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1 Topological degree and VMO

Degree theory for continuous maps has a long history and has been extensively stud-
ied, both from the point of view of analysis and topology. If f ∈ C0(Sn, Sn), deg f is
a well-defined element of Z, which is stable under continuous deformation. Starting
in the early 1980s, the need to define a degree for some classes of discontinuous maps
emerged from the study of some nonlinear PDEs (related to problems in liquid crys-
tals and superconductors). These examples involved Sobolev maps in the limiting
case of the Sobolev embedding; see Sections 2 and 3 below. (Topological questions
for Sobolev maps strictly below the limiting exponent have been investigated in [15]
and [14].) In these cases, the Sobolev embedding asserts only that such maps belong
to the space VMO (see below) and need not be continuous.

In connection with degree for H 1/2(S1, S1), L. Boutet de Monvel and O. Gabber
suggested a concept of degree for maps in VMO(S1, S1) (see [2] and Section 3
below). In our joint work with L. Nirenberg [16], we followed up on their suggestion
and established on firm grounds a degree theory for maps in VMO(Sn, Sn). Here is
a brief summary of our contribution.
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First, recall the definition of BMO (bounded mean oscillation), a concept origi-
nally introduced by F. John and L. Nirenberg in 1961. Let � be a smooth bounded
open domain in Rn, or a smooth, compact, n-dimensional Riemannian manifold (with
or without boundary). An integrable function f : �→ R belongs to BMO if

|f |BMO = Sup
B⊂�

�
∫
B

�
∫
B

|f (x)− f (y)|dxdy <∞,

where the Sup is taken over all (geodesic) balls in�. It is easy to see that an equivalent
seminorm is given by

Sup
B⊂�

�
∫
B

∣∣∣∣f (x)−�
∫
B

f (y)dy

∣∣∣∣ dx.
A very important subspace of BMO, introduced by L. Sarason, consists of VMO
(vanishing mean oscillation) functions in the sense that

lim|B|→0
�
∫
B

�
∫
B

|f (x)− f (y)|dxdy = 0.

It is easy to see that

VMO(�,R) = C0(�,R)
BMO

.

The space VMO is equipped with the BMO seminorm |f |BMO. Clearly, L∞ ⊂ BMO.
It is well known that BMO is strictly bigger than L∞ (a standard example is f (x) =
| log |x||); however, as a consequence of the classical John–Nirenberg inequality,

BMO ⊂ ∩
p<∞Lp.

Thus BMO is “squeezed’’ between L∞ and ∩p<∞Lp and for many purposes serves
as an interesting “substitute’’ for L∞.

Concerning VMO, it is easy to see that L∞ �⊂VMO, but, of course, C0 ⊂VMO.
A useful example showing that the inclusion is strict is the function

f (x) = | log |x||α,
which belongs to VMO for every α < 1. In some sense, VMO serves as a “substitute’’
for C0. The Sobolev space W 1,n provides an important class of VMO functions.
Recall that for every 1 ≤ p <∞,

W 1,p(�,R) = {f ∈ Lp(�); ∇f ∈ Lp(�)}.
Poincaré’s inequality asserts that∫

B

∣∣∣∣f −�
∫
B

f

∣∣∣∣ ≤ C|B|1/n
∫
B

|∇f |,

from which we deduce, using Hölder, that
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�
∫
B

∣∣∣∣f −�
∫
B

f

∣∣∣∣ ≤ C

[∫
B

|∇f |n
]1/n

and thus W 1,n ⊂ VMO.
Similarly, the fractional Sobolev space Ws,p(�) is contained in VMO for all

0 < s < 1 and all 1 < p < ∞ with sp = n (the limiting case of the Sobolev
embedding). Indeed, in the Gagliardo characterization, we have

Ws,p(�) = {f ∈ Lp(�);
∫
�

∫
�

|f (x)− f (y)|p
|x − y|n+sp dxdy <∞}. (1.1)

Clearly,∫
B

∫
B

|f (x)− f (y)|dxdy =
∫
B

∫
B

|f (x)− f (y)|
|x − y|(n/p)+s |x − y|(n/p)+sdxdy

≤ C|B|(1/p)+(s/n)
∫
B

∫
B

|f (x)− f (y)|
|x − y|(n/p)+s dxdy.

