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1. Introduction 

In  this paper we present results on the differentiability properties of solutions 
to the following singular parabolic partial differential equation : 

r > - g J  
Y q(', t ,  = t U X X ( X J  t> + - u X ( x 3  t> 1 

X 
(1) 

O ~ X < + O o J  O ~ t < + + c o ;  

the solution U satisfies the initial condition U(x, 0) = f ( x )  and the boundary 
condition f ( 0 )  = 0 = U,(O, t ) .  

Such equations occur in the theory of probability. For example, when 
y = $(n - I ) ,  equation (1) is the backward differential equation corresponding 
to the radial component of n-dimensional Brownian motion (see [ S ] ) .  For other 
values of y ,  equation (1) is the backward differential equation corresponding to 
a stochastic process which is the limit of a sequence of random walks (see [5]). 

It is easily checked that the function satisfies the 
following degenerate elliptic-parabolic equation: 

V(x, t )  = U ( d i ,  i t )  

V t ( x J  t ,  = xV,,(x> t ,  + a V X ( x ,  t ,  J 

(2) m, 0) = g(x)  =f(l/.> Y 

where a = y + 4 > 0. 
In  [I], Feller investigated a class of degenerate elliptic-parabolic equations 

which includes our equation (2). However, Feller discussed only the existence and 
uniqueness of solutions to equation (Z), he did not study the differentiability 
properties of their solutions and this is our main concern here. 
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Atomic Energy Commission, Contract AT(30-1)-1480. Reproduction in whole or in part is per- 
mitted for any purpose of the United States Government. 
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Before stating our result7 i t  n 4 1  be necessary to introduce some notation and 
definitions. Let 

R + = { x : O < x <  +-J-; and R + = { x :  O s x <  +a}. 

We define B as follows: 

(3) B = {f ( x )  : f is a bounded continuous function on I?+} , 

(4) Bk = { f(x) : f ( ' ) ( x )  E B, 0 5 1 2 k }  , 

where f ( l )  denotes the I-th derivative of the function f. We define norms Ilf I l k  
on the spaces Bk as 

where IlfII = maxos!Z<+m If(%)(. 
I t  is understood that Bo = B and l l f ( l o  = I l f I l .  With these norms the spaces 

Bk,  as is well known, become Banach spaces. The spaces Bo and Bt play an 
important role in our work and are defined below : 

B, = ( f ( x )  : f~ B and limf(x) = 01, 
I XfCO 1 

3; = { f ( x )  : f ' " ( x )  E B, , 0 5 1 5 k )  . 

We define C(R+), C(R+), Ck(R+) ,  Ck(R+)  in the following way: 

(i) C(R+) = { f ( x ) :  f continuous for x E R+} , 

(ii) Ck(R,) = { f ( x ) :  f ( l ) ( x )  EC(R+), O 5 L 5 k} , 
(iii) C(R+) = (f(x) : f continuous for x E R+} , 

(iv) Ck(R+)  = ( f ( x ) :  f ' l ) ( x )  EC(R+), 0 5 1 j k }  I 

(7 )  

Our results for equation (2) are obtained by first studying properties of the 
solution # to the stationary equation 

( f9  x+"(x) + 4'(4 - W x )  =f(4 , A > O ,  f E B .  

l h e  results obtained concerning equation (8) are derived so as to enable us to 
apply the methods of the Hille-Yosida theorem to equation (2).  In  particular we 
obtain the following result (Theorem 6) : 

We denote by A the second order linear differential operator 

(9) A g ( x )  = xg"(x)  + ug'(x) . 
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We then show that A is the infinitesimal generator of a contraction semigroup 
T ( t ) :  B! + B,k with respect to the norm l i f l l l c ,  i.e., 11 T ( t ) f l i k  5 Ilfli,. From 
these estimates we deduce the differentiability properties of solutions to equation 
(2). 

2. The Stationary Equation 

THEOREM 1 .  Let a > 0 ,  1 > 0,  f E B. Then there exists a unique function 
9 satisfying 

(10) 4 €C2(R+) n C1(R+) n B , 

(1 1) x+”(x) + a+’(x) - 2 4 ( 4  = ( A  - A)+(.) = f ( 4  > 

O S X < + c O ,  

lim x+”(x) = 0 .  
2’0 

(12) 

In addition, we have 

I l f  / I  
1 11411 s - 9  

The proof of Theorem 1 is divided into four lemmas. 

