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Let W be a bounded, simply connected, regular domain of RN, N \ 2. For
0 < e < 1, let ue: W Q C be a smooth solution of the Ginzburg–Landau equation in
W with Dirichlet boundary condition ge, i.e.,

˛ −Due=
1
e2
ue(1− |ue |2) in W,

ue=ge on “W.

(GL)e

We are interested in the asymptotic behavior of ue as e goes to zero under
the assumption that Ee(ue) [M0 |log e| and some conditions on ge which allow
singularities of dimension N−3 on “W. © 2001 Elsevier Science

I. INTRODUCTION

Let W be a bounded, simply connected, regular domain of RN, N \ 2.
For 0 < e < 1, let ue: W Q C be a smooth solution of the Ginzburg–Landau
equation in W, with Dirichlet boundary condition ge, i.e.,



˛ −Due=
1
e2
ue(1− |ue |2) in W,

ue=ge on “W.

(GL)e

We are interested in the asymptotic behavior of ue as e goes to zero.
The case N=2 and ge=g: “W Q S1 smooth, independent of e, has been

extensively studied since the work of [Bethuel-Brezis-Hélein 1, 2]. The
main result is the convergence of minimizers ue of the corresponding
Ginzburg–Landau energy

Ee(u)=
1
2
F
W

|Nu|2+
1
4e2

F
W

(1− |u|2)2

to a limit ug having a finite number |d| of point singularities, where
d=deg(g, “W). Moreover, Ee(ue)=p |d| |log e|+O(1) as e Q 0. This result
was originally established for star-shaped domains in [Bethuel-Brezis-
Hélein 2] and subsequently extended to general domains in [Struwe] (see
also [Del Pino-Felmer] for a simple reduction of the general case to the
star-shaped case).
If ue is a (nonminimizing) solution of (GL)e and W is star-shaped, the

same conclusion still holds except that the number of singular points of ug
is not necessarily |d|. There are two fundamental estimates in the proof:

Ee(ue) [ C |log e|, (1)

||ue ||W1, p [ Cp -p < 2. (2)

When W is not star-shaped, estimate (1) need not hold for general solutions
of (GL)e (see [Bethuel-Brezis-Hélein 2], Remark X.1). However, if one
assumes (1) for a solution ue of (GL)e then one may still prove that ue Q ug
having a finite number of singularities (see [Bethuel] and also [Rivière 2]).

From now on we consider the case N \ 3.
If ge=g: “W Q S1 is smooth and “W is simply connected, then one may

write g=exp ij0, where j0 is smooth. Minimizers ue of Ee converge (at
least in H1) to ug=exp ijg, where jg is the harmonic extension of j0. The
same conclusion holds when W is star-shaped and ue is any solution of
(GL)e. This follows from the (easy) estimate

Ee(ue) [ C, (3)

and the results in Section IV below. The validity of estimate (3) for N \ 3
and g smooth is a basic difference between the case N=2 and N \ 3; this
is a consequence of Pohozaev identity, which takes a different form when
N=2 and when N \ 3.
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The case of a simply connected domain is open:

Conjecture. Assume “W is simply connected, ue is a (nonminimizing)
solution of (GL)e with ge=g: “W Q S1 smooth, then (3) holds and
ue Q ug=exp ijg.

Having in mind physical and geometrical problems involving singulari-
ties, we wish to handle cases where ug admits singularities. Therefore, we
assume that the Dirichlet data g is singular. (An alternative way of pro-
ducing singularities is to consider a Neumann boundary condition, see
[Almeida], [Almeida-Bethuel 1]; singularities can also be generated by an
exterior field, see [Serfaty], [Sandier-Serfaty]).
In this paper, we will concentrate our attention on singularities of codi-

mension two, and then it is natural to assume that the energy of ue blows
up like |log e|:

H1. There exists a constant M0 > 0 such that, for 0 < e < 1, the
Ginzburg–Landau energy of ue is smaller thanM0 |log e|, that is

Ee(ue) — F
W

ee(ue) —
1
2
F
W

|Nue |2+
1
4
F
W

(1− |ue |2)2

e2
[M0 |log e|. (H1)

Such an assumption is automatically satisfied if ue is a minimizer of Ee
and ge=g has simple singularities, e.g.,

N=3, g(x) 4
x−ai
|x−ai |

near its singularities ai ¥ “W. More generally, (H1) holds for minimizers if
ge=g ¥H1/2(“W; S1) (N \ 3), see [Bourgain-Brezis-Mironescu 1, 2].

We make use of a second assumption which is more artificial but quite
convenient. It has been introduced in [Lin-Rivière 1] and concerns the
behavior of the boundary data ge: “W Q C.

H2. There exists a finite collection S of smooth (N−3)-dimensional
submanifolds of “W, such that

|ge(x)|=1, if x ¥ “W and d(x)=dist(x, S) \ e, |ge | [ 1, -x ¥ “W,
(H2.1)

and

for k=1, 2 |Nk
2 ge | [

C0

max(d, e)k
on “W, (H2.2)
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where C0 is some constant independent of e. Here N 2 denotes tangential
differentiation.
When N=3 (so that S is a collection of points), and

g(x) 4
x−ai
|x−ai |

near its singularities ai ¥ “W, then ge is a natural smooth approximation
of g.
As a consequence of (H2.1), (H2.2) (with k=1) one deduces easily

F
“W

|N 2 ge |2 [ C |log e|, (4)

F
“W

|N 2 ge |p [ Cp, -p < 2, (5)

and

1
e2

F
“W

(1− |ge |2)2 [ C. (6)

Here, and in what follows, the constants C and Cp depend on W, S, C0 and
M0, but they are independent of e; we emphasize the dependence of Cp on
p, because it blows-up as p ‘ 2.
Our main results are summarized in the following theorem.

Theorem 1. Assume 1 [ p < N
N−1 and let ue be a solution of (GLe)

satisfying (H1)–(H2). Then, for any 0 < e < 1, we have

F
W

|Nue |p [ Cp. (7)

For a subsequence en Q 0, there exist a map ug ¥W1, p(W) and map
gg ¥W1, p(“W) such that

(i) |ug |=1 on W, |gg |=1, ug=gg on “W;

(ii) uen Q ug in W1, p(W), gen Q gg in W1, p(“W);
(iii) div(ug ×Nug)=0 in W;

(iv) een(uen )/|log en |E mg as measures, where mg is a bounded
measure on W̄.

Set S=supp(mg);
(v) S is a closed subset of W̄ with HN−2(S) <+.;
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(vi) ug ¥ C.(W0S), and for any ball B(x0, r) included in W0S there
exists a function jg ¥ C.(B(x0, r)), such that Djg=0, ug=exp(ijg);

(vii) uen Q ug in Ck(K), for any compact subset K of W0S;

(viii) S is HN−2-rectifiable;

(ix) mg is a stationary varifold.

The case N=2 (with slightly different assumptions on the boundary
data: g is fixed and smooth) is treated in the book [Bethuel-Brezis-
Hélein 2] (Chapter X, p. 101–136). See also [Bethuel], [Brezis].
The case N \ 3 and ue minimizing has been extensively treated in

[Rivière 1] (for N=3), [Lin-Rivière 1], and also in [Sandier] (for N=3),
[Alberti-Baldo-Orlandi] and [Jerrard-Soner] via C-convergence argu-
ments. In this case, it is proved moreover that S is area-minimizing. The
case N=3, and ue not minimizing has been studied in [Lin-Rivière 2].
Our proofs borrow many ingredients from the works quoted above (in

particular [Bethuel-Brezis-Hélein 2], [Rivière 1], [Lin-Rivