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THE INTERPLAY BETWEEN ANALYSIS AND TOPOLOGY IN
SOME NONLINEAR PDE PROBLEMS

HAIM BREZIS

0. From the Laplace equation to harmonic maps:

a historical perspective

Let us recall the formulation of the standard Dirichlet problem for the Laplace
operator. Let Ω ⊂ Rn be a smooth bounded domain and let ϕ : ∂Ω→ R be a given
function. The problem is to find a (smooth) function u : Ω→ R satisfying

(0.1) ∆u =
n∑
i=1

∂2u

∂x2
i

= 0 in Ω,

(0.2) u = ϕ on ∂Ω.

In a fundamental paper from 1890, H. Poincaré [49] (see also the lecture notes
from a course of H. Poincaré [50] at the Sorbonne) gave the first complete proof of
existence and uniqueness of a solution for problem (0.1) - (0.2) when n = 2 and
n = 3:

Theorem 1 (H. Poincaré). Given any ϕ ∈ C0(∂Ω), there is a unique classical
solution u ∈ C∞(Ω) ∩ C0(Ω) of (0.1) - (0.2).

The “balayage” method introduced by H. Poincaré in his proof of Theorem 1
relies heavily on tools of Potential theory: maximum principle, Harnack’s inequal-
ity, explicit representation formulas for the Dirichlet problem in a ball (Poisson
integral), etc.

In 1900, D. Hilbert [39], in a celebrated address, followed by a (slightly) more
detailed paper in 1904, announced that he had solved the Dirichlet problem (0.1) -
(0.2) via the Dirichlet principle which had been discovered by G. Green in 1833,
with later contributions by C. F. Gauss (1837), W. Thomson (=Lord Kelvin) (1847)
and G. Riemann (1853). Dirichlet’s principle asserts that any solution u of (0.1) -
(0.2) is a minimizer of the Dirichlet integral

E(v) =
∫
Ω

|∇v|2 =
n∑
i=1

∫
Ω

(
∂v

∂xi

)2
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in the class of function v : Ω→ R satisfying the boundary condition v = ϕ on ∂Ω.
The existence of a minimizer for E had been taken for granted until 1870, when
K. Weierstrass pointed out that a rigorous proof was lacking. It is easy to see that
any (classical) solution of (0.1) - (0.2) is a minimizer for E. The touchy points are
the following:

a) Prove directly, without invoking equations (0.1) - (0.2), that E admits a
minimizer.

b) Prove that the minimizer (which belongs to the class of functions having finite
energy) is smooth and satisfies (0.1) - (0.2).

The announcement of Hilbert turned out to be a little premature. Instead, it
became a program which stimulated many people during the period 1900-1940:
B. Levi, H. Lebesgue, L. Tonelli, R. Courant, S. L. Sobolev and many others.

In 1940, H. Weyl [60] completed Hilbert’s program. By 1940 the Calculus of
Variations had been placed on firm ground, and it provided a very fruitful link
between PDE and Functional Analysis; for further discussions we refer the reader
to the expository paper of H. Brezis and F. Browder [15].

Starting in the 1940’s a number of mathematicians considered similar questions
for systems. Namely, the unknown u : Ω→ R becomes a vector-valued function u :
Ω→ Rk or more generally u : Ω→ N where N(= Nk) is a k-dimensional manifold
(usually without boundary). The domain Ω ⊂ Rn could also be replaced by a
manifold M(= Mn) (with or without boundary). The most natural generalization
of the Dirichlet principle to this setting is the problem of harmonic maps. The
energy of a map u : M → N is defined by

E(u) =
∫
M

e(u)dV

where the energy density is defined in local coordinates by

e(u) =
∑
i,j,α,β

gij(u)γαβ(x)
∂ui

∂xα
∂uj

∂xβ

and γα,β, gij are the metric tensors onM andN . The corresponding Euler-Lagrange
equation associated with the minimization of E subject to the constraint u : M →
N is a system of nonlinear PDE’s:

(0.3) −∆u = Γ(u)(∇u,∇u) in M,

where ∆ is the Laplace-Beltrami operator on M and Γ is a quadratic expression in
∇u related to the Christoffel symbols on N . The solutions of the equation (0.3), i.e.,
the critical points of E, are called the harmonic maps. When M has a boundary
∂M , the PDE (0.3) is usually coupled with a Dirichlet boundary condition

(0.4) u = ϕ on ∂M.

Basic questions (existence, regularity, etc.) for systems of nonlinear PDE’s, and
in particular harmonic maps, became the subject of intensive investigations after
the middle of the 20th century. Here are some names of leading contributors for
the period 1940 to the early 80’s:

- starting in the 40’s: C. Morrey;
- starting in the 60’s: E. DeGiorgi, E. Giusti, M. Miranda, F. Almgren, H. Fed-

erer, J. Eells, J. H. Sampson, etc.;
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- starting in the 70’s: M. Giaquinta, R. Hamilton, S. Hildebrandt, R. Schoen,
S. T. Yau, W. Jäger, etc.;

- starting in the early 80’s: K. Uhlenbeck, L. Simon, J. Jost, L. Lemaire,
B. White, etc.

The interested reader will find more information in the following books and
review articles: C. Morrey [48], H. Federer [27], R. Hamilton [32], J. Eells and
L. Lemaire [22], [23], S. Hildebrandt [40], M. Giaquinta [28], J. Jost [42], E. Giusti
[31], R. Schoen and S. T. Yau [58].

Until the late 70’s, the main motivation came from problems arising in Differen-
tial Geometry and some of the tools came from Geometric Measure theory. Starting
in the mid 80’s two new trends became highly visible:

On the one hand, the number of papers dealing with harmonic maps has in-
creased enormously, giving an impression of chaotic growth. On the other hand,
motivations coming from physics brought a refreshing wind of new problems and
suggested new tools.

Here are a few topics in physics having connections with harmonic maps and
some of the mathematicians involved in their study:

A) Yang-Mills equations and gauge theories (M. Atiyah, S. K. Donaldson,
C. Taubes, K. Uhlenbeck, E. Witten, N. Seiberg, etc.)

B) Liquid crystals (J. Ericksen, D. Kinderlehrer, R. Hardt, F. H. Lin, H. Brezis,
J.-M. Coron, E. Lieb, etc.)

C) Superfluids, superconductors, Ginzburg-Landau models (F. Bethuel,
H. Brezis, F. Hélein, R. Hardt, F. H. Lin, T. Rivière, etc.)

D) Skyrmions (M. Esteban, E. Lieb, etc.)
Before getting into details, I would like to stress two major differences between

the standard Dirichlet problem (0.1) - (0.2) and the theory of harmonic maps.
1) In the standard Dirichlet problem harmonic functions are smooth (C∞) in

Ω. By contrast, harmonic maps have singularities. In fact, they often cor-
respond to visible physical observations: point or line “defects”, “vortices”, etc.
Sometimes singularities occur because of topological obstructions: for example
some (smooth) topologically nontrivial boundary conditions on ∂Ω do not admit
smooth extensions inside Ω (see the discussion in Section 2 and Section 4). Some-
times singularities appear even in the absence of topological obstructions
simply because solutions with singularities have lower energy (seems paradoxical,
but see Section 1.2). Here, the key words are partial regularity, i.e., the singular
set of (some) harmonic maps is often “small” (it consists of isolated points, lines,
etc.).