LEMMA 1. Let us assume that there exists a 4 satisfying conditions ( lo) ,  (1 l ) ,  
(12) of Theorem 1. Then we have 

Ilf I1 
a Ildll s - * 

Proof: We introduce the auxiliary function y ( x )  = + ( x ) / ( l  + E X ) ,  E > 0. 
One easily checks that lim2-o xy”(x )  = 0 and that limr+m y(x )  = 0. A routine 
calculation shows that y satisfies the differential equation 

(15) 4 1  + EX)Y’’ (X)  +  EX + a(1 + E X ) ) ~ ’ ( X )  + (&a - 1 - E ~ X ) Y ( X )  = f ( x )  . 
Clearly, if maxOjzi+, y ( x )  = IirnzAm y ( x ) ,  then 

max y(x )  lim y ( x )  = 0 
OS;z<+m x’m 

and hence 
I l f  II y(.) 2 0 5 - a 
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We can assume, therefore, that y achieves its maximum at a point xo 0 xo 
< + m .  

( h e  1 :  0 < xo < + m. Then y ’ ( xo )  = 0, 7p”(x0j 0, and hence 

(&a - 3. - eAxo)y(xo) 2 ~ : f ( x ” )  . 

For c < A/a this yields the inequality 

Case 2 :  xo = 0. Letting x - 0  in (15) we get ay ’ (0 )  + (sn - A)y(Oj = 
f(0). Note that if the maximum of y occurs at 0, then y‘(0) 5 0 and we can con- 
clude, as in case 1,  that 

R 
& < - .  

a 

For fixed x, we let F + 0 and see that +(x )  5 l i j ” l l / A .  
The same argument applied to - q5 and - f yields the lower bound 

+(XI 2 --llJtl/~, 

and this completes the proof of Lemma 1.  

We now study solutions to the inhomogeneous equation 

(16) ( A  - A)+ =f , 
where f~ B .  

equation 
Let y o ( x ;  A )  denote the regular power series solution to the homogeneous 

(17) ( A  - L)y,(x; A) = 0 .  

One easily checks that 

(18) 

where 
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We note for future reference that yo(x;  A) E C30(R+) and that yo(x;  A) 2 1 
for O S x <  fa. 

Since A will be held constant throughout the ensuing discussion, we shall 
write y,(x)  for yolx; A) in order to simplify our notation. 

DEFINITION. Let + ( x ;  T )  denote the function 

# ( x ;  T )  = - -yo(x) ['z0(s) d s .  
J x  

where 

z,(s) = s - ~ ~ ; ~ ( s )  J P-'J,(T)~(T) dT, 
0 

and T lies in the interval 0 < T < + CO. 

LEMMA 2. The function + ( x ;  T )  satisjies the equation 

(2')  ( A  - A)+(x; T )  =f ( x )  > 

together with the boundary conditions: 

(i) IimZ+, x d " ( x ;  T )  = 0 

and 

(ii) +(T;  T )  = 0. 

U'e also have the estimate 
Ilf II max l + ( x ;  T)I -. 

OSzST A 
Proof: We observe that the explicit form of the solution (19) is obtained by 

the "reduction of order method", specifically we assume that + ( x ;  T )  = 
q(x) ,yo(x) ,  where q is an unknown function. This leads to a linear first ordcr 
equation for q' which may be explicitly solved by quadratures. 

The reader may verify by direct calculation that + ( x ;  T )  satisfies (21). 
Postponing for the moment the verification of the fact that satisfies the bound- 
ary condition (i) ((ii) is trivial to check) we note that the method of Lemma 1 
applied to + yields maxolzsT I$(x;  T)l 5 Ilfll/l. Condition (i) is a con- 
sequence of the following more general result : 

LEMMA 3. Let r €Ck(R+)  and set 

P X  

h ( x )  = x-' s'-'r(s) ds . Jo 
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Then 

(i) h E Ck(R+) n Ck+'(R+) 

and 

(ii) limn+,, xh(k+l)(x) = 0 . 

Proof: The change of variable u = s / x  transforms (22) into 

r i  
h ( x )  = ua-'r(ux) d u .  

