u &= 0 \quad \text{in } \Omega, \\
\frac{\partial u}{\partial n} + g(u) &= \mu \quad \text{on } \partial \Omega,
\end{aligned}
$$

(8.5)

where g and μ are as in the Introduction. This type of problems arises in Physics for various choices of g, possibly graphs; see, e.g. [9]. They have been studied in [2] when $\mu \in L^2(\partial \Omega)$.

Acknowledgments

We warmly thank M. Marcus and L. Véron for interesting discussions. The first author (H.B.) is partially sponsored by an EC Grant through the RTN Program “Front-Singularities”, HPRN-CT-2002-00274. H.B. is also a member of the Institut Universitaire de France. The second author (A.C.P.) is supported by the NSF grant DMS-0111298 and Sergio Serapioni, Honorary President of Società Trentina Lieviti—Trento (Italy).

References

