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On a semilinear elliptic equation with inverse-square potential
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Abstract. We study the existence and nonexistence of solutions to a semilinear elliptic equation

with inverse-square potential. The dividing line with respect to existence or nonexistence is given
by a critical exponent, which depends on the strength of the potential.
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In this paper we study the existence and nonexistence of solutions u ≥ 0 of the
equation

−∆u =
c

r2
u + up (1)

in a ball BR = B(0, R) of R
N , N ≥ 3. Here r = |x|, p > 1 and the coefficient c

satisfies the inequality 0 < c ≤ c0, where c0 = (N − 2)2/4 is the best constant in
the Hardy inequality.

In this study an important role is played by the roots

α = α± := (N − 2)/2 ±
√

c0 − c

of the equation
α2 − (N − 2)α + c = 0. (2)

Observe that α+ > α− > 0.

Our main result asserts that nontrivial solutions of equation (1) exist if and
only if p < p+ where

p+ = 1 + 2/α−.

Theorem 1. Let 0 ≤ c ≤ c0. For any p ∈ (1, p+), there exists a nontrivial solution
to equation (1) with up and u/r2 belonging to L1(BR) and (1) holds in D′(BR).

The proof of Theorem 1 is straightforward and elementary, except for the lim-
iting value c = c0. The conclusion of Theorem 1 was known in many – but pre-
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sumably not all – cases (see e.g. [12]). Concerning nonexistence we have

Theorem 2. Let 0 < c ≤ c0, p ≥ p+. Assume u ∈ Lp
loc(BR \ {0}), u ≥ 0 satisfies

−∆u − c

r2
u ≥ up

in D′(BR \ {0}). Then u ≡ 0.

Theorem 2 is reminiscent of the nonexistence results of Brezis–Cabré [2] con-
cerning the so-called very weak solutions to the inequality

−∆u ≥ up

r2
, u ≥ 0, u ∈ Lp

loc(BR \ {0}),

for any p > 1. The nonexistence aspect in (1) when p ≥ p+ was first investigated
by Pohozaev–Tesei [11]. However, the concept of solution used there was stronger;
our concept is the weakest possible.

We also observe that Theorem 2 seems (formally) to contradict the Implicit
Function Theorem since there is no solution of −∆u = (c/|x|2)u + up + t, even
when t > 0 is small. As observed in [1], this is due to the lack of an appropriate
functional space in which to apply the IFT.

Proof of Theorem 1. Set p− = 1 + 2/α+ and observe that

1 < p− <
N + 2

N − 2
< p+ for any 0 < c < c0

and

lim
c→0

p− =
N

N − 2
, lim

c→c0

p− =
N + 2

N − 2
,

lim
c→0

p+ = +∞, lim
c→c0

p+ =
N + 2

N − 2
.

We distinguish three cases:

Case 1: 0 ≤ c < c0 and p < N+2

N−2
.

Here the existence of a positive solution u ∈ H1
0 (BR) of (1) is a standard and

straightforward consequence of the Mountain Pass Theorem. In fact, one can find
a radial solution by working in the class of radial functions.

Case 2: 0 ≤ c < c0 and p− < p < p+.
Here we have an explicit solution of (1) of the form u = A/rβ with β = 2/(p−1),

A > 0 given by
Ap−1 = −β2 + (N − 2)β − c > 0,

because α−, α+ are the roots of (2) and the restriction α− < β < α+ is equivalent
to the condition p− < p < p+. Since β < N − 2, u satisfies (1) in the sense of
D′(BR).
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Case 3: c = c0 and 1 < p < p+ = N+2

N−2
.

This case is a little more delicate : here we need the improved Hardy inequality
which asserts that

∫

BR

|∇u|2 ≥ c0

∫

BR

u2

r2
+ cq‖u‖2

Lq(BR),

for any 1 ≤ q < 2N
N−2 and u ∈ C∞

0 (BR); see [5]. Let H be the Hilbert space
obtained by completing C∞

0 (BR) with respect to the scalar product

a(u, v) =

∫

BR

∇u · ∇v − c0

∫

BR

uv/r2.

Clearly H is contained in every Lq(BR) with 1 ≤ q < 2N
N−2 with continuous in-

jection. Moreover the injection is compact. This fact is due to H. Brezis and the
proof is presented in Lemmas 3.2, 3.3 of [7]. We may then use the Mountain Pass
theorem in H and the Palais–Smale condition is satisfied.

Proof of Theorem 2. We will use the following lemma which can be seen as a fairly
easy consequence of Theorem 7.7 in [9]. It is also closely related to a result in [4].
We provide a proof for completeness.

Lemma 1. Let Σ ⊂⊂ Ω be a closed set of zero (newtonian) capacity and assume
that u, f ∈ L1

loc(Ω \ Σ) are two nonnegative functions such that

−∆u ≥ f in D′(Ω \ Σ).

Then u, f ∈ L1
loc(Ω) and

−∆u ≥ f in D′(Ω).