(23) J O  

Since a > 0, differentiating under the integral sign of (23) yields 

(24) Oslsk. 
This shows that h € C k ( R + )  and that 

(25) 
(k) r (k ) (0 )  lim h ( x )  = - 

e-0 a + k '  

The change of variable u = s/x applied to (24) yields 

From this one concludes immediately that h E Ck+fl(R+) and that 

The fact that r E Ck(R+) implies that'given E > 0 there exists a 6 > 0 such that, 
for 0 2 x < 6, we have I d k ) ( x )  - rck)(0)l < E .  Multiplying both sides of 
(27) by x and using the triangle inequality we see that 

I ~ h ( ~ + l ) ( x )  I 2 Ir (k) (x)  - dk)(0)  1 + ,a+lc a + 'l s*+~-' l r (k ) ( s )  - dk)(0)l  ds 

I E + E = ~ E  - for O s x < S .  

This completes ihe proof of (ii). We now return to the proof of (i) of Lemma 2. 
We differentiate (19) twice and get 
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Applying Lemma 3 to the case where r ( x )  = y , ( x ) f ( x )  and h ( x ) = y ; ( x ) z , ( x ) ,  
the result limz+o x + ” ( x ;  T )  = 0 follows at  once. 

LEMMA 4. 
Pm 

existsfor aLL x E R+ , 

(iii) ( A  - /If4 = f and lim x+”(x )  = 0 , 
o-ro .  

Proof Let 

zol(s) = sPayi2(s) F 1 y o ( ~ )  d 7 ,  

i.e., zol is zo when f E 1 .  Since, on f?+, yo(x) >= 1 ,  we see that for 0 j x 5 T 

sx 

the last inequality being a consequence of Lemma 2 for the case f = 1. Since 
zol(s) 2 0 on R+ , we conclude from (28) that 

In  general, Izo(s)I 5 lzol(s)l and we have zo(s) E L,(R+) with 

Thus, 
T m 

lim $ ( x ;  T )  = lim -yo(x)J zo(s) ds = - yo (x ) l  zo(s) ds ,  
T-m T-rm X 5 

and this completes the proof of (i). 

ds and observe that ,!?(T) = 0. One can 

represent $ ( x )  as 
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Since T can be chosen arbitrarily large, we conclude that ( A  - ,I)$ = J  
We have already shown that limr-o x $ ” ( x ;  T )  = 0 and so (29) implies that 
1imz+ x + ” ( x )  = 0 also. 

The inequality (ii) is an imrnediatc consequence of the estimate 

llfll max I c $ ( x ;  T)l 2 -. 
Odx’.T A 

This completes the verification of (i), (ii) and (iii) and the only thing left to prove 
is (iv). 

As a first step we prove that 

2 I l f  II max I$ ’ (x ;  T ) J  -. 
OSsST U 

We shall estimate $ ‘ ( x ;  T )  for 0 5 x < T and $‘(T; T ) ,  separately. We 
have 

We introduce the auxiliary function y ( x )  = $ ( x ;  T )  + L(T - x ) ,  where I 
is a fixed constant to be chosen below. An elementary computation shows that 
p satisfies the equation 

(30) x ~ ” ( x )  + u ~ ‘ ( x )  - A ~ ( x )  = f ( ~ )  - a1 - l l (  T - X )  . 
Choosing 1 = l/fII/u, we conclude from this that 

f ( x )  - a1 - X(T - x )  5 0 for 0 5 x 5 T .  

Now y ( T )  = 0 and it is clear from the equation (30) and our choice of L that 
y cannot have a negative minimum. Hence, ~ ( x )  2 0 for 0 5 x 5 T. This 
implies that $ ( x ;  T ) / ( x  - T )  5 1 = lifII/u, 0 x 5 T. Choosing L = 

- Ilfll/a, one concludes that y cannot have a positive maximum and there- 

This yields l$’(T; T)I Ilfll/a. We next estimate $ ’ ( x ;  T )  for 0 5 x T. 
Let w(x)  = + ’ ( x ;  T ) ,  then w satisfies the equation 

fore we obtain the lower bound $ ( x ;  T ) / ( x  - T )  2 --I = - Ilfllla, 0 5 x 5 T. 