2) The fact that one deals with maps from the manifold M into the manifold
N makes the underlying function spaces much richer from the point of view of
Topology. Therefore one may hope to find multiple solutions - ideally (at least)
one in each homotopy class. On the other hand, the standard homotopy classes
of C0(M,N) need not be the relevant tool when dealing with singular solutions.
The natural function space is the Sobolev space H1(M,N) and its connected
component may be quite different from the ones of C0(M,N). For example
if M = N = S3, the space H1(S3, S3) is path-connected while C0(S3, S3) admits
connected components (classified by their degree). It is necessary to revisit Homo-
topy theory in the framework of Sobolev spaces, and this is a whole new field under
investigation; see Section 4.
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In this “labyrinth” of results I propose to concentrate on three very special cases.
Each of them displays different features. Despite their simplicity these model cases
illuminate general phenomena.

The plan is the following:
0. From the Laplace equation to harmonic maps: a historical perspective
1. Model Case I : M = B3 and N = S2

2. Model Case II : M = B2 and N = S2

3. Model Case III : M = B2 (or B3) and N = S1

4. Homotopy theory in the framework of Sobolev spaces
Here Bk denotes the unit ball in Rk.

1. Model Case I: M = B3
and N = S2

In this section we take Ω = M = B3, the unit ball in R3, and N = S2, the unit
sphere in R3. This is a simplified model for some problems occurring in the theory
of nematic liquid crystals (see e.g. the expository presentations in J. Ericksen [24],
J. Ericksen and D. Kinderlehrer [25], M. Kléman [46] and the paper of R. Hardt,
D. Kinderlehrer and F. H. Lin [34].)

1.1. The Dirichlet minimization problem. Given a smooth boundary condi-
tion ϕ : ∂Ω = S2 → S2, we investigate the minimization problem

(1.1) Min
u:Ω→S2

u=ϕ on ∂Ω

E(u), where E(u) =
∫
Ω

|∇u|2.

The natural functional space is

H1
ϕ(Ω, S2) = {u ∈ L2(Ω, S2);∇u ∈ L2 and u = ϕ on ∂Ω}.

It is easy to see that H1
ϕ is never empty; for example

u(x) = ϕ(x/|x|)
belongs to H1 because in 3-d ∫

Ω

∣∣∣∇( x

|x|

) ∣∣∣2 <∞.
Note that, by contrast,

C0
ϕ(Ω, S2) 6= φ ⇐⇒ deg(ϕ) = 0.

In particular, if deg(ϕ) 6= 0, every u ∈ H1
ϕ(Ω, S2) must have at least one singularity.

This is a typical situation where a topological condition forces the creation
of singularities.

It is easy to see that the minimum in (1.1) is achieved and satisfies the harmonic
map equation (0.3), which, in this special case, takes the form

(1.2) −∆u = u|∇u|2 in Ω.

Equation (1.2) is a coupled system:

(1.2′) −∆ui = ui|∇u|2 i = 1, 2, 3

where |∇u|2 =
∑

i,j

(
∂ui
∂xj

)2

. A weak solution u ∈ H1
ϕ(Ω, S2) of (1.2) is called a

weakly harmonic map.



ANALYSIS AND TOPOLOGY IN SOME NONLINEAR PDE PROBLEMS 183

We now turn to the question of regularity. An important result is

Theorem 2 (R. Schoen and K. Uhlenbeck [55], [56], [57]). Assume u is a minimizer
of E in H1

ϕ(Ω, S2). Then u is smooth (C∞) except at a finite number of points in
Ω.

A very general partial regularity result asserts that if u is a minimizing harmonic
map from Mn to Nk, then the singular set Σ of u has Hausdorff dimension ≤ (n−3).
When n = 3, the result is more precise: Σ consists of a finite number of points.

Shortly afterwards we investigated the shape of u near its singular points and
proved

Theorem 3 (H. Brezis, J.-M. Coron and E. Lieb [18]). Assume u is a minimizer
of E in H1

ϕ(Ω, S2) and let a ∈ Ω be one of its singular points; then, as x→ a,

(1.3) u(x) ∼ ±R
(
x− a
|x− a|

)
for some rotation R.

From the simple form of each singularity ai we deduce that

(1.4) deg(u, ai) = ±1.

By standard degree consideration we have

(1.5) deg(ϕ) =
∑
i

deg(u, ai)

and therefore

(1.6) | deg(ϕ)| ≤ Number of singularities of u.

This provides a lower bound for the number of singularities in terms of topo-
logical invariants. An interesting open direction is to obtain upper bounds for
the number of singularities. The argument of Schoen-Uhlenbeck is too indirect to
provide an explicit bound. An interesting estimate of F. Almgren and E. Lieb [2]
asserts that

(1.7) Number of singularities of u ≤ C
∫
∂Ω

|∇ϕ|2

for some universal constant C. Again, the argument is so involved that it is hard
to keep track of the constant C.

Open Problem 1. Evaluate the best constant C in (1.7). Is it C = 1/8π?

Note that 1/8π is a natural candidate in view of the estimate

(1.8) | deg(ϕ)| ≤ 1
8π

∫
∂Ω

|∇ϕ|2.

A special case of Open Problem 1 is whether the condition
∫
∂Ω

|∇ϕ|2 < 8π implies

the smoothness of minimizers.
A major difference between the standard Laplace equation (0.1) and the equation

of harmonic maps, e.g. (1.2), is that weak solutions of (0.1) are smooth while (1.2)
seems to carry little information about the singular set of u (this is true in 3-d;
however, the situation is quite different in 2-d; see Theorem 10 in Section 2). A
striking construction of T. Rivière yields:
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Theorem 4 (T. Rivière [51]). Given any smooth ϕ,ϕ 6= Constant, there exists a
weak solution u ∈ H1

ϕ(Ω, S2) of (1.2) such that

Sing (u) = Ω

where Sing (u) is the complement of the maximal open set in Ω on which u is
continuous.

In fact, there seems to be a plethora of weakly harmonic maps (see also the
construction in Section 1.2) and a natural question is

Open Problem 2. Given any closed set Σ ⊂ Ω, does there exist a weak solution
u ∈ H1

ϕ(Ω, S2) of (1.2), e.g. for some smooth ϕ, such that

Sing (u) = Σ?

Let us mention that there is an “intermediate” concept between minimizing har-
monic maps and weakly harmonic maps. This is the notion of stationary harmonic
maps: they are critical points of the energy E with respect to variations in the
domain Ω. Partial regularity results for such maps have been obtained by L. C.
Evans [26] and F. Bethuel [4].

1.2. The case where deg(ϕ) = 0; minimal connections and relaxed energy.
Throughout this section we assume that ϕ : ∂Ω = S2 → S2 is smooth and that

(1.9) deg(ϕ) = 0.

Here, there is no topological obstruction to the smoothness of minimizers, and
the initial guess would be that minimizers are smooth: why would they create
a singularity at a “high energy cost” when they are not forced by the topology
of ϕ? It turns out that the intuition is wrong! Sometimes configurations with
singularities have lower energy than smooth ones (for maps u ∈ H1

ϕ(Ω, S2)), i.e.,
singularities may save energy! This remarkable phenomenon was first pointed
out by R. Hardt and F. H. Lin:

Theorem 5 (R. Hardt and F. H. Lin [35]; see also H. Brezis [13]). There exist
smooth boundary data ϕ : ∂Ω → S2 satisfying (1.9) such that any minimizing
harmonic map in H1

ϕ(Ω, S2) must have singularities.

