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Abstract
Consider the problem:
~AgU=AU+US, U>0 onB,
U=0 onapB’,
where B’ is a ball onS® with geodesic radiug;, and Ags is the Laplace-Beltrami operator @%. We prove that for any
01 € (r/2, 7) and anyk > 1, there exist at leastk2solutions of this problem fok sufficiently large negativeTo cite this

article: H. Brezs, L.A. Peletier, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
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Résumé
Equations elliptiques avec exposant critiquesur S : nouvelles solutions non-minimisantes. On considére le probléme :
~AgU=AU+U® U>0 surB,
U=0 suroB’,
ol B’ est une boule sug® de rayon geodesique,, et Ags est I'opérateur Laplace—Beltrami sBF. On montre que pour
toutdq € (w/2, ), et toutk > 1, ce probleme possede au moirkssdlutions pour. < 0 avec|i| assez grand?Pour citer cet

article: H. Brezs, L.A. Peletier, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We study the Dirichlet problem on the unit sph&&n R*:
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—AgU=AU+U® U>0 onpg, (1)
U=0 onoB’. 2

Here A gs is the Laplace—Beltrami operator @A, and B’ is the geodesic ball centered at the North pole with geo-
desic radiug1. Note that the geodesic radius of the upper half sphexedisr /2, and of the full sphereitig = .

The exponent 5 is the Sobolev exponenRhand is known to be critical for existence of a solution.

The analogous problem iRV, with the Laplace—Beltrami operator taped by the ordinary Laplacian, has
been studied since 1983, when it was proposed by Brezis and Nirenberg [5]. Specifically they proves'tisat if
replaced by the balBg with radiusR, andN = 3, then there exists a solution if and only if

7T2 7T2

In recent papers by Bandle, Benguria and Peletier [3,4], it was shown that on the Shkeesituation is

significantly different. Ty showed that in the range> —3/4, there is a solution if and only if

Tl — 4912 72— 912
—— <A - 4)
407 h

Thus, in this geometry, there do exist solutions of problem (1)—(2Bif4 < A < 0 andé1 > #H

For A < —3/4 it was shown in [3], by means of a Pohozaev type identity [7], that there exist no solutions if
01 < /2, and it was conjectured in [3] that for evexry< —3/4 and every; < & with = — 0 sufficiently small
(depending or.), a solution would indeed exist. This conjecture is still open. More recently, in [1] and [2] it was
proved that giveid1 € (r/2, ) there exists al (61) < 0 such that for every < A(61) a solution exists. In addition,
a detailed numerical study [8] revealed multibump solutions in the range-3/4 andn /2 < 61 < 7; a family
which becomes increasingly rich as— —oo. This fact is extremely interesting because in this rangg, dhe
minimum of the corresponding variational problenmeyerachieved.

In the present Note we only deal withdial solutions and denote the North pole by 0: we establish the existence
of a countable family of solutions for values bfarge enough negative. Specifically we prove:

Theorem 1.1. Given any geodesic radi#g > /2 and anyk > 1, then there exists a constaAt= A(k,61) > 0
such that forx < —A, problem(1)—(2)has at leasek solutions, such thal/ (0) € (0, |x|1/4).

We also have strong evidence, partly numerical and partly rigorous of the following conjecture.

Conjecture. Let

1
A,,:—Z(nz—l), n=2.3,.... (5)

Letk > 1. Then, ifA < Ao, there exist at leas?k solutions of problengl)—(2)such thatl (0) < |A|/4 when the
geodesic radiug; of B’ is sufficiently close ta.

Remark 1. The critical numberg,, are, up to a factor1/4, equal to the ‘radial’ eigenvalues, of the eigenvalue
problem

—Agv = v onS. (6)
The radial eigenfunctions and their eigenvalues are given by

sin(nb)

w® ="Gn@

and u,=n’-1, n=223,.... (7)
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A special role in the analysis of these solutions is played by a familgrofind statesi.e., solutions of
Eq. (1) which exist and are positive and smooth on alS&f Branches of such solutions are found to emanate
from the constant solutioti = |A|%/4 of Eq. (1) at the special valugés= Ag11 = —k(k+1),k=1,2,.... These
critical values correspond to the odd eigenvalugs,; associated with eigenfunctions which are symmetric with
respectt® = 7 /2, i.e., with respect to the equatorial plane. We prove the following result about ground states:

Theorem 1.2. Letn > 1, and leth. < —n(n+1). Then there exist ground state€/s, ..., U,, whereU; = uy(0) has
k local maximak =1, 2, ..., n), or spikeson (0, ). They are all symmetric with respect to the equatorial plane,
i.e.ur(0) =ur(mr —0) for 0< 6 < 7, and the maxima of the spikes increase with the distance from this plane.