Using Hölder, we deduce that∫
B

∫
B

|f (x)− f (y)|dxdy

≤ C|B|(1/p)+(s/n)+2−(2/p)
[∫

B

∫
B

|f (x)− f (y)|p
|x − y|n+sp dxdy

]1/p

,

and thus when sp = n,

�
∫
B

�
∫
B

|f (x)− f (y)|dxdy ≤ C

[∫
B

∫
B

|f (x)− f (y)|p
|x − y|n+sp dxdy

]1/p

,

which implies that Ws,p ⊂ VMO.
One of the basic results in [16] is the following.

Theorem 1 (H. Brezis and L. Nirenberg [16]). Every map f ∈ VMO(Sn, Sn) has
a well-defined degree. Moreover,

(a) this degree coincides with the standard degree when f is continuous;
(b) the map f 
→ deg f is continuous on VMO(Sn, Sn) under BMO-convergence.

It is quite easy to define the VMO-degree. For any given measurable map f :
Sn → Sn and 0 < ε < 1, set

f̄ε(x) = �
∫
Bε(x)

f (y)dy.

Next, we present an elementary lemma that is extremely useful.

Lemma 1. If f ∈ VMO(Sn, Sn), then

|f̄ε(x)| → 1 as ε→ 0, uniformly in x ∈ Sn.
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Proof. Set

ρε(x) = �
∫
Bε(x)

�
∫
Bε(x)

|f (y)− f (z)|dydz,

so that ρε(x) → 0 as ε → 0, uniformly in x ∈ Sn, since f ∈ VMO. Then
observe that

1− ρε(x) ≤ |f̄ε(x)| ≤ 1. ��
If f ∈ VMO(Sn, Sn), we may now set

fε(x) = f̄ε(x)

|f̄ε(x)|
, x ∈ Sn, 0 < ε < ε0(f ).

Using ε as a homotopy parameter, we see that deg fε is well defined and independent
of ε for ε > 0 sufficiently small. This integer is, by definition, VMO-deg f . The
proof of Theorem 1(a) is straightforward. For the proof of (b), we refer to [16].

The space VMO(Sn, Sn) is larger than C0(Sn, Sn). However, its structure, from
the point of view of connected (or, equivalently, path-connected) components, is
similar to C0(Sn, Sn). More precisely, there is a VMO version of the celebrated Hopf
result.

Theorem 2. The homotopy classes (i.e., the path-connected components) of
VMO(Sn, Sn) are characterized by their VMO-degree.

Remark 1. By contrast, it is not possible to define a degree for maps in L∞(Sn, Sn).
In fact, the space L∞(Sn, Sn) is path-connected (see [16, Section I.5]).

2 Degree for H 1(S2, S2) and beyond

In my earlier paper with J. M. Coron [12] (see also [9, 10]), we were led to a concept
of degree for maps in H 1(S2, S2). Our original motivation came from solving a
nonlinear elliptic system, proposed in [17], which amounts to finding critical points
of the Dirichlet integral

E(u) =
∫
�

|∇u|2

subject to the constraint

u ∈ H 1
ϕ (�, S2) = {u ∈ H 1(�; S2); u = ϕ on ∂�},

where � denotes the unit disc in R2 and ϕ : ∂� → S2 is given (smooth). In the
process of finding critical points, it is natural to investigate the connected components
of H 1

ϕ (�, S2), a question which is closely related to the study of the components of
H 1(S2, S2). The way we defined a degree for H 1(S2, S2) was with the help of an
integral formula. Recall that if f ∈ C1(Sn, Sn), Kronecker’s formula asserts that
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deg f = �
∫
Sn

det(∇f ), (2.1)

where det(∇f ) denotes the n × n Jacobian determinant of f . When n = 2, the
right-hand side of (2.1) still makes sense when f is not C1, but merely in H 1(S2, S2)

because det(∇f ) ∈ L1. We were able to prove (via a density argument) that the RHS
in (2.1) belongs to Z and we took it as a definition of the H 1-degree of f . Similarly,
one may use (2.1) to define a degree for every map f ∈ W 1,n. In view of the
discussion in Section 1, we know that W 1,n ⊂ VMO and thus any f ∈ W 1,n(Sn, Sn)

admits a VMO-degree in the sense of Section 1. Fortunately, the two definitions
coincide. In fact, we have the following.