In fact the construction shows that for any ε > 0 there exists a smooth ϕ = ϕε :
∂Ω→ S2 satisfying (1.9) such that

(1.10) Min
u∈H1

ϕ(Ω,S2)

∫
|∇u|2 < ε,

while for every v ∈ H1
ϕ(Ω, S2) ∩ C0(Ω, S2) we have

(1.11)
∫
Ω

|∇v|2 ≥ 16π − ε.

Such an occurrence is sometimes called a gap phenomenon because

(1.12) Inf
u∈H1

ϕ(Ω,S2)
E(u) < Inf

u∈C1
ϕ(Ω,S2)

E(u).

An intriguing open problem in this kind of situation is

Open Problem 3. Given any smooth ϕ : ∂Ω = S2 → S2 with deg(ϕ) = 0, does
there exist a smooth harmonic map satisfying u = ϕ in ∂Ω?
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A program to tackle Open Problem 3 was proposed by F. Bethuel, H. Brezis
and J.-M. Coron [7]. We have not been able to complete the program, but I feel
that there are some tools which are useful in other contexts and I would like to
present them here; they involve the notion of relaxed energy and also of minimal
connection.

The first observation is that H1
ϕ(Ω, S2) ∩ C0(Ω, S2) is not dense in H1

ϕ for the
strong H1 topology. This is an immediate consequence of the gap phenomenon
(1.10) - (1.11). (A similar observation, without the boundary condition, had been
made earlier by R. Schoen and K. Uhlenbeck [56].) There is, however, density for
the weak topology :

Lemma 1 (F. Bethuel [4], [5]). Given any u ∈ H1
ϕ(Ω, S2) there exists a sequence

vn ∈ H1
ϕ(Ω, S2) ∩ C0(Ω, S2) such that

vn ⇀ u weakly in H1.

We define the relaxed energy of any u ∈ H1
ϕ(Ω, S2) to be

Erel(u) =

Inf

lim inf
n→∞

∫
Ω

|∇vn|2; vn ∈ H1
ϕ(Ω, S2) ∩ C0(Ω, S2) and vn ⇀ u weakly H1

.
(1.13)

The concept of relaxed energy plays a very natural role in the Calculus of Variations
(see e.g. M. Giaquinta, G. Modica and J. Souček [30]). Clearly

Erel(u) ≥ E(u) ∀u ∈ H1
ϕ(Ω, S1).

It is a pleasant surprise that the relaxed energy Erel has an explicit form involving
the “topological singularities” of u. More precisely, given any u in H1

ϕ(Ω, S2),
consider the vector field defined in local coordinates by

(1.14) D(u) = (u · uy ∧ uz, u · uz ∧ ux, u · ux ∧ uy)
(this vector field has been introduced in H. Brezis, J.-M. Coron and E. Lieb [18])
and the distribution T (u) defined through its action on C∞(Ω,R)-functions by the
formula

(1.15) < T (u), ζ >= −
∫
Ω

D(u) · ∇ζ +
∫
∂Ω

(Jac ϕ)ζ.

Note that the distribution T (u) acts, in fact, on Lip (Ω,R)-functions and also that

(1.16) D(u) · n = Jac ϕ on ∂Ω.

Define the nonnegative number

(1.17) L(u) = Max
ζ∈ Lip (Ω,R)
‖∇ζ‖L∞≤1

< T (u), ζ >

and observe that L(u) <∞ since∫
∂Ω

(Jac ϕ) = 4π deg(ϕ) = 0.
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Theorem 6 (F. Bethuel, H. Brezis and J.-M. Coron [7]). We have, for every
u ∈ H1

ϕ(Ω, S2),

(1.18) Erel(u) = E(u) + 8πL(u).

The distribution T (u) and the number L(u) have interesting interpretations in
terms of “topological singularities”.

A straightforward computation (see H. Brezis, J.-M. Coron and E. Lieb [18])
shows that if u ∈ C2(Ω, S2), then T (u) = 0. More generally, if u ∈ H1

ϕ(Ω, S2) and
u ∈ C0(Ω \

⋃m
i−1{ai}), then

(1.19) T (u) = 4π
∑

diδai

where a1, a2, . . . , am are m points in Ω, and di = deg(u, ai) = topological degree of
u restricted to any small sphere around ai. Here, the relation (1.19) is to be
interpreted in the sense of distributions, i.e.,

−
∫
Ω

D(u) · ζ +
∫
∂Ω

(Jac ϕ)ζ = 4π
∑
i

diζ(ai)

for every ζ ∈ Lip (Ω,R).
The distribution T (u) is a simple but efficient tool which carries information

about the location and the topological strength of the singularities. Note
that T detects only “topological singularities”. For example an “analytic
singularity” such as

u(x, y, z) = ( cos
1
rα

sin
1
rβ
, sin

1
rα

sin
1
rβ
, cos

1
rβ

),

with r2 = x2 + y2 + z2, 0 < α < 1/2, 0 < β < 1/2, goes undetected and T (u) = 0.
Since u = ϕ on ∂Ω we have

(1.20)
∑

di = − deg(ϕ) = 0.

The points ai with di > 0 (resp. di < 0) are called positive (resp. negative). We
list the positive points with each ai repeated di times in the list. Write this list as
p1, p2, . . . , pk, with each pj one of the positive points. Likewise, list the negative
points and write them as n1, n2, . . . , nk. The points of degree zero, i.e., the “non-
topological singularities”, are omitted from these two lists. Rewriting (1.19) we
may now state

Theorem 7. Assume u ∈ H1
ϕ(Ω, S2) and u is continuous on Ω except at a finite

number of points in Ω. Then

(1.21) T (u) = 4π

(
k∑
i=1

δpi −
k∑
i=1

δni

)
,

and L(u), defined by (1.17), can be represented as

(1.22) L(u) = Min
σ

k∑
i=1

|pi − nσ(i)|

where the minimum in (1.22) is taken over all permutations σ of the integers
{1, 2, ..., k}.
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Formula (1.22) is an immediate consequence of (1.17), (1.21), and the following
general

Lemma 2 (H. Brezis, J.-M. Coron and E. Lieb [18]). Assume X is a metric space.
Let p1, p2, . . . , pk and n1, n2, . . . , nk be 2k points in X.

Then

Max
ζ

{
k∑
i=1

(ζ(pi)− ζ(ni)); ζ ∈ Lip (Ω,R) and |ζ| Lip ≤ 1

}

= Min
σ

k∑
i=1

d(pi, nσ(i)),

(1.23)

where |ζ| Lip = Sup
x 6=y
|ζ(x) − ζ(y)|/d(x, y).

L is called the length of a minimal connection connecting the positive points
to the negative points.

Note that the distribution T (u) and the number L(u) are well-defined, through
the formulas (1.15) and (1.17), for every u ∈ H1

ϕ(Ω, S2). And then one has the
following:

Theorem 7′ (H. Brezis and P. Mironescu). Given any u ∈ H1
ϕ(Ω, S2), there exist

two infinite sequences p1, p2, . . . and n1, n2, . . . in Ω such that

(1.24)
∞∑
i=1

|pi − ni| <∞

and

(1.25) T (u) = 4π
∞∑
i=1

(δpi − δni).

Note that the right hand side in (1.25) is not a measure but a distribution
acting on Lip (Ω,R) through the formula

<
∑
i

(δpi − δni), ζ >=
∑
i

(ζ(pi)− ζ(ni)).

The proof follows closely an argument in J. Bourgain, H. Brezis and P. Mironescu
[10] (see Theorem 1). Moreover, L(u) (defined by (1.17)) has an interpretation in
terms of a minimal connection:

L(u) = Max
ζ

{ ∞∑
i=1

(ζ(pi)− ζ(ni)); |ζ|Lip ≤ 1

}

= Inf
(p̃i),(ñi)

{ ∞∑
i=1

|p̃i − ñi|;T (u) =
∞∑
i=1

(δp̃i − δñi)
}
.

(1.26)

Useful related results are:

Theorem 8 (F. Bethuel [4], [5], F. Bethuel and X. Zheng [9]). Let R denote the
class of maps in H1

ϕ(Ω, S2) which are smooth on Ω, except at a finite number of
points. Then R is dense in H1

ϕ (in the strong H1 topology).

Theorem 9 (F. Bethuel [5]). Let u ∈ H1
ϕ(Ω, S2). Then L(u) = 0 if and only if

there is a sequence (un) in C1
ϕ(Ω, S2) such that un → u in H1.
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One may also ask whether a kind of “converse” to Theorem 7′ holds:

Open Problem 4. Given any sequence of points (pi), (ni) in Ω with∑∞
i=1 |pi − ni| <∞, can one find some u ∈ H1

ϕ(Ω, S2) such that

T (u) = 4π
∞∑
i=1

(δpi − δni)?

What is the optimal bound for
∫
|∇u|2 in terms of ϕ and the length of a minimal

connection L = Max
ζ
{
∑∞

i=1(ζ(pi)− ζ(ni)); |ζ| Lip ≤ 1}?

The dipole construction introduced in H. Brezis, J.-M. Coron and E. Lieb [18]
(see also F. Bethuel [5] and T. Rivière [51]) should be a basic ingredient in the
construction of u.

We refer to M. Giaquinta, G. Modica and J. Souček [30], R. L. Jerrard and
H. M. Soner [41], and G. Alberti, S. Baldo and G. Orlandi [1] for related questions
in a more general geometric setting.

We now return to Open Problem 3. The first observation is that Erel (defined by
(1.13) or by (1.18)) is lower-semicontinuous (l.s.c.) for the weak topology on H1

ϕ.
Therefore,

(1.27) Min
u∈H1

ϕ(Ω,S2)
Erel(u) is achieved.

In fact, for every t ∈ [0, 1] the functional

Et(u) =
∫
Ω

|∇u|2 + 8πtL(u)

defined on H1
ϕ(Ω, S2) is l.s.c. for the weak topology on H1

ϕ, and thus

(1.28) Min
u∈H1

ϕ(Ω,S2)
Et(u) is achieved.

Moreover, any critical point of Et on H1
ϕ(Ω, S2) (and in particular any minimizer)

is a weakly harmonic map; i.e., it satisfies (1.2). In particular, this machinery
allows one (in general) to construct a family of weakly harmonic maps with a
given boundary condition ϕ. When t = 0, the minimizers of E0 = E usually
have singularities. One may hope that by “turning on” the L-term in Et, the
singularities of opposite signs will attract each other and eventually coalesce as
t→ 1. Unfortunately, little is known about the regularity of minimizers for Et.

Open Problem 5. Let u be a minimizer for Et, 0 < t < 1, in H1
ϕ(Ω, S2). Is u

smooth in Ω except at a finite number of points in Ω? Let u be a minimizer for E1.
Is u smooth in Ω? (Try first to show that L(u) = 0.)

Partial regularity results for Et are discussed in M. Giaquinta, G. Modica and
J. Souček [30].

2. Model Case II: M = B2
and N = S2

In this section we take Ω = M = B2, the unit disc in R2, and N = S2, the
unit sphere in R3. Given a smooth boundary condition ϕ : ∂Ω = S1 → S2, we
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investigate the minimization problem

(2.1) Min
u:Ω→S2

u=ϕ in ∂Ω

E(u), where E(u) =
∫
Ω

|∇u|2.

There are two major differences with Model Case I:
1) Here, there is no topological obstruction to regularity. For any smooth Dirich-

let data ϕ, the class C∞ϕ (Ω, S2) is nonempty; the topological condition deg(ϕ) = 0
encountered in Section 1 has no counterpart.

2) A remarkable result of F. Hélein asserts that any weak solution u ∈ H1
ϕ(Ω, S2)

of (1.2) is smooth. This is true in a much more general setting: the target N can
be a manifold (of any dimension) provided the domain Ω is 2-dimensional.

Theorem 10 (F. Hélein [37], [38]). Assume u ∈ H1
ϕ(Ω, N) is a weakly harmonic

map, where N is any Riemannian manifold. Then u is smooth.

Remark 1. The regularity result of F. Hélein is very delicate and sensitive to the
special structure of the harmonic map equation (1.2) (or (0.3)). For other systems
similar in appearance to (1.2) – with quadratic growth in ∇u – the same conclusion
might fail: weak H1 solutions are not smooth; see e.g. S. Hildebrandt [40]. There
seems to be some kind of compensation phenomenon, possibly similar to the null-
condition of S. Klainerman; see e.g. S. Klainerman and M. Machedon [44], [45].
Another well-known equation which has the property that weak H1 solutions are
smooth is the system ∆u = ux ∧ uy occurring in the study of surfaces of constant
mean curvature (see Wente [59], H. Brezis and J.-M. Coron [17]). An interesting
direction of research is

Open Problem 6. Let u ∈ H1(Ω, N) be a weak solution of

−∆u = F (x, u,∇u) in Ω ⊂ R2.

For which nonlinearities F can one conclude that u is smooth?

Here, one of the intriguing directions of research is the existence of multiple
solutions for (1.2). Such a question was originally raised by M. Giaquinta and
S. Hildebrandt [29]. Clearly,

Min
u∈H1

ϕ(Ω,S2)

∫
|∇u|2 is achieved,

and the range u(Ω) of a minimizer lies in the “small” spherical cap on S2 enclosed
by the curve ϕ(∂Ω). M. Giaquinta and S. Hildebrandt asked whether there is more
than one solution to (1.2). The answer is indeed positive.

Theorem 11 (H. Brezis and J.-M. Coron [16], J. Jost [42]). Given any ϕ 6≡ con-
stant, problem (1.2) admits at least two distinct solutions.

The technique we used in H. Brezis and J.-M. Coron [16] illustrates (in a rather
elementary setting) the need to work with homotopy classes within the frame-
work of Sobolev spaces (more about this in Section 4). The heart of the matter
is

Lemma 3. The space H1
ϕ(Ω, S2) admits infinitely many connected components.



