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On a semilinear elliptic equation with inverse-square potential
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Abstract. We study the existence and nonexistence of solutions to a semilinear elliptic equation
with inverse-square potential. The dividing line with respect to existence or nonexistence is given
by a critical exponent, which depends on the strength of the potential.
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In this paper we study the existence and nonexistence of solutions u > 0 of the
equation
c
—Au = U + uP (1)

in a ball Bg = B(0,R) of RY, N > 3. Here 7 = |z|, p > 1 and the coefficient ¢
satisfies the inequality 0 < ¢ < cg, where cg = (N — 2)?/4 is the best constant in
the Hardy inequality.

In this study an important role is played by the roots

a=at = (N—=2)/2++/co—c
of the equation
a® — (N —=2)a+c=0. (2)
Observe that a™ > o™ > 0.

Our main result asserts that nontrivial solutions of equation (1) exist if and
only if p < p* where
pt=1+2/a".

Theorem 1. Let 0 < ¢ < cqg. For anyp € (1,p"), there exists a nontrivial solution
to equation (1) with u? and u/r? belonging to L'(Br) and (1) holds in D'(Bg).

The proof of Theorem 1 is straightforward and elementary, except for the lim-
iting value ¢ = ¢g. The conclusion of Theorem 1 was known in many — but pre-
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sumably not all — cases (see e.g. [12]). Concerning nonexistence we have

Theorem 2. Let 0 < ¢ <co, p>p". Assumeu € LV (Bgr\ {0}), u> 0 satisfies

loc

—Au — %u > uP
r
in D'(Br \ {0}). Then u=0.

Theorem 2 is reminiscent of the nonexistence results of Brezis—Cabré [2] con-
cerning the so-called very weak solutions to the inequality
uP
—Au > 3 U >0, we Ll (Br\{0}),
for any p > 1. The nonexistence aspect in (1) when p > p™ was first investigated
by Pohozaev—Tesei [11]. However, the concept of solution used there was stronger;
our concept is the weakest possible.

We also observe that Theorem 2 seems (formally) to contradict the Implicit
Function Theorem since there is no solution of —Au = (¢/|z|?)u + uP + ¢, even
when ¢t > 0 is small. As observed in [1], this is due to the lack of an appropriate
functional space in which to apply the IFT.

Proof of Theorem 1. Set p~ =1+ 2/a™ and observe that

2
<pt for any 0 < ¢ < ¢

1<p < ——
Pr=N
and

I _ I _ N+2
11m = — 1m = —
CHOp N—Q’ cacop N—2,
N+2
lim p+ = lim pt = — =
LGP = e MNP =N

We distinguish three cases:
N+2
N-2"
Here the existence of a positive solution u € H}(Bgr) of (1) is a standard and
straightforward consequence of the Mountain Pass Theorem. In fact, one can find

a radial solution by working in the class of radial functions.

Case 1: 0<c<cg andp <

Case 2: 0<c<cgandp_ <p<pt.
Here we have an explicit solution of (1) of the form v = A/r® with 8 = 2/(p—1),
A > 0 given by
APl = 32 L (N —2)8—c>0,

because a~, at are the roots of (2) and the restriction a~ < 3 < a™ is equivalent
to the condition p~ < p < p*. Since 8 < N — 2, u satisfies (1) in the sense of
D/(Bp).
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Case 3: ¢ =cg and1<p<p+:%.

This case is a little more delicate : here we need the improved Hardy inequality

which asserts that
2 u? 2
[ vz [k elul,,
BR BR r

for any 1 < ¢ < 25 and u € C§°(Bg); see [5]. Let H be the Hilbert space

obtained by completing C§°(Bpr) with respect to the scalar product

a(u,v) = Vu-Vv—co/ uv/r?.
Br Br

Clearly H is contained in every LY(Bpg) with 1 < ¢ < ]3_17\72 with continuous in-

jection. Moreover the injection is compact. This fact is due to H. Brezis and the
proof is presented in Lemmas 3.2, 3.3 of [7]. We may then use the Mountain Pass
theorem in H and the Palais—Smale condition is satisfied.

Proof of Theorem 2. We will use the following lemma which can be seen as a fairly
easy consequence of Theorem 7.7 in [9]. It is also closely related to a result in [4].
We provide a proof for completeness.