(31) xw’(x) + aw(x)  = f ( x )  + A$(.; T )  . 
The argument of Lemma 1 applied to (31) yields 
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We have thus shown that 

From (29) we have $ ' ( x )  = $ ' ( x ;  T )  + p( T)y;(x), and since limT+m p(  T )  = 0, 
we see that limT,, $ ' ( x ;  T )  = $ ' ( x ) ,  from which we deduce the estimate (iv). 

DEFINITION. For given K 2 0, a > 0,  we set 

if a - a + l ~ O ,  

if c t - n + l > O .  dcc, a)  = a(cc - a + 1 ) 2  I" 4(u + 1) 
(32) 

THEOREM 2. Assume (1 + x ) " f ( x )  E B and 1 > p(a, a ) .  Then for the func- 
tion $ satisfying ( lo) ,  (1  I ) ,  (12) of Theorem 1 the inequality 

(33) 

holds. 

Proof: One checks in a straight-forward manner that if cc - a + 1 5 0,  
then 

Similarly, if cc - a + 1 > 0, then we have 

NOW let y(x )  = (1  + x ) " $ ( x ;  T ) ,  0 5 x T, where + ( x ;  T )  is defined as 
in (19). We note that limx-o x y " ( x )  = 0 and y (  T )  = 0. Moreover, y satisfies 
the following equation : 

Proceeding as in Lemma 1 and choosing 1 > p ( ~ ,  a ) ,  we conclude that 

i.e., 

To complete the proof we let T -+ 00. 
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THEOREM 3.  Assume f E Bk, k 0, and let + denote the unique solution to 

( A  - A)# = j '  satisfying the condition limz-o x + " ( x )  = 0. Then we have 

(36)  

(37) 

x+" (x )  E B" 

lim x + ( ~ + ' ) ( x )  = o . 
x-+o 

Moreover, i f w e  set q ( x )  = +(z)(x), then 

(38) 

Thus ,  #AZ)(x) satisJies equation ( 8 )  wi th  a + 1 in  place of a ,  and hence 

xwl ' (x)  + ( a  + l)w!(x) - ilw,(x) = . f ' l ' ( x )  , Oslsk. 

Q s l s k .  2 
a + l  

II 4(z+1)(x)  u = I14 (4 II 5 - IIf'"(.) I1 > (39) 

u, in  addition, (1  + ~)"f(~)(x) E B, then 

.for A > p ( ~ ,  a + k )  . 
Proof: Theorem 1 corresponds to the case k = 0. We proceed in the 

general case by mathematical induction. We assume then that Theorem 3 is 
true for the case k = n and we shall show that it is true for the case k = n + 1. 

If f E B"+l, then a fortiori f E Bn and hence, by our induction hypothesis, + E B7'+l n CrL+2(R+).  We also have from the equation (8) that 

and so 

# E Cn+'(R+) n Bn+l . 

This means that the equation ( A  - A)# =f may be differentiated ( n  + 1) 
times to yield 

(41) .#(nf"(x) + ( u  + n + l )#("+"(X) - i l#"+l)(X) = f ( n + l )  (4 . 
In  terms of wnt I (x ) ,  this last equation can be written as 
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Our induction hypothesis implies that xw;(x) + a, wh(x)  - Aw,(x) = f ( " ) ( x )  
and also that limx->o xw;(x) = 0, w, E B1 n C2(R+).  Thus, 

where 

with xy;(x) + ( a  + n)yL(x) - Ay,(x) = 0, or equivalently y,(x) =y$ ' (x) .  
From the assumption f t n )  E B1 it follows, by Lemma 3 ,  that z ,  E C1(R+) n Cs(R+) 
and hence w, E Cz(R-,) n C3(R+) and also that 

lim xw:'(x) = lim X W ~ ' ~ ( X )  = o . 
2-0 2-0 

We may thus apply Theorem 1 to equation (42) (with a replaced by a + n + 1) 
and conclude that 

Estimate (i) together with the inductive hypothesis that ll#~ll, Ilfll,/A 
imply that jl~$(I,+~ \lf\\,+l/A and this completes the proof of statements (35) 
through (39). Statement (40) is a consequence of Theorem 2 with a + k re- 
placing a. 

THEOREM 4. 

Proof: 

Assume f E B,k ; then 4 E B,k" , 4 being the same as in Theorem 3 .  