Lemma 2. For every f ∈ W 1,n(Sn, Sn),

W 1,n-deg f = VMO-deg f.

Moreover, the components of W 1,n(Sn, Sn) are characterized by their degree.

Using this concept of degree, we managed to prove in [12] that if ϕ is not a
constant, then E achieves its minimum on two distinct components of H 1

ϕ (�, S2). A
very interesting question remains open.

Open Problem 1. Does E admit a critical point in each component of H 1
ϕ (�, S2)

when ϕ is not a constant?

Even the special case

ϕ(x, y) = (Rx,Ry,
√

1− R2), 0 < R < 1, x2 + y2 = 1,

is open.
It is also interesting to study the homotopy structure of W 1,p(Sn, Sn) for values

of p �= n. This was done in my joint paper with Y. Li [14].

Theorem 3. When p > n, the standard (C0) degree of maps in W 1,p is well defined
and the components of W 1,p are characterized by their degree. When 1 ≤ p < n,
W 1,p is path-connected.

Following the earlier paper [15], we started to investigate with Y. Li [14] the
homotopy structure ofW 1,p(M,N)whenM andN are general Riemannian manifolds
(M possibly with boundary, while ∂N = ∅). When p ≥ dim M , the homotopy
structure of W 1,p(M,N) is identical to that of C0(M,N). When dim M > 1 and
1 ≤ p < 2, we proved in [14] that W 1,p(M,N) is always path-connected. When
p decreases from dim M to 2, the set W 1,p(M,N) becomes larger and larger while
various surprising phenomena may occur:

(a) Some homotopy classes persist below the Sobolev threshold p = dim M , where
maps need not belong to VMO.
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(b) As p decreases, the set W 1,p(M,N) increases, and in this process some of the
homotopy classes “coalesce’’ as p crosses distinguished integer values—and
usually there is a cascade of such levels where the homotopy structure undergoes
“dramatic’’ jumps.

(c) As p decreases, new homotopy classes may “suddenly’’appear at some (integral)
levels; every map in these new classes must have “robust’’ singularities: they
cannot be erased via homotopy.

We refer the interested reader to [14] and to the subsequent remarkable paper by
F. B. Hang and F. H. Lin [18].

3 Degree for H 1/2(S1, S1). Can one hear the degree
of continuous maps?

Another important example that motivated my work with L. Nirenberg [16] was the
concept of degree for maps inH 1/2(S1, S1) due to L. Boutet de Monvel and O. Gabber
(presented in [2, appendix]). The motivation in [2] came from a Ginzburg–Landau
model arising in superconductivity. This H 1/2-degree also plays an important role in
our study of the Ginzburg–Landau vortices with F. Bethuel and F. Hélein (see [1]).
For example, it is at the heart of the proof of the following.

Lemma 3. Let � be the unit disc in R2 and let ϕ be a smooth map from ∂� = S1

into S1. Then
[H 1

ϕ (�, S1) �= ∅] ⇔ [deg ϕ = 0].

The way Boutet de Monvel and Gabber originally defined a degree forH 1/2(S1, S1)

went as follows. First, observe that if f ∈ C1(S1,C \ {0}), then the Cauchy formula
asserts that

deg f = 1

2iπ

∫
S1

ḟ

f
. (3.1)

In particular, if f ∈ C1(S1, S1) we may write (3.1) as

deg f = 1

2iπ

∫
S1

f̄ ḟ = 1

2π

∫
S1

det(f, ḟ ) (3.2)

(which is the simplest form of Kronecker’s formula (2.1)). Then Boutet de Monvel
and Gabber observed that the right-hand side of (3.2) still makes when f is not C1,
but merely in H 1/2. To do so, they interpret the RHS in (3.2) as a scalar product in the
dualityH 1/2−H−1/2(f̄ ∈ H 1/2, ḟ ∈ H−1/2). Using a density argument, they prove
that the RHS in (3.2) belongs to Z and they take it as definition for the H 1/2-degree of
f . On the other hand, recall (see Section 1) that H 1/2(S1) ⊂ VMO(S1). Therefore,
any f ∈ H 1/2(S1, S1) admits a VMO-degree in the sense of Section 1, and, in fact,
we have the following.
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Lemma 4. For every f ∈ H 1/2(S1, S1),

H 1/2-deg f = VMO-deg f.