Lemma 1. Let ¥ CC Q be a closed set of zero (newtonian) capacity and assume
that u, f € L}, .(2\ ) are two nonnegative functions such that

—Au>f in D'(Q\ X).
Then u, f € Li, () and

loc

—Au>f in D'(Q).
Furthermore given any smooth subdomain Q' CC Q, if v € LY(Q') is the solution
of
—Av=f inQ
v=0 on o,

in the sense that
/v(—AqS) = /fqb Vo € C*(Q)  such that ¢|aa =0,

then
u>v ae. in V. (3)

Proof of Lemma 1. Let uy, = min(u, k), k& > 0, which by Kato’s lemma (see [10])
satisfies

7Auk Z fk in D/(Q \ E), (4)
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where fr = fX{u<k}. Since —Awy is a nonnegative distribution on Q \ 3, it
extends to a nonnegative measure on 2\ X. Since uy, is bounded, it follows from a
Gagliardo-Nirenberg-type inequality that ug € H} (2\ ). We show next that in
fact uy € H} (). We first take a nonnegative function ¢ € C5°(€2) and a sequence
bn € CS°(Q\X) converging to ¢ in H* (). This is always possible since capg,(X) = 0
(take e.g. ¢, = @(1 — xpn) where x,, = 1 near ¥ and ||xn||g1 — 0 = capg(X)). We
then have, with Cj, = e,

/|Vuk|2¢ﬁ < ck/e*u'c\vukwg = —Ck/QSiV(e’“’“) Vg

= Cy <2/e‘“"q§nv¢n -Vur + /e‘"’“Auk(bfL>

1
< 20,3/6*“k\v¢n|2 + 5/e*“k|vu,€|2¢>i,

so that

[ vtusnr <ci [ o

Passing to the limit as n — oo in the above inequality implies that uy € H}. ().
We next show that
7Auk Z fk in DI(Q) (5)

Take ¢ and ¢,, as above, so that by (4),

/W@A@»z/n@p (6)

Now, as n — 00,

/uk(—A¢n) = /Vukv¢n — /VuquS: —/ukAqS.

Passing to the limit in (6) as n — oo, we thus obtain (5).
In particular uy is superharmonic in € and given almost any x € ) and any
ball B C ) centered at x, we have

wmzﬁém@w (7)

Now, since u € Li, (2 \ ¥) (and || = 0), up, — u a.e. in Q as k — oo and u is

finite almost everywhere. By Fatou’s lemma we then conclude from (7) that for
almost every ball B,
/ u < 00,
B

which means that u € L}OC(Q). Using this information, we can now easily pass to

the limit in (5) and conclude that f € L}, () and that

loc

—Au>f in D'(2).
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It only remains to prove (3). We let p,, be a standard smooth mollifier and let
Up = U * Pr, fnn = [ * pnp, 0 that for n large enough —Au,, > f, and u, > 0in .
By the maximum principle
Up, > Un in &,

where v,, solves
—Av, = f, in
v, =0 on 0.

Asn — oo, u, — uin LY (), f, — f in L'() and (by Lemma 4 in [3])
vy, — v in LY(Q)), which yields the desired conclusion. O

We can now turn to the

Proof of Theorem 2. We argue by contradiction and assume that v # 0. By

Lemma 1, u € L? (Bg), u/r* € L},.(Bgr) and by the mean-value formula for

superharmonic functions, given R’ € (0, R), there exists € > 0 such that u > € a.e.
in Br. Let A:=¢€?/2 > 0 and vy be the solution of

—AUO =X in BR/
v9o=0 on 0Bp.

Once more by Lemma 1, we have
0 <y <u. (8)

Next, for n > 1, define inductively v,, by

c 1 .
—A’Un = an_l + §’Uﬁ_1 + A mn BR/

Un = 0 on 8BRI

In order to have a well-defined solution v, (in the sense of Lemma 4 in [3]) it
suffices to prove that f := ﬁvn,l + %’0271 € LY(Bg/). For n = 1, this follows
from (8) and Lemma 1 which implies that mEw+ suP € L'(Bg/). Assume now
that v, 1 € L*(Bgr/) is well-defined. Using the maximum principle, it is easy to
see that

0<vy<v1 < <v,1 < u,

whence f € L'(Bg/) and by the maximum principle again, 0 < v,,_1 < v, < u.

By monotone convergence, letting v := lim,,_,, v,, we have that

1
—AU:LU-F—UP—F)\ iIlBR/
> 2

v=0 on JdBpg,
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in the sense that given any ¢ € C?(Bg/) such that Plos,, =0,

/v(—A¢)=/#v¢+%/UP¢+)\/¢.

This contradicts Theorem 1 of [6]. O

Remark 1. Theorems 1 and 2 extend to more general situations — for example,
when u? is replaced by |z|7Pu?. Assume 0 < ¢ < ¢g and set ¢* =1 + 2;—_5, where
o~ is as above. The conclusions of Theorems 1 and 2 remain valid with p™ replaced
by ¢T.

Remark 2. The argument presented in the proof of Theorem 2 may be used to
provide a slightly simpler proof of Theorem 1 in [2].

Remark 3. Theorem 2 can be extended to problems of the type

—Au u—+ uP,

c
 dist(z, X)2
where ¢ > 0 is a small constant, ¥ is a smooth compact manifold of codimension
k > 3 and p is larger than some critical exponent, which can be computed explicitly
in terms of k£ and c¢. The argument is the same as in the proof of Theorem 2 except
that the result of [6] is replaced by a result from [8].
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