190 HAIM BREZIS

In order to construct these components we use a “relative” degree. Fix a
“reference” map u0 ∈ H1

ϕ(Ω, S2), for example a minimizer for (2.1). Given any
u ∈ H1

ϕ(Ω, S2) set

v =
(
u
u0

)
: S2 → S2;

here we identify one copy of Ω with the upper hemisphere S2
+ and another copy of

Ω with lower hemisphere S2
−. The two maps u and u0 glue well since they agree on

the hemisphere and thus v ∈ H1(S2, S2). The key point is

Lemma 4. Maps in H1(S2, S2) have a well-defined degree.

Lemma 4 is far from obvious since maps in H1(S2, S2) need not be continuous
and one cannot rely on standard degree. One way of defining degree is via the
classical Kronecker formula

(2.2) deg(w) =
1

4π

∫
S2

Jac(w)

for any w ∈ C1(S2, S2). If w ∈ H1(S2, S2), the right hand side in (2.2) makes sense
(since Jac(w) is the determinant of a 2× 2 matrix with L2 entries). An additional
density argument due to R. Schoen and K. Uhlenbeck [56] allows one to conclude
that the r.h.s. in (2.2) belongs to Z for every w ∈ H1(S2, S2) (see Section 4).

One may then decompose H1
ϕ(Ω, S2) into disjoint classes

H1
ϕ(Ω, S2) =

⋃
k∈Z
Ek

where

Ek = {u ∈ H1
ϕ(Ω, S2); deg

(
u
u0

)
= k}.

It is tempting to minimize the energy in each class Ek. Here we encounter a new
difficulty which is common in “critical” problems involving “bubbling of spheres”
(as in J. Sacks and K. Uhlenbeck [54]): “lack of compactness”, etc.; namely,
Inf
Ek

E need not be achieved, the reason being that a minimizing sequence con-

verges only weakly in H1 but the class Ek defined via (2.2) is not closed under
weak convergence. To overcome this difficulty we use a method similar to the one
introduced by Th. Aubin [3] for the Yamabe problem. This device works (assuming
ϕ 6≡ Constant) and yields the existence of a minimizer for E in one of the classes
E+1 or E−1. The existence of more solutions for the equation (1.2) is not known
even when ϕ has a simple explicit form. Consider the Dirichlet data

(2.3) ϕ(x, y) = (Rx,Ry,
√

1−R2) for (x, y) ∈ ∂Ω

with 0 < R < 1. In this case one can write down explicitly two solutions:

u(x, y) =
2λ

λ2 + r2
(x, y, λ) + (0, 0,−1)

and

ū(x, y) =
2µ

µ2 + r2
(x, y,−µ) + (0, 0, 1)

with (x, y) ∈ Ω, r2 = x2 + y2, λ = 1
R +

√
1
R2 − 1 and µ = 1

R −
√

1
R2 − 1.
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It is not difficult to see that u is the absolute minimizer of E in H1
ϕ(Ω, S2). Using

u as the reference map u0, we see that ū ∈ E−1 and that ū is the minimizer in the
class E−1. In addition, one can show that besides these two, no other minimizer
exists in any of the classes Ek.

Open Problem 7. Are there other solutions of (1.2) besides u and ū?

Either way, the answer to Open Problem 7 would be illuminating. A negative
answer (only 2 solutions) might possibly shed some light on the important questions
of whether solutions of some nonlinear systems inherit the symmetry of the data.
A positive answer (more than 2 solutions) might involve the development of new
techniques for finding (nonminimizing) critical points in variational problems with
lack of compactness.

3. Model Case III: M = B2 (or B3) and N = S1

In this section we first take Ω = M = B2 and later Ω = M = B3. N will always
be S1, the unit circle in R2.

3.1 M = Ω = B2 and N = S1. Given a smooth boundary condition ϕ : ∂Ω =
S1 → S1, we investigate the minimization problem

(3.1) Min
u:Ω→S1

u=ϕ on ∂Ω

E(u), where E(u) =
∫
Ω

|∇u|2.

A new feature occurs, which was not present in Model Cases I and II.
a) If deg(ϕ) = 0, there is no topological obstruction: C∞ϕ (Ω, S1) is not empty.

In this case we will see (in Theorem 12) that problem (3.1) is quite easy.
b) However, if deg(ϕ) 6= 0, there is a topological obstruction to regularity since

C0
ϕ(Ω, S1) is empty. In some sense, the situation is “worse” than in Model Case I!

Recall that, there, if deg(ϕ) 6= 0, C0
ϕ(Ω, S2) was empty, but at least the class

H1
ϕ(Ω, S2) was not empty. Here, if deg(ϕ) 6= 0, both C0

ϕ(Ω, S1) and the natural
energy class H1

ϕ(Ω, S1) are empty (see Lemma 5). Thus problem (3.1) makes no
sense.

In fact, for many years, this case was considered “off-limits”; to quote R. Hamil-
ton [32]: “If there is a topological obstruction to extending [the boundary condition]
h, then Mh(X,Y ) is empty and nothing more can be said.” At the beginning of
the 90’s the “taboo” was broken. The incentive came from problems in physics,
specifically in the theory of superfluids and superconductors. Their mathematical
modeling resembles (3.1), and the “solutions” in the physics literature involve point
vortices (in 2−d) or line vortices (in 3−d). The new idea is to tackle the “impossi-
ble” problem (3.1) via a Ginzburg - Landau mechanism; namely, the constraint
u : Ω → S1 (which is at the heart of the topological obstruction) is relaxed and
replaced by a Ginzburg - Landau “penalty”. More precisely, one considers all func-
tions u : Ω→ R2, but the standard energy

∫
Ω

|∇u|2 is replaced by the Ginzburg -

Landau energy

(3.2) Eε(u) =
1
2

∫
Ω

|∇u|2 +
1

4ε2

∫
Ω

(|u|2 − 1)2
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with a small parameter ε > 0. The strategy is to study the approximate problem

(3.3) Min
u∈H1

ϕ(Ω,R2)
Eε(u)

and to analyze the limiting behavior of minimizers uε as ε→ 0. This program was
initiated in 1992 by F. Bethuel, H. Brezis and F. Hélein [8] and was followed by
many subsequent developments.

Here are some precise statements.

Lemma 5. Let ϕ : ∂Ω = S1 → S1 be a smooth map. Then

H1
φ(Ω, S1) 6= ∅ ⇐⇒ deg(ϕ) = 0.

The proof of Lemma 5 involves the H1/2-degree theory for maps of S1 into
itself (see H. Brezis and L. Nirenberg [21]); it stresses once more the need to study
Homotopy theory in the framework of Sobolev spaces (see Section 4).

When deg(ϕ) = 0, we have a complete and simple answer to problem (3.1).

Theorem 12. Given any smooth map ϕ : ∂Ω = S1 → S1 with deg(ϕ) = 0,
there exists a unique minimizer u of problem (3.1) – in fact a unique solution
u ∈ H1

ϕ(Ω, S1) of the corresponding PDE (1.2). More precisely, u = eiψ where ψ
is the solution of

∆ψ = 0 in Ω
ψ = ψ0 on ∂Ω

and ψ0 is a smooth lifting of ϕ, i.e., eiψ0 = ϕ on ∂Ω.

The proof of Theorem 12 relies heavily on the theory of lifting for Sobolev maps
into S1 initiated by F. Bethuel and X. Zheng [9] and completed by J. Bourgain,
H. Brezis and P. Mironescu [10].