Lemmas 2 and 4 show the unifying character of the VMO-degree, putting various
concepts of degree (for continuous maps, for W 1,n(Sn, Sn) maps, for H 1/2(S1, S1)

maps, etc.) under a common roof.
In 1996, I. M. Gelfand invited me to present at his seminar the VMO-degree

theory we had just developed with Louis Nirenberg. He asked me to elaborate on the
special case of the H 1/2(S1, S1)-degree. I wrote down Gagliardo’s characterization
of H 1/2 which, in this special case, takes the form

H 1/2(S1) =
{
f ∈ L2(S1);

∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dxdy <∞

}
.

Since I. M. Gelfand was not fully satisfied with Gagliardo’s formulation, I also wrote
down the characterization of H 1/2 in terms of the Fourier coefficients (an) of f :

H 1/2(S1) =
{
f ∈ L2(S1);

+∞∑
n=−∞

|n||an|2 <∞
}

(see also Lemma 5 below). At that point, I. M. Gelfand asked whether there is a
connection between the degree and the Fourier coefficients. At first, I was surprised by
his question, but I realized shortly afterwards that if one inserts the Fourier expansion

f (θ) =
+∞∑

n=−∞
ane

inθ

into (3.2), one finds

deg f =
+∞∑

n=−∞
n|an|2. (3.3)

Formula (3.3) is easily justified when f ∈ C1(S1, S1). The density ofC1(S1, S1) into
H 1/2(S1, S1) and the stability of degree under VMO-convergence (and thus under
H 1/2-convergence) yield the following.

Theorem 4. For every f ∈ H 1/2(S1, S1),

VMO-deg f =
+∞∑

n=−∞
n|an|2. (3.4)

Formula (3.4) raises some intriguing questions. First, however, we present a
consequence of Theorem 4.
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Corollary 1. Let (an) be a sequence of complex numbers satisfying

+∞∑
n=−∞

|n||an|2 <∞, (3.5)

+∞∑
n=−∞

|an|2 = 1, (3.6)

and

+∞∑
n=−∞

anān+k = 0 ∀k �= 0. (3.7)

Then

+∞∑
n=−∞

n|an|2 ∈ Z. (3.8)

Proof. Set

f (θ) =
+∞∑

n=−∞
ane

inθ ,

so that f ∈ H 1/2(S1,C). Moreover, we have∫
S1
(|f (θ)|2 − 1)eikθ dθ = 0 ∀k. (3.9)

Indeed, for k = 0, (3.9) follows from (3.6), and for k �= 0, (3.9) follows from (3.7).
Thus we obtain

|f (θ)| = 1 a.e. (3.10)

Applying Theorem 4, we find (3.8). ��
Pedagogical Question. Is there an elementary proof of Corollary 1 that does not rely
on Theorem 4?

Suppose now f ∈ C0(S1, S1) and f /∈ H 1/2. Then the series

+∞∑
n=−∞

|n||an|2

is divergent. The LHS in (3.4) is well defined, but the RHS is not. It is natural
to ask whether deg f may still be computed as a “principal value’’ of the series∑+∞

n=−∞ n|an|2 (which is not absolutely convergent). In [11] we raised the question
of whether standard summation processes can be used to compute the degree of a
general f ∈ C0(S1, S1). Let, for example,
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σN =
+N∑

n=−N
n|an|2

or

Pr =
+∞∑

n=−∞
n|an|2r |n|, 0 < r < 1.

Is it true that, for any f ∈ C0(S1, S1),

deg f = lim
N→+∞ σN or deg f = lim

r↓1
Pr?