By equation (38) of Theorem 3 ,  it is enough to prove that, if f E 3, , 
then 4 E BA . Let f, denote a sequence of C1(R+) functions with compact 
support such that /If, - f l l  = 0, and let 4% denote the corre- 
sponding solutions to ( A  - A)$, = f, . Since lima+o p(a, a )  = 0,  we can 
choose, for any 3, > 0, an a > 0 small enough so that p(a, a )  < A. By 
Theorems 2 and 3 we know that (1  + x)"&(x )  and (1 + x)"&(x )  are in B. 
Thus, 4, E Bt . From (13) and (14) we have 



406 H. BREZIS, W. ROSENKRANTZ AND B. SINGER 

THEOREM 5. Assume (1 + x)"f (x) E B, ,for some CI 2 0.  Then 

(1 + 4" E Bo 9 

where 4 is the unique solution to ( A  - A)+ = f, A > p ( ~ ,  a), satisfying 

lim x+"(x) = 0 .  
2-.a 

Proof: Let f, denote a sequence of continuous functions with compact 
support such that limrL+m 11(1 + x ) " ( f T L ( x )  - f ( x ) ) i l  = 0, and let 4% denote 
the solutions corresponding to ( 8 )  with properties (lo),  ( l l ) ,  (12). Then, as is 
easily shown, (1 + x)'$,(x) E B,  , and so by (33) we have 

Hence, limn-.m /I (1  + x ) " ( + ~ ( x )  - $ ( x ) )  I /  = 0 and therefore (1  + x ) " $ ( x )  E B, . 

3. Application to the Evolution Equation (2) 

The results we have proved in Theorems 1-5 can be summarized in the 
following way : 

Let D,(A) denote the set of functions with the properties 

(43) 

For all f E B,k , there exists a unique g E D,(A),  denoted by R(A, A ) f =  g, 
satisfying 

(44) (A - A)g =f, so that R(X, A )  = (A - A)- ' ,  

(45) 
(46) A maps D , ( A )  into B t .  

&(A)  is dense in B: ,  

For every A > 0, A - A is a one-to-one map from 

D,(A) onto Bt with A llR(A, A)fll,  5 l l f l l k  * 
(47) 
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Moreover, for g E D,(A), \re have 

(49) iI%”(4 Ilk s 3 /I &Ilk . 

If f E Bk and ( 1  + x ) “ ~ ( ~ ) ( ( x )  E B, we define 

for f E Bg such that (1 + . ~ ) “ f ( ~ ) ( x )  E B. 

(45) is obvious. We need to check only (48) and (49). 
Assertions (13), (46), (47) and (51) folloiv at once from Theorems 1-5, while 

Let Ag = f; then ( A  - 2)g = f - i,g and, by Theorem 3, 

This is true for every A > 0 so letting A -+ 0 we obtain 

Since xg”(x) = A g ( x )  - ag‘(x), we conclude that 

Results (44) through (51) imply 

THEOREM 6. 

(52) A is the injktesimal generator o f  a strong& continaous sentigroup 
of contraction operators T(t)  : BE --+ BE, i.e., 
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If g E B , ( A ) ,  then V ( x ,  t )  = T ( t ) g ( x )  is the unique solution to 
equation ( 2 )  with the following properties: 

Proof: We note that (44) through (47) assert that A satisfies the conditions 
of the Hille-Yosida theorem and hence propositions ( 5 2 )  through (54) are an  
immediate consequence of that result. 

If g E D,(A), then T ( t ) g ( x )  E D,(A) and, therefore, by (48), 

2 
= - \ I T ( ' )  Ag(x)IIk  

U 

2 
a 

5 - \I  -&Ilk ' 

In  a similar way (56) is a consequence of (49). The only thing left to prove is 
(57 ) .  We do this by showing that e-pt T( t )  is a strongly continuous semigroup of 
contraction operators on the Banach space F,(k, a ) ,  where 

(58) F,(k, a )  = { f : f ~  Bt (1 + x)".f'"((x) E Bo) 

with norm llfllk.a defined by (50). Set 

(59) Q = A - p ,  

where p = p(a, a + k); thus 3, - Q = ( p  + A )  - A .  It is easily checked, 
using Theorems 3 and 5 ,  that !2 satisfies the conditions of the Hille-Yosida 
theorem and is therefore the infinitesimal generator of the contraction semigroup 

e-pt T(t)  : F,(k, a) 3 F,(k, a) . 
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This proves (57) because we are assuming there that g €F,(k, a )  and hence, 
by what we have just shown, 