Furthermore given any smooth subdomain Ω′ ⊂⊂ Ω, if v ∈ L1(Ω′) is the solution
of

{

−∆v = f in Ω′

v = 0 on ∂Ω′,

in the sense that
∫

v(−∆φ) =

∫

fφ ∀φ ∈ C2(Ω̄′) such that φ|∂Ω′ ≡ 0,

then

u ≥ v a.e. in Ω′. (3)

Proof of Lemma 1. Let uk = min(u, k), k > 0, which by Kato’s lemma (see [10])
satisfies

−∆uk ≥ fk in D′(Ω \ Σ), (4)
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where fk := fχ{u<k}. Since −∆uk is a nonnegative distribution on Ω \ Σ, it
extends to a nonnegative measure on Ω \Σ. Since uk is bounded, it follows from a
Gagliardo–Nirenberg-type inequality that uk ∈ H1

loc(Ω \Σ). We show next that in
fact uk ∈ H1

loc(Ω). We first take a nonnegative function φ ∈ C∞
0 (Ω) and a sequence

φn∈C∞
0 (Ω\Σ) converging to φ in H1(Ω). This is always possible since capΩ(Σ) = 0

(take e.g. φn = φ(1 − χn) where χn = 1 near Σ and ‖χn‖H1 → 0 = capΩ(Σ)). We
then have, with Ck = ek,

∫

|∇uk|2φ2
n ≤ Ck

∫

e−uk |∇uk|2φ2
n = −Ck

∫

φ2
n∇(e−uk) · ∇uk

= Ck

(

2

∫

e−ukφn∇φn · ∇uk +

∫

e−uk∆ukφ2
n

)

≤ 2C2
k

∫

e−uk |∇φn|2 +
1

2

∫

e−uk |∇uk|2φ2
n,

so that
∫

|∇(ukφn)|2 ≤ C ′
k

∫

|∇φn|2.

Passing to the limit as n → ∞ in the above inequality implies that uk ∈ H1
loc(Ω).

We next show that
−∆uk ≥ fk in D′(Ω). (5)

Take φ and φn as above, so that by (4),
∫

uk(−∆φn) ≥
∫

fkφn. (6)

Now, as n → ∞,
∫

uk(−∆φn) =

∫

∇uk∇φn →
∫

∇uk∇φ = −
∫

uk∆φ.

Passing to the limit in (6) as n → ∞, we thus obtain (5).
In particular uk is superharmonic in Ω and given almost any x ∈ Ω and any

ball B ⊂ Ω centered at x, we have

uk(x) ≥ 1

|B|

∫

B

uk(y) dy. (7)

Now, since u ∈ L1
loc(Ω \ Σ) (and |Σ| = 0), uk → u a.e. in Ω as k → ∞ and u is

finite almost everywhere. By Fatou’s lemma we then conclude from (7) that for
almost every ball B,

∫

B

u < ∞,

which means that u ∈ L1
loc(Ω). Using this information, we can now easily pass to

the limit in (5) and conclude that f ∈ L1
loc(Ω) and that

−∆u ≥ f in D′(Ω).
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It only remains to prove (3). We let ρn be a standard smooth mollifier and let
un = u ∗ ρn, fn = f ∗ ρn so that for n large enough −∆un ≥ fn and un ≥ 0 in Ω′.
By the maximum principle

un ≥ vn in Ω′,

where vn solves
{

−∆vn = fn in Ω′

vn = 0 on ∂Ω′.

As n → ∞, un → u in L1(Ω′), fn → f in L1(Ω′) and (by Lemma 4 in [3])
vn → v in L1(Ω′), which yields the desired conclusion. ¤

We can now turn to the

Proof of Theorem 2. We argue by contradiction and assume that u 6≡ 0. By
Lemma 1, u ∈ Lp

loc(BR), u/r2 ∈ L1
loc(BR) and by the mean-value formula for

superharmonic functions, given R′ ∈ (0, R), there exists ǫ > 0 such that u ≥ ǫ a.e.
in BR′ . Let λ := ǫp/2 > 0 and v0 be the solution of

{

−∆v0 = λ in BR′

v0 = 0 on ∂BR′ .

Once more by Lemma 1, we have

0 ≤ v0 ≤ u. (8)

Next, for n ≥ 1, define inductively vn by






−∆vn =
c

|x|2 vn−1 +
1

2
vp

n−1 + λ in BR′

vn = 0 on ∂BR′

In order to have a well-defined solution vn (in the sense of Lemma 4 in [3]) it
suffices to prove that f := c

|x|2 vn−1 + 1
2vp

n−1 ∈ L1(BR′). For n = 1, this follows

from (8) and Lemma 1 which implies that c
|x|2 u + 1

2up ∈ L1(BR′). Assume now

that vn−1 ∈ L1(BR′) is well-defined. Using the maximum principle, it is easy to
see that

0 ≤ v0 ≤ v1 ≤ · · · ≤ vn−1 ≤ u,

whence f ∈ L1(BR′) and by the maximum principle again, 0 ≤ vn−1 ≤ vn ≤ u.

By monotone convergence, letting v := limn→∞ vn, we have that






−∆v =
c

|x|2 v +
1

2
vp + λ in BR′

v = 0 on ∂BR′ ,
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in the sense that given any φ ∈ C2(B̄R′) such that φ|∂BR′
≡ 0,

∫

v(−∆φ) =

∫

c

|x|2 vφ +
1

2

∫

vpφ + λ

∫

φ.

This contradicts Theorem 1 of [6]. ¤

Remark 1. Theorems 1 and 2 extend to more general situations – for example,
when up is replaced by |x|−βuq. Assume 0 < c ≤ c0 and set q+ = 1 + 2−β

α−
, where

α− is as above. The conclusions of Theorems 1 and 2 remain valid with p+ replaced
by q+.

Remark 2. The argument presented in the proof of Theorem 2 may be used to
provide a slightly simpler proof of Theorem 1 in [2].

Remark 3. Theorem 2 can be extended to problems of the type

−∆u =
c

dist(x,Σ)2
u + up,

where c > 0 is a small constant, Σ is a smooth compact manifold of codimension
k ≥ 3 and p is larger than some critical exponent, which can be computed explicitly
in terms of k and c. The argument is the same as in the proof of Theorem 2 except
that the result of [6] is replaced by a result from [8].
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