J. Korevaar [20] has shown that the answer is negative. He has constructed interesting
examples of maps f ∈ C0(S1, S1) of degree 0 such that σN (respectively, Pr ) need
not have a limit as N → ∞ (respectively, r → 1) or may converge to any given
real number λ �= 0, including ±∞. In view of this fact, we now propose a more
“modest’’ question: Do the absolute values of the Fourier coefficients determine the
degree? More precisely, we have the following.

Open Problem 2 (Can one hear the degree of continuous maps?). Let f, g ∈
C0(S1, S1) and let (an), (bn) denote the Fourier coefficients of f and g, respectively.
Assume that

|an| = |bn| ∀n ∈ Z. (3.11)

Can one conclude that
deg f = deg g?

Answer the same question if one assumes only that f, g ∈ VMO(S1, S1).

Of course, the answer to Open Problem 2 is positive if, in addition, f, g ∈
H 1/2(S1, S1). This is a consequence of Theorem 4. The answer is still positive
in a class of functions strictly larger than H 1/2. The proof is based on the following.

Theorem 5. For every f ∈ W 1/3,3(S1, S1), we have

VMO-deg f = lim
ε↓0

1

ε2

∑
n∈Z

n�=0

|an|2 sin2 nε

n
. (3.12)

Corollary 2. Assume that f, g ∈ W 1/3,3(S1, S1) satisfy (3.11). Then

VMO-deg f = VMO-deg g.

Corollary 3 (J. P. Kahane [19]). Assume that f, g ∈ C0,α(S1, S1), with α > 1/3,
satisfy (3.11). Then

deg f = deg g.
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Note that C0,α ⊂ W 1/3,3 ∀α > 1/3. (This is an obvious consequence of
Gagliardo’s characterization (1.1)). Thus Corollary 2 implies Corollary 3. Our proof
of Theorem 5 is a straightforward adaptation of the ingenious argument of J. P. Kahane
[19] for C0,α, α > 1/3.

Remark 2. The conclusion of Theorem 5 holds iff ∈ W 1/p,p(S1, S1)with 1 < p ≤ 3
(since W 1/p,p ∩ L∞ ⊂ W 1/3,3 ∀p ≤ 3). (Note that when 1 < p ≤ 2 the conclusion
of Theorem 5 is an immediate consequence of Theorem 4 since

∑ |n||an|2 < ∞.
However, in the range 2 < p ≤ 3, the conclusion is far from obvious since the series∑ |n||an|2 may be divergent.) It is interesting to point out that formula (3.12) fails
if one assumes only f ∈ W 1/p,p(S1, S1) with p > 3. In fact, J. P. Kahane [19] has
constructed an example of a function f ∈ C0,1/3(S1, S1) such that deg f = 0 while

lim
ε↓0

1

ε2

∑
n∈Z

n�=0

|an|2 sin2 nε

n
= λ,

where λ could be any real number λ �= 0. The heart of the matter is the existence of
a 2π -periodic function ϕ ∈ C0,1/3(R,R) such that∫ 2π

0
(ϕ(θ + h)− ϕ(θ))3dθ = sin h ∀h.

This still leaves open the question whether Corollary 2 holds when W 1/3,3 is replaced
by W 1/p,p, p > 3.

Taking p→ 1 in Remark 2 suggests that Theorem 5 holds for f ∈ W 1,1. This is
indeed true, and there is even a stronger statement.

Theorem 6. For every f ∈ C0(S1, S1) ∩ BV(S1, S1), we have

deg f = lim
ε↓0

1

ε

+∞∑
n=−∞

|an|2 sin nε.

Consequently, we also have the following.

Corollary 4. Assume f, g ∈ C0(S1, S1) ∩ BV(S1, S1) satisfy (3.11). Then

deg f = deg g.

Remark 3. It was already observed by J. Korevaar in [20] that for every f ∈ C0∩BV,
one has

deg f = lim
N→∞

+N∑
n=−N

n|an|2,

which also implies Corollary 4.
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Proof of Theorem 5. We follow the argument of J. P. Kahane [19], except that we
work in the fractional Sobolev space W 1/3,3 instead of the smaller Hölder space
C0,α, α > 1/3. Set

d = VMO-deg f.