IIe-PtT(t)g(x>II,,u S IIgIIr.a or IIT(t)g(x) 1IL.a S ept  I1gIIk.u 

which implies (57). 
The following special case is of interest in probability theory and niimerical 

analysis and explains the introduction of the spaces Fo(k, a) .  Our original 
goal, it should be recalled, was to solve equation (1).  If g(x)  =f(&) € & ( A ) ,  
then U(x, t )  = V(x2,  2 t )  is the unique solution to equation (1). An elementary 
computation yields 

(60) Uzzz(x, t )  = 8x3 Vzz+(x2, 2 t )  + 12xVzz(x2, 2t)  . 
For the applications to probability and numerical analysis (cf. [6], [ 8 ] )  it is 

important to obtain bounds on IIUZz+(x, t ) j l .  In estimate (57) we set a = $ 
and k = 3 and note that 2 - ( u  + 3) + 1 = - ( a  + 4) < 0 and hence 
p(3, a + 3) = 0. We are now ready to bound the right-hand side of (60) for 
g E D3(4  n F0(3 ,$- ) :  

(61) 
lIXY&2, 2 t )  II 5 max II V++(X2, 2t)Il + max 1 1 ~ 2 ~ + + ( ~ 2 ,  2 0  II 

O S X S l  l S X 5 C o  

2 11g113 + 3 II-4gll 9 

where the last inequality is a consequence of (54) and (56) .  Also, 

I I X ~ V ~ ~ ~ ( X ~ ,  20 II s II (1 + x2)3/2 vZzz(x2, 20 II 
(62) s II (1 + x ) 3 / 2  ‘C/jcrr(X, 2 0  I1 

s llgIl3,3/z > 

II Uzz;C(x, t )  I1 s 2 11g113,a,2 + 3 IlAgll 

by (57) * 

Combining estimates (61) and (62) we conclude that 

(63) 

forf(d/.) = g ( x )  E D,(A) n ~ ~ ( 3 ,  3). 

4. Concluding Remarks 

a. I t  should be noted that equation (2) does not fall under the theory of 
degenerate elliptic-parabolic equations as established by Kohn-Nirenberg [4] 
or 0. Oleinik [7]. 

Finally we note also that equation (1) is not the only equation that can be 
reduced to (2) by a change of variable. Consider, for example, the equation 

Ut(x, t )  = c1 x2-a U++(X, t )  + c2 XI-= VJX, t )  , 
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where GI > 0, c2 > (1 - c()cl . The transformation V(x,  t )  = U ( X ~ / ~ ,  ct), where 
c = (cl a2)- l ,  reduces it to Vt = xVZr + b V , ,  where b = G I C ( C ~ ( G I  - 1) + cz ) ,  
and this is of course equation (2) (cf. [9]). 

b. The problem of obtaining invariance principles for Markov chains 
converging to Markov processes has been studied by Skorokhod in [ 8 ] .  In this 
paper he points out the importance of obtaining estimates of the form 

I t  is clear that our Theorem 6 provides a complete answer to this question for 
the semigroups considered in this paper. The probability applications of the 
results obtained will appear in a separate publication. 

Appendix 
by Peter D. Lax 

This appendix contains another proof of the differentiability of solutions of 
the singular parabolic equation 

('4.1) Ut = Gu , t z o ,  
where 

As shown in the body of this paper, the second order operator G (or rather its 
closure) satisfies the hypotheses of the Hille-Yoshida theorem in the space C of 
bounded, continuous functions on R,. = [0, 003, normed by the maximum 
norm llull. I t  follows that solutions of (A.l) form a one-parameter semigroup of 
contractions over C. This semigroup. can be denoted symbolically by 

u ( t )  = (exp tG)uo, uo = u ( 0 )  , t >= 0 .  