2. Sketch of the proofs

Using the stereographic projection—1:S® — R2 centered at the South pole, we transform the function
defined onB’ ¢ S® to a functionw on the ballB ¢ R%: w(x) = U(X x), x € B = Bg. Then problem (1)—(2)
becomes

1
——3 div(pVw) =iw+w®, w>0, xeBg, (89
0
w =0, x € 0Bg, (8b)
where
=" Bpg. 9
p(x) A x € Bg (9)

We look for solutions with radial symmetry, i.e. a solution of the farma= w(r), where we see from the geodesic
projection that =tan(@/2) andR = tan(61/2). Thus Eq. (8a) reduces to an ordinary differential equation with the
radiusr as independent variable. We transform this equatizce more, bringing it into the form of a generalised
Emden-Fowleequation. Thus, we put

1 1
2t==—r and y(@) =|A"Y4w(@) and o= =R (10)
r
Problem (8) now transforms to
Y 4+ Ma@®(®—y)=0, y>0, T<t<os, (113
y(T)=0 and y'(c0)=0, (11b)
where
S — 12
a(t) Y 12)

Note thatd =0, 6§ = 7 /2 andd = = correspondta =0, »r =1 andr = oo, and tor = oo, t =0 andr = —o0,
and that Eq. (11a) is symmetric with respect to the origin.
The proofs of both theorems are based on a shooting argument, combined with a continuation argument, as wa
used in [6]. We fixu(0) = w(0) = ||¥*y and hencey(co) = y, where O< y < 1 is an arbitrary constant. It is
well known that there then exists a unique solutiog y(¢; y) of the problem

Y+ Ma@®(® =) =0, o<t <oo, (133

{y(t) —y as t— oo, (13b
on some intervalrg, 0o). Since at = oo, the solution starts below the constant solutjos 1, its graph is convex
and there will be a time; = #1(y), at whichy = 1. In a left neighbourhood of the graph ofy will be concave,
and for|A| large enough it will intersect = 1 again, say at the point = 2(y). In the interval(s, t1), the graph of
y is concave, ang’ has one zero, say a = t1(y), a local maximum. Depending on the valud xf, the function
y(t) — 1 may have further zeros- < 74 < t3 < t2, and critical points - - < 13 < 72 < 11 in between the zeros. It is
readily established that
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n(y)—1) and w(y) -1t asy -1, (14)

where the point:a;,ﬁJ and ‘L']? are the zeros and the critical points of the solution of the equation we obtain by
linearising (13a) about = 1:

" +4lrla(t)z=0, teR. (15)

This is Eq. (6) transformed to Emden—Fowler form, wijthreplaced by #.|, so that the zerog? and critical
pointSt,? are all explicitly known.

As y decreases, the critical points are all shown to move=to-oco. Hence, if a critical point starts dR™, i.e.
if r,? > 0, then it must pass the origin at somec (0, 1). By symmetry, we can then continue the solutidr; yx)
as an even function to form a ground stateRan

In the proof of Theorem 1.1 we piit| = ¢ 2 and viewe problem (11) as a singular perturbation problem. We
fix T <0 andTy € (T, 0). Givene > 0 small enough we show that there existg & y. small enough such that
71(y:) = Tp. Using the energy function

2 x
_ € 22 _ 5
HO = 5oy 0+ FO0), PO = / (s5 — 5) ds, (16)
0
which, since
b &2 d'(t) 2

is decreasing oR~ and increasing olR™", we show thaty(¢; y.) has a first zerd, < Tp and thatT, Ty as
¢ — 0. Thus, by choosing small enough, we can ensure tifat> 7. We now keepe fixed and we show that
T:(y) > —oo asy — y+, Where 0< y_ < y4 < 1, so that there will be at least two valuesjoffor which
T:(y) = T. This yields two solutions, each with one spike: one neafT and one near the origin.

Remembering the transformation (10) we can expf®$g) in terms of the radius.(y) of the ball B in
problem (8), and we find tha&.(y) — +oco asy — y4.

Multi spike solutions are found is a similar manner by choosinguch thatr (y.) = To and showing that as
¢ — 0, the additional spikes all concentrate at the origin0O i.e. around the equatér= /2.
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