When deg(ϕ) 6= 0 the situation is much more complicated. Here is a typical
result:

Theorem 13 (F. Bethuel, H. Brezis and F. Hélein [8]). For a subsequence εn →
0, uεn → u∗ pointwise on Ω, except at a finite number of distinct points a1, a2, ..., ad
in Ω, where d = | deg(ϕ)|. Moreover u∗ is smooth on Ω, except at the points
(ai), |u∗| = 1 on Ω, and u∗ satisfies the equation of harmonic maps (1.2) on
Ω \

⋃d
i=1{ai}. Moreover, if deg(ϕ) > 0, then, near each ai,

(3.3) u∗(x) ∼ R (x− ai)
|x− ai|

as x→ ai

for some rotation R.

The limit u∗ can be viewed as a “minimizing harmonic map” in some generalized
sense even though its energy

∫
Ω

|∇u∗|2 is infinite. In fact
∫
Ω

|∇uε|2 ∼ 2πd log(1/ε) as

ε→ 0. Infinite energies do not seem to bother physicists: one can “renormalize” the
energy and keep only a finite quantity which plays an important role in locating
the position of the singularities. We refer to the book of F. Bethuel, H. Brezis and
F. Hélein [8] for a detailed discussion. We also point out that formula (3.3) implies

(3.4) deg(u∗, ai) = +1 ∀i
if deg(ϕ) > 0 (otherwise deg(u∗, ai) = −1, ∀i). Property (3.4) is consistent with the
physical observation that all vortices have the same orientation. This is in contrast
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to the situation described in Section 1, where singularities of opposite orientation
do coexist. In view of (3.4) the count of the number of singularities is very easy.

Another important feature is that the limit u∗ seems to be a kind of “canonical”
solution for the “impossible” problem (3.1). It is in some sense “intrinsic” and does
not depend on the Ginzburg-Landau approximation. There are several ways of re-
laxing the topological obstruction by introducing an ε-approximation: for example
by drilling holes of size ε in Ω, or by considering the energy

∫
Ω

|∇u|2−ε. They all

yield the same limit u∗ (see F. Bethuel, H. Brezis and F. Hélein [8], and R. Hardt
and F. H. Lin [36]).

3.2 M = Ω = B3 and N = S1. Here one investigates problem (3.1) with a bound-
ary condition ϕ : ∂Ω = S2 → S1 having singularities. An important example is
the case where ϕ is smooth on ∂Ω except at a finite number of singularities ai on
∂Ω, and that, near each ai,

(3.5) ϕ(z) ∼
(

(z − ai)
|z − ai|

)di
, z ∈ ∂Ω,

modulo rotation. For simplicity one assumes that ∂Ω is flat near each ai, so that
the right hand side in (3.5) belongs to S1. Clearly∑

di = 0,

and hence, one can list the points (ai) as (pi), (ni) (see Section 1). Here again one
can prove that the natural energy class H1

ϕ(Ω, S1) is empty (this is already true
locally, near a singularity; once more the proof uses the H1/2-degree theory for
maps of S1 into itself). So that problem (3.1) is impossible, and it is approached
via the Ginzburg-Landau mechanism. The main result is the following:

Theorem 14 (T. Rivière [52], F. H. Lin and T. Rivière [47]). For a subsequence
εn → 0, uεn → u∗ pointwise on Ω, except along a minimal connection Σ connecting
in Ω the points pi to the points ni. Moreover u∗ is smooth in Ω \Σ and u∗ satisfies
the equation of harmonic maps (1.2) in Ω \ Σ.

J. Bourgain, H. Brezis and P. Mironescu [12] have investigated the case of a
general boundary condition ϕ ∈ H1/2(∂Ω, S1).

An interesting

Open Direction 8. Investigate other situations (for general manifolds M and N)
where the boundary condition ϕ : ∂M → N generates an obstruction and where
the natural energy space H1

ϕ(M,N) is empty.

4. Homotopy theory in the framework of Sobolev spaces

Let M and N be two compact Riemannian manifolds. One of the central ques-
tions in Topology is the study of homotopy classes of C0(M,N), i.e., the connected
(or equivalently path-connected) components of the metric space C0(M,N). In
other words, homotopy classes are the equivalence classes corresponding to the
equivalence relation: f ∼ g if there exists a path h(t) ∈ C0([0, 1];C0(M,N)) con-
necting f to g, i.e., h(0) = f and h(1) = g. For example, when M = N = Sn, it is
well-known that f ∼ g if and only if deg (f) = deg(g).
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In this section, I would like to present some new results concerning the study
of homotopy classes when the space C0(M,N) is replaced by the Sobolev space
W 1,p(M,N).

Throughout this section M and N are smooth, connected, compact, oriented,
Riemannian manifolds. We will always assume that ∂N = φ, but M may or may
not have a boundary; in particular the case where M is a domain in Rn is of
interest. The reader is encouraged to keep in mind elementary manifolds, such
as spheres, balls and their products; the results are already of interest for such a
simple situation.

Let us start with a simple observation about the scale of spaces Ck(M,N)
equipped with the metric

d(f, g) =
∑
|α|≤k

sup
x∈M

d(Dαf(x), Dαg(x)).

In principle, for each k, one may introduce a new equivalence relation:

f ∼ g in Ck ⇐⇒ f, g belong to the same path-connected component of Ck;

i.e., there exists a homotopy h(t) ∈ C([0, 1];Ck(M,N)) such that h(0) = f and
h(1) = g.

In fact, such a notion has no interest because of the “standard”

Lemma 6. Let f, g ∈ Ck(M,N); then f ∼ g in Ck if and only if f ∼ g in C0.

The proof consists of smoothing the given homotopy h ∈ C([0, 1];C0(M,N)).
For this purpose we may assume that N ⊂ RK is an isometric embedding. Then
ρε ? h does not take its values into N , but ρε ? h is uniformly close to h as ε → 0
(because h is continuous). And then one may project ρε?h back onto N for ε small.

As a consequence of Lemma 6 we see that the components of Ck(M,N) shrink
as k increases, but they “do not change their shape”. By contrast, we will see that
the situation is totally different in the scale of Sobolev spaces W 1,p.

Let 1 ≤ p <∞ be a real number. Let M and N be as above and N ⊂ RK . The
spaces W 1,p(M,R) and W 1,p(M,RK) are defined as usual and equipped with the
standard norm ‖f‖W 1,p . Set

W 1,p(M,N) = {f ∈ W 1,p(M,RK); f(x) ∈ N a.e.},
equipped with the distance

d(f, g) = ‖f − g‖W 1,p(M,RK).

As a metric space, W 1,p(M,N) admits connected components and also path-
connected components. In fact, they coincide because of the following result which
is implicit in the work of F. B. Hang and F. H. Lin [33].

Proposition 1. Given f ∈ W 1,p(M,N), there exists ε > 0 (depending on f) such
that

d(g, f) < ε =⇒ g ∼ f in W 1,p(M,N).

We say that g ∼ f in W 1,p if there is a path h(t) ∈ C([0, 1];W 1,p(M,N)) such
that h(0) = f and h(1) = g.