The contractive property is expressed by 

Since exp tG commutes with G, we have for any integer k 

(-4.4) 

the meaning of this relation is that wherever uo belongs to the domain of Gk, 
so does u ( t )  and (A.4) holds. Applying (A.3) to (A.4) we see that 

Gk u ( t )  = (exp tG)Gk uo ; 
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Our main result is the following: 

THEOREM A.1. For y > -4 and f o r  any integer k, 

('4.6) 11D2k 2111 s cllGk UII 

for all u in the domain o f  G k ;  the constant c depends on y and k but not on u. 

First a word about the domain of G k ;  it certainly includes all bounded func- 
tions u with bounded and continuous derivatives up to order 2k which satisfy 

(A.7) (Dju)(O) : 0 ,  j =  1 , 3 , 5 , . . . ,  2 k -  1 .  

Suppose u,, belongs to this class of functions; then uo belongs to the domain of 
Gk,  and by (A.4) so does u ( t )  for t > 0. Combining (A.5) and (A.6), we obtain 
a bound for /IDzk u/I  which is uniform in both t and x.  This is the desired 
differentiability theorem for solutions u of ( A . l )  whose initial value uo is 
differentiable and satisfies (A.7).  

I t  is not hard to show that Gk is the closure in the graph topology of the 
differential operator Gk,  defined for bounded u and bounded continuous deriv- 
atives up to order 2k, satisfying the boundary condition (A.7). Therefore, it 
suffices to prove (A.6) for such u. 

We shall deduce Theorem A. 1 for this class of u from a more general theorem: 
Let H be a differential operator of order n, with a regular singularity at  

x = 0,  of the form 

H =  Dn + 1 D n - l  h + .  . . +""; 
X X n  

(A.8) 

h, , h, , * * , h, are constants. For any 6, 

(A.9) Hxb = P(b)xb-" , 

where P is a polynomial of degree n. The roots of P are called the indices of 
H ;  we shall denote them by y l ,  * * * , yn . 

THEOREM A.2. Suppose all indices o j  H have real parts which are less than n: 

(A.lO) W e y i < n ,  j =  I , - * * , n .  

Then there exists a constant c such that 

(A. 1 1) (ID" UII 5 C l I H ~ I l  

for all Cn functions u dejined on R, and satisfing 

(A.12) (Dj u) (O)  = 0 ,  
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Remark 1. Actually, we are going to prove inequality (A. 11) for functions 
u defined on some finite interval (0, a ) .  By homogeneity, the constant c does not 
depend on the length of the interval. 

If L is an index of H, then x' is annihilated by H ;  if 9 8  L 
were greater than or equal to n, u = x' would be a Cn solution satisfying the 
initial condition (A.12) but for which (A.11) is false. This shows that (A.lO) is 
necessary for the validity of inequality (A.11). 

Theorem A.2 is true also for operators H with variable coeffi- 
cients hj ; for, such an operator can be written as 

Remark 2. 

Remark 3. 

H = H,, + E ,  

where Ha is of the form (A.8) with constant h, , and E is of the form 

Lj(0) = 0 .  

Using the initial condition (A.12) we can express everything in terms of Dn u :  

Substituting these into E and denoting by E the maximum of Lj(x)  over 
[0, a] ,  we conclude that, over the interval [0, a ] ,  

(A.13) IIEuII 5 O(&)llDn 4 * 

(ID" UII 2 c l l ~ o u l l  ; 

By Theorem A.2, 

since H,, = H - E, we see, using the triangle inequality and (A.13), that 

(A.14) lPn 41 5 CllHUII + llDn UII * 

Since 1,(0) = 0,  E = ma%,,,, I l j (x ) l  is small for a small; if we choose 
a so small that cO(E) < 4, (A.14) implies the desired inequality (A.11). For 
larger values of a we can obtain an estimate for Dn u in terms of Hu trivially, 
since H is a regular differential operator away from x = 0; of course the value 
of the constant c depends in this case on the length a of the interval. 

Inequality (A.6) of Theorem A.l is a special case of inequality 
(A.11) of Theorem A.2, with Gk in place of H and n = 2k. We have to verify 
that the indices of Gk have real parts less than n = 2k. Now, 

Remark 4. 

Gxb = Qb(b - 1) + ybxb-' = q ( b ) P 2  ; 
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we deduce recursively that 
k-1 

Gk x b  = JJ q(b  - 2 i ) ~ ~ - ' ~ .  
i = O  

Thus the indices of Gk are roots of 

(A.15) q ( b  - 2i)  = 0 ,  i = O , * * * , k -  1 .  