By [16, Theorem 3 (and Remark 10)], we may write

f (θ) = ei(ϕ(θ)+dθ)

for some ϕ ∈ VMO(S1,R). Applying [3, Theorem 1] and the uniqueness of the
lifting in VMO, we know that ϕ ∈ W 1/3,3.

Write∫ 2π

0
f (θ + h)f̄ (θ)dθ = 2π

+∞∑
n=−∞

|an|2einh =
∫ 2π

0
eidhei(ϕ(θ+h)−ϕ(θ))dθ,

(3.13)

eidh = 1+ idh+O(|h|2), (3.14)

and

ei(ϕ(θ+h)−ϕ(θ)) = 1+ i(ϕ(θ + h)− ϕ(θ))− 1

2
(ϕ(θ + h)− ϕ(θ))2

+O(|ϕ(θ + h)− ϕ(θ)|3).
(3.15)

Thus

Im[eidhei(ϕ(θ+h)−ϕ(θ))] = Im[(1+ idh)ei(ϕ(θ+h)−ϕ(θ))] +O(|h|2)
= (ϕ(θ + h)− ϕ(θ))+ dh+O|h|2)
+O(|h||ϕ(θ + h)− ϕ(θ)|2) (3.16)

+O(|ϕ(θ + h)− ϕ(θ)|3).
Integrating (3.16) with respect to θ yields∣∣∣∣∣

+∞∑
n=−∞

|an|2 sin nh− dh

∣∣∣∣∣ ≤ C|h|2 + C

∫ 2π

0
|ϕ(θ + h)− ϕ(θ)|3dθ. (3.17)

Next, integrating (3.17) with respect to h on (0, 2ε) gives∣∣∣∣∣∣∣
∑
n∈Z

n�=0

|an|2
(

1− cos 2nε

n

)
− 2dε2

∣∣∣∣∣∣∣
≤ Cε3 + C

∫ 2ε

0
dh

∫ 2π

0
|ϕ(θ + h)− ϕ(θ)|3dθ
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and therefore ∣∣∣∣∣∣∣
1

ε2

∑
n∈Z

n�=0

|an|2 sin2 nε

n
− d

∣∣∣∣∣∣∣
≤ Cε + C

ε2

∫ 2ε

0

∫ 2π

0
|ϕ(θ + h)− ϕ(θ)|3dhdθ

≤ Cε + C

∫ 2ε

0

∫ 2π

0

|ϕ(θ + h)− ϕ(θ)|3
|h|2 dhdθ,

(3.18)

which implies (3.12) since ϕ ∈ W 1/3,3. ��
Proof of Theorem 6. Since f ∈ C0∩BV, the corresponding ϕ satisfies ϕ ∈ C0∩BV.
We return to (3.17) with h = ε,∣∣∣∣∣1ε

+∞∑
h=−∞

|an|2 sin nε − d

∣∣∣∣∣ ≤ Cε + C

ε

∫ 2π

0
|ϕ(θ + ε)− ϕ(θ)|3dθ. (3.19)

Next, we have ∫ 2π

0
|ϕ(θ + ε)− ϕ(θ)|dθ ≤ ε‖ϕ‖BV. (3.20)

Inserting (3.2) into (3.19) gives∣∣∣∣∣1ε
+∞∑

n=−∞
|an|2 sin nε − d

∣∣∣∣∣ ≤ Cε + C Sup
θ

‖ϕ(θ + ε)− ϕ(θ)‖2
L∞ , (3.21)

and the conclusion follows since ϕ ∈ C0. ��
Remark 4. It has been pointed out to me by J. P. Kahane that a slightly stronger
conclusion holds in Theorem 5.

Theorem 5′. For every f ∈ W 1/3,3(S1, S1), we have

VMO-deg f = lim
ε↓0

1

ε

+∞∑
n=−∞

|an|2 sin nε. (3.22)

Proof. Returning to (3.17), it suffices to verify that

lim
h↓0

1

h

∫ 2π

0
|ϕ(θ + h)− ϕ(θ)|3dθ = 0. (3.23)

Set

I (t) =
∫ 2π

0
|ϕ(θ + t)− ϕ(θ)|3dθ
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so that

I 1/3(t1 + t2) ≤ I 1/3(t1)+ I 1/3(t2).