A simple but useful example is the case M = N = S2 which was already
mentioned in Section 2. More generally, let us examine the space W 1,p(S2, S2),
1 ≤ p < ∞, from the point of view of its components. One has to consider 3
different cases:
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a) Case p > 2. It is not difficult to prove, following the same idea as in Lemma 6
and using the Sobolev embedding, W 1,p(S2, S2) ⊂ C0(S2, S2),

Lemma 7. Let f, g ∈ W 1,p(S2, S2); then f ∼ g in W 1,p(S2, S2) if and only if
f ∼ g in C0. In particular, the homotopy classes of W 1,p(S2, S2) can be classified
using their standard degree.

b) Case p = 2. This is a very interesting case because it is a limiting case
for the Sobolev embedding. W 1,2 is not contained in C0, so that the standard
notion of degree is not well-defined. One may nevertheless still define a degree, as
we already mentioned in Section 2, using the following strategy:

Step 1. If f ∈ C1(S2, S2), Kronecker’s formula asserts that

(4.1) deg(f) =
1

4π

∫
S2

det(∇f).

When f ∈ W 1,2(S2, S2) the integral in (4.1) still makes sense. In order to prove
that the right-hand side in (4.1) is an integer, one relies on

Step 2. This is an important observation due to Schoen–Uhlenbeck [56]. If
f ∈ W 1,2(S2, S2), then ρε ? f does not take its values into S2, and ρε ? f does not
converge uniformly to f as ε→ 0 (otherwise f would be continuous). However, one
can prove that |(ρε ? f)(x)| → 1 uniformly in x. This is a consequence of the fact
that f ∈ VMO (see H. Brezis and L. Nirenberg [21]) which, in turn, follows from
Poincaré’s inequality ∫

B

∣∣∣∣f − �
B

f

∣∣∣∣ ≤ |B|1/2 ∫
B

|∇f |.

As a result one may consider

fε(x) = P ((ρε ? f)(x))

where P is the projection on S2, which is well-defined near S2. Then fε ∈
C∞(S2, S2) and fε → f in W 1,2.

Since deg(fε) ∈ Z and

deg(fε)→
1

4π

∫
S2

det(∇f) as ε→ 0

we conclude that
1

4π

∫
S2

det(∇f) ∈ Z.

We now set, for every f ∈W 1,2

deg(f) =
1

4π

∫
S2

det(∇f).

It was subsequently observed in H. Brezis and L. Nirenberg [21] that deg(f) can still
be defined for every f ∈W 1,2 without using formula (4.1), only Step 2. Indeed, if
f ∈ W 1,2(S2, S2), consider fε as above (for ε < ε0). Then deg(fε) is independent
of ε, for ε ∈ (0, ε0), because one may use ε itself as the homotopy parameter,
i.e., connect fε1 and fε2 via the homotopy h(t) = ftε1+(1−t)ε2 . We take as the
definition of deg (f) the integer deg(fε) (for 0 < ε < ε0).

Proposition 2. Assume f, g ∈ W 1,2(S2, S2). Then f ∼ g in W 1,2 if and only if
deg(f) = deg(g). Consequently, W 1,2(S2, S2) still admits infinitely many homotopy
classes and they are classified using degree.
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c) Case p < 2. This case was not considered in H. Brezis and J.-M. Coron [16].
But in H. Brezis and L. Nirenberg [21] we observed that no degree theory (in any
reasonable sense) can be defined. Indeed, the identity map can be homotopied to a
constant map! This is done as follows. Fix any point a ∈ R3 with |a| = 2. Consider
the path

h(t)(x) =
x− ta
|x− ta| , t ∈ [0, 1], x ∈ S2.

Clearly h is smooth for t ∈ [0, 1/2) ∪ [1/2, 1] and x ∈ S2. The only difficulty
occurs at t = 1/2 because a/2 ∈ S2. However, it is not difficult to check that
h(1/2) ∈W 1,p(S2, S2) for every p < 2 and moreover

h(t) ∈ C
(
[0, 1];W 1,p(S2, S2)

)
for every p < 2. Finally it is clear that h(1) has degree zero, and thus it can be
homotopied to a constant in the C0 sense (and thus in the C1 sense by Lemma 6,
and hence in the W 1,p sense). Putting all this together we see that h(0) = Id is
homotopic to a constant in every W 1,p, p < 2.

We went one step further in H. Brezis and Y. Li [19] and proved

Theorem 15. The space W 1,p(S2, S2) is path-connected for every p < 2.

We now have a complete picture for W 1,p(S2, S2). When p < 2, W 1,p(S2, S2)
consists of one piece. At p = 2, W 1,2(S2, S2) splits into infinitely many pieces. As p
increases from 2 to ∞, these pieces “shrink” but “do not change their shape”.

Exactly the same type of conclusion holds for W 1,p(Sn, Sn). When p < n,
W 1,p(Sn, Sn) is path-connected. At p = n, a degree theory is well-defined, and
thus W 1,n(Sn, Sn) splits into infinitely many pieces. As p increases from n to ∞,
these pieces shrink without changing their shape.

At this stage, one would be inclined to believe that this phenomenon is typical.
When p < dimM , W 1,p(M,N) is path-connected. As p increases from dimM to∞,
W 1,p(M,N) admits path-connected components similar to the ones of C0(M,N),
and they shrink without changing their shape. The second assertion (for p ≥
dimM) is indeed true. However, the first assertion (for p < dimM) is totally
wrong. This was first pointed out in an important paper of B. White [61] and
rediscovered a few years later by J. Rubinstein and P. Sternberg [53]: namely,
“some topology” still survives for W 1,p(M,N), even when p < dimM . In fact
W 1,p(M,N) may have a very rich structure from the point of view of homotopy
classes when p < dimM . I will present later some striking examples.

Theorem 16 (B. White [61], J. Rubinstein and P. Sternberg [53]). Let M =
Ω = S1 × D where D is the unit disc in R2; i.e., Ω is a solid torus in R3. Let
N = S1. Then any f ∈ W 1,2(M,N) admits a well-defined degree (stable under
W 1,2 convergence).

More precisely, write
f(x, λ) : S1 ×D → S1;

then
ϕ(λ) = degf(·, λ),

which is well-defined for a.e. λ ∈ D (since f(·, λ) ∈ W 1,2(S1, S2) for a.e. λ ∈ D),
is in fact a constant (a.e.).
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Remark 2. It is quite surprising that a degree may still be defined even though
p = 2 < 3 = dimM . I should point out, however, that the same conclusion fails
for p ∈ [1, 2). Note that when p ∈ [1, 2), ϕ(λ) is still well-defined for a.e. λ ∈ D.
However, ϕ is not constant in general.

Remark 3. The conclusion that ϕ is a constant (a.e.) may be related to a variety
of results which have emerged in recent years in works of J. Bourgain, H. Brezis
and P. Mironescu [10] [11] (see also H. Brezis [14]) about conditions implying that
a given measurable function is constant. Here is such a typical result.

Theorem 17. Let G ⊂ RN be a connected open set and let ϕ : G → Z be a
measurable function. Assume that∫

G

∫
G

|ϕ(λ) − ϕ(µ)|p
|λ− µ|N+1

dλ dµ <∞

(any p ≥ 1). Then ϕ is a constant (a.e.).

An extension of Theorem 16 to higher dimensions is given by

Theorem 18 (H. Brezis, Y. Li, P. Mironescu and L. Nirenberg [20]). Let M =
Ω = Sn × Λ, where n ≥ 1, and Λ ⊂ Rk is any open connected set with k ≥ 1. If
p ≥ n+ 1, any f ∈W 1,p(M,N) has a well-defined degree. More precisely, write

f(x, λ) : Sn × Λ→ Sn;

then
ϕ(λ) = deg f(·, λ),

which is well-defined for a.e. λ ∈ Λ (since p > n), is in fact a constant.