Since the roots of q are 0 and 1 - 2 y ,  the roots of (A.15) are 

(A. 16) 2i and 1 - 2 y  + 2 i ,  i = O , . * * k  - 1 .  

The largest of these is 1 - 2 y  + 2 ( k  - 1) ;  the requirement that this be less 
than n = 2k, 

2k - 1 - 2 7  < 2 k ,  

is clearly equivalent with -4 < y .  
Actually, we have to prove inequality (A .6)  under the initial conditions (A.7) 

which requires that the odd derivatives of u up to order 2k - 1 vanish at  
x = 0, whereas (A. l l )  will be derived under the assumption (A.12) that all 
derivatives of u up to order 2k vanish a t  x = 0. To fill this gap we subtract 
from s an even poIynomial p of degree less than 2k such that 

v = u - p  

satisfies all the boundary conditions (A. 12) .  Thus, by Theorem A.2, 

(A. 1 7 )  11DZk vII cllGk u I I  . 
Since p is of degree less than 2k, D 2 k p  = 0 and so 

D z k u  = D Z k u .  

Similarly, since by (A. 16) all even integers less than 2k are indices of Gk, G k p  = 0 
and so 

Gku = G k u .  

Thus the desired inequality (A.7) follows from (A. 17) 
Remark 5. Theorem 2 is trivial; we make the exponential substitution 

x = e E .  
We introduce the abbreviation 

(A. 18) H u = f  

and denote by w and C#I the functions 

(A.19) u ( e 9  = w(E), f ( e 5 )  = # ( E l  * 
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Using 

we see that 

(A.20) 
4 ( ~ )  = ( ~ u ) ( e E )  = - 1 rcc,, 

X n  

where F is a differential operator with constant coefficients. By definition of the 
indices As, 2'1 is annihilated by H ;  thereforc, eA3% is annihilated by I?. Next 
we construct Green's function y for the transpose rtr of F, defined as that 
solution of 

(A.21) r t r  = o 
which satisfies 

(A.22) 
j = 0, * * *  n - 2 

Assuming for convenience that the y j  are distinct, y is a linear combination: 

(A.23) 

Multiplying (A.20) by x n  = en", we obtain 

W q )  = en"(rl). 

We multiply this equation by y ( q  - 6) and integrate with respect to q from 
-a to E ;  integrating by parts we obtain 

5 
(A.24) 4 0  ' ~ , Y ( ? 1  - E b n "  $(.I) 4 ' 

I n  deriving this formula we use the fact that y satisfies the differential equation 
(A.21) and the initial conditions (A.22). We also use the fact that, according to 
(A.12), u(x) has a zero of order n at  x = 0, and so o ( q )  is O(enn)  as q ---f - co; 
on the other hand, we have assumed that .9?e A, < n, which by (A.23) guarantees 
that y ( q  - E )  and its derivatives are O(e-n3) as q + -co. Combining these 
facts we conclude that the contribution of the boundary terms at  - co is indeed 
zero. 

Now we switch back to y = e" and x = e6 and, using (A.23) and the nota- 
tion 

(A.25) d Y )  = Y ( - @ Y )  = 2 % Y " >  
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we deduce from (A.24) that 

(A.26) 

I t  follows from (A.22) that 

(A.27) (Djg)( l )  = 0 for j = 0, 1, * * , n - 2 ,  

(D"-1 g)( 1) = 1 . 

Differentiating (A.26) n times and using (A.27), we get 

Introducing y/x  = t we obtain 

(A.28) 

We claim that 

(A.29) 

(D" u ) ( x )  = f ( x )  + L g ( ' ) ( f ) j f ( ~ t )  d t .  

if this is so we can conclude from (A.28) that 

llD"uII 5 (1 + S)I l f l I  * 

Since f = Hu, this proves (A.l l )  with c = 1 + S. 
We turn to the proof of (A.29) ; by definition (A.25), g(s) is a linear combina- 

tion of the powers s'f. Therefore, g(")( l / t ) / t  is a linear combination of the powers 

tn--lj-l 

Since, by assumption, 92% ili < n, it follows that the real part of each of the above 
exponents is less than - 1, and so each of the above powers is integrable over 
[0, 11. This completes the proof of Theorem A.2. 
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