Thus

I (t1 + t2) ≤ 4(I (t1)+ I (t2)).

Consequently,

I (h) ≤ 8

h

∫ h

h/2
(I (s)+ I (h− s))ds = 8

h

∫ h

0
I (s)ds ≤ 8h

∫ h

0

I (s)

s2
ds.

Since ϕ ∈ W 1/3,3, we know that∫ 2π

0

I (s)

s2
ds <∞

and (3.23) follows.

4 New estimates for the degree

Going back to (3.3), we see that for every f ∈ C1(S1, S1),

| deg f | ≤
∑

|n||an|2. (4.1)

Combining (4.1) with Gagliardo’s characterization (1.1) of H 1/2, we find that

| deg f | ≤ C

∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dxdy. (4.2)

In fact, the sharp estimate

| deg f | ≤ 1

4π2

∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dxdy (4.3)

is an immediate consequence of (4.1) and the following.

Lemma 5. For every f ∈ H 1/2, one has∫
S1

∫
S1

|f (x)− f (x)|2
|x − y|2 dxdy = 4π2

+∞∑
n=−∞

|n||an|2. (4.4)

Proof. Write∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dxdy =

∫ 2π

0

∫ 2π

0

|∑ ane
inθ −∑ ane

inψ |2
|eiθ − eiψ |2 dθdψ
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=
∫ 2π

0

dγ

|eiγ − 1|2
∫ 2π

0

∣∣∣∑ an(1− einγ )einθ
∣∣∣2 dθ

= 2π
∑

|an|2
∫ 2π

0

|einγ − 1|2
|eiγ − 1|2 dγ.

However, for |n| ≥ 1,

|einγ − 1|2
|eiγ − 1|2 = (ei(n−1)γ + · · · + 1)(e−i(n−1)γ + · · · + 1),

and thus ∫ 2π

0

|einγ − 1|2
|eiγ − 1|2 dγ = 2π |n|.

Inserting this into the previous equality yields (4.4). ��

Remark 5. Inequality (4.3) can be viewed as an estimate for the “least amount of
H 1/2-energy’’ necessary to produce a map f : S1 → S1 with assigned degree. More
precisely, we have

Inf
f :S1→S1
deg f=n

∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dx dy = 4π2|n|, (4.5)

and the Inf in (4.5) is achieved when f (θ) = einθ . The existence of a minimizer
for similar problems where the standard H 1/2 norm is replaced by equivalent norms
(e.g., the trace of an H 1 norm on the disc with variable coefficients) is a very delicate
question because of “lack of compactness’’; we refer to [21].

Remark 6. Estimate (4.2) serves as a building block in the study of the least H 1/2-
energy of maps u : S2 → S1 with prescribed singularities. Such a question has been
investigated in [5]. More precisely, recall that

‖u‖2
H 1/2(S2)

=
∫
S2

∫
S2

|u(x)− u(y)|2
|x − y|3 dxdy.

Given points � = {p1, p2, . . . , pk} ∪ {n1, n2, . . . , nk}, consider the class of maps

A = {u ∈ C1(S2 \�, S1); deg(u, pi) = +1 and deg(u, ni) = −1 ∀i}.

Theorem 7 (Bourgain–Brezis–Mironescu [5]). There exist absolute constants C1,

C2 > 0 such that

C1L(�) ≤ Inf
u∈A ‖u‖

2
H 1/2(S2)

≤ C2L(�), (4.6)

where L(�) is the length of a minimal connection connecting the points (pi) to the
points (ni).



New Questions Related to the Topological Degree 151

Theorem 7 is the H 1/2-version of an earlier result [13] concerning H 1 maps from
S3 into S2 with singularities that had been motivated by questions arising in liquid
crystals with point defects, while the analysis in [5] has its source in the Ginzburg–
Landau model for superconductors. It is the LHS inequality in (4.6), which is related
to (4.2). The RHS inequality in (4.6) comes from a “brute force’’ construction called
the “dipole construction.’’