Remark 4. Theorem 18 shows again that some topology still “persists” much below
the critical Sobolev exponent p = dimM . The condition p ≥ n+1 is usually much
weaker than the condition p ≥ dimM = n+ k, especially when k is large.

Going back to the study of the path-connected components for W 1,p(M,N),
here is a complement to Theorem 18, which gives a complete classification of
the homotopy classes of W 1,p when the parameter space Λ is a ball.

Theorem 19 (H. Brezis and Y. Li [19]). Let M = Ω = Sn × Λ where n ≥ 1
and Λ is the unit ball in Rk (any k ≥ 1). Let f, g ∈ W 1,p(M,N). If p ≥ n + 1,
then f ∼ g in W 1,p if and only if deg(f) = deg(g) (where deg is meant in the
sense of Theorem 18). If p < n + 1, then, always, f ∼ g in W 1,p; i.e., W 1,p is
path-connected.

At this stage we decided with Yanyan Li to initiate a general investigation of the
homotopy classes of W 1,p(M,N) for a general pair of manifolds M and N and for
a general p ≥ 1.

Here is a first (somewhat surprising) result.

Theorem 20 (H. Brezis and Y. Li [19]). For any pair M and N with dimM ≥ 2
and for any p ∈ [1, 2), W 1,p(M,N) is path-connected.

We also introduced in H. Brezis and Y. Li [19] a concept which plays a very
important role in identifying the possible “jumps” in homotopy type for W 1,p as p
varies. Here it is.
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Let p > 1. Let 0 < ε < p− 1. Clearly

W 1,p+ε(M,N) ⊂W 1,p−ε(M,N).

Given f ∈ W 1,p(M,N), we denote by [f ]p its homotopy class in W 1,p. We denote
by W 1,p/p̃ the quotient of W 1,p by the equivalence relation fp̃ g (meaning f ∼ g in
W 1,p).

Obviously, if f, g ∈ W 1,p+ε and f ∼ g in W 1,p+ε, then f ∼ g in W 1,p−ε. As a
result we have a canonical map

ip+ε,p−ε : W 1,p+ε/p̃+ε →W 1,p−ε/p̃−ε.

Definition. We say that a change of topology occurs at p if for every ε ∈
(0, p− 1), the map ip+ε,p−ε is not bijective. We denote by CT (M,N) the set of p’s
for which a change of topology occurs at p.

If a change of topology occurs at p, two things may happen: either ip+ε,p−ε is not
injective or ip+ε,p−ε is not surjective (or both!). Roughly speaking, not injective
means that there are 2 maps f, g ∈ W 1,p+ε such that f and g are not homotopic
in W 1,p+ε while f ∼ g in W 1,p−ε. In other words, one component (at least) of
W 1,q(M,N) splits into two (or more) distinct components as q increases from
p− ε to p+ ε. Another viewpoint is to say that two distinct components of W 1,q

have coalesced as q decreases from p + ε to p − ε. This is a common situation,
which we have already encountered above. For example, a change of topology for
W 1,p(S2, S2) occurs at p = 2, because i2+ε,2−ε is not injective: any two maps
f, g ∈ W 1,2+ε are homotopic in W 1,2−ε, while they need not be in W 1,2+ε (unless
their degree is the same).

On the other hand, the fact that ip+ε,p−ε is not surjective means that a new
component of W 1,q appears (out of nowhere!) as q decreases from p + ε to p − ε.
This situation is more unusual, and it does not occur in the example W 1,p(Sn, Sn).
It means that some map f ∈ W 1,p−ε cannot be homotopied in W 1,p−ε to any
g ∈ W 1,p+ε. In particular, such a map f cannot be smooth and it cannot be
homotopied in W 1,p−ε to any smooth map, so it must have a rather “robust”
singularity!

We may now reformulate Theorem 15 and Theorem 19 using the above notion.

Theorem 21. We have CT (S2, S2) = {2} or more generally CT (Sn, Sn) = {n}
for any n ≥ 2.

Theorem 22. We have CT (Sn×Λ, Sn) = {n+ 1}, where Λ is the unit ball in Rk
(for any k ≥ 1).

We also observed in H. Brezis and Y. Li [19] that a change in topology may
occur for several values of p, not just one, as in the above examples. Here is such
a situation, with a “cascade of mergings”.

Theorem 23. We have CT (S1 × S2, S1 × S2) = {2, 3}.
This is somewhat natural because we have here (at least) two invariants: write

f = (f1(x, y), f2(x, y)) and set d1 = deg f1(·, y) and d2 = deg f2(x, ·). Note that
d1 is well-defined and independent of y ∈ S2 when f ∈ W 1,p and p ≥ 2 (by
Theorem 18), while d2 is well-defined and independent of x ∈ S1 only when p ≥ 3
(again by Theorem 18). Some new invariants appear, as p increases from 1 to ∞,
when crossing the values p = 2 and p = 3.

We also proposed in H. Brezis and Y. Li [19] two conjectures:
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Conjecture 1. CT (M,N) consists only of integers; i.e., change of topology for
W 1,p(M,N) occurs only when p is an integer.

Conjecture 2. Any map f ∈ W 1,p(M,N) can always be connected in W 1,p(M,N)
to a smooth map (for any p and for any M,N).

Both conjectures were solved in a beautiful piece of work by F. B. Hang and
F. H. Lin [33].

The answer to Conjecture 1 is positive:

Theorem 24 (F. B. Hang and F. H. Lin [33]). CT (M,N) consists only of integers.

Theorem 24 is an immediate consequence of the following remarkable result
which provides a “reduction” of the study of homotopy classes for W 1,p to more
classical concepts in Topology. Given p ≥ 2, let M [p]−1 be the ([p]− 1)-skeleton of
M .

Theorem 25 (F. B. Hang and F. H. Lin [33]). Let f, g ∈W 1,p(M,N). Then f ∼ g
in W 1,p if and only if f|Σ ∼ g|Σ in C0 for every generic Σ in M [p]−1.

Note that dim Σ ≤ [p]− 1, and for a generic Σ, f|Σ ∈ W 1,p(Σ), while p > dim Σ
(since [p] ≥ dim Σ + 1). Thus for a generic Σ, f|Σ ∈ C0, by the Sobolev embedding.

Concerning Conjecture 2, we had presented in H. Brezis and Y. Li [19] several
cases where Conjecture 2 is true: for example when dimM = 2 (for any N), or
dimM = 3 and ∂M 6= φ (for any N), or N = S1 (for any M). However, F. B.
Hang and F. H. Lin [33] found some situations where Conjecture 2 fails. Here is
such an example:

Theorem 26 (F. B. Hang and F. H. Lin [33]). Let M = RP3 and N = RP2. Then
CT (M,N) = {2, 3}. Moreover there are maps f ∈ W 1,p(M,N), with p ∈ (2, 3),
such that f cannot be connected in W 1,p to any smooth map.

Open Direction 9. Compute CT (M,N) when M and N are simple manifolds,
e.g. spheres, products of spheres, product of spheres with balls, etc.
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