Remark 7. An immediate consequence of (4.3) is the estimate

| deg f | ≤ 1

2π2

∫
S1

∫
S1

|f (x)− f (y)|p
|x − y|2 ∀f ∈ C1(S1, S1), ∀p ∈ (1, 2). (4.7)

Estimate (4.7) deteriorates as p ↓ 1 since the RHS in (4.7) tends to +∞ unless f

is constant (see [4]). It would be desirable to improve the constant (1/2π2) and
establish that

| deg f | ≤ Cp

∫
S1

∫
S1

|f (x)− f (y)|p
|x − y|2 dxdy ∀f ∈ C1(S1, S1), ∀p ∈ (1, 2).

(4.8)
with a constant Cp ∼ (p − 1) as p ↓ 1. In the limit as p ↓ 1, one should be able to
recover (in the spirit of [4]) the obvious inequality

| deg f | ≤ 1

2π

∫
|ḟ |. (4.9)

Inequality (4.8) is also valid for p > 2, but it cannot be deduced from (4.3) and
its proof requires much work.

Theorem 8 (Bourgain–Brezis–Mironescu [6]). For everyp > 1, there is a constant
Cp such that for any (smooth) f : S1 → S1,

| deg f | ≤ Cp

∫
S1

∫
S1

|f (x)− f (y)|p
|x − y|2 = Cp‖f ‖pW 1/p,p . (4.10)

There is an estimate stronger than (4.10).

Theorem 9 (Bourgain–Brezis–Mironescu [7]). For any δ > 0 sufficiently small,
there is a constant Cδ such that, ∀f ∈ C0(S1, S1),

| deg f | ≤ Cδ

∫
S1

∫
S1

[|f (x)−f (y)|>δ]

1

|x − y|2 dxdy. (4.11)

Remark 8. In Bourgain–Brezis–Nguyen [8], it was proved that (4.11) holds for any
δ < 21/2. This was later improved by H.-M. Nguyen [22], who established the bound

| deg f | ≤ C

∫
S1

∫
S1

[|f (x)−f (y)|>31/2]

1

|x − y|2 dxdy; (4.12)

Nguyen [22] has also constructed examples showing that (4.11) fails for any
δ > 31/2.
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Open Problem 3. What is the behavior of the best constant Cδ in (4.11) as δ ↓ 0?
Is there a more precise estimate of the form

| deg f | ≤ Cδ

∫
S1

∫
S1

[|f (x)−f (y)|>δ]

1

|x − y|2 dxdy (4.13)

with C independent of δ, for all δ < 31/2?

In the spirit of [4], one might then be able to recover (4.9) as δ → 0.

Higher-dimensional analogues

Theorem 9 can be extended to higher dimensions.

Theorem 10 (Bourgain–Brezis–Mironescu [8]). Let n ≥ 1. For any δ ∈ (0, 21/2),

there is a constant Cδ such that ∀f ∈ C0(Sn, Sn),

| deg f | ≤ C

∫
Sn

∫
Sn

[|f (x)−f (y)|>δ]

1

|x − y|2n dxdy. (4.14)

A more refined version of Theorem 10 was obtained by H.-M. Nguyen [22].
He proved that (4.14) holds for any δ < [2 + 2/(n + 1)]1/2 and that this range of
δs is optimal for all dimensions n. From Theorem 10 we may, of course, recover
the earlier estimate of Bourgain–Brezis–Mironescu [6]: ∀n ≥ 1, ∀p > n, ∀f ∈
Wn/p,p(Sn, Sn),

| deg f | ≤ C(p, n)

∫
Sn

∫
Sn

|f (x)− f (y)|p
|x − y|2n dxdy = C(p, n)‖f ‖p

Wn/p,p . (4.15?)

In a different direction, it might be interesting to estimate other topological in-
variants in terms of fractional Sobolev norms. One of the simplest examples could
be the following.

Open Problem 4. Does one have

|Hopf-degree f | ≤ Cp

∫
S3

∫
S3

|f (x)− f (y)|p
|x − y|6 ∀p > 3, ∀f ∈ C1(S3, S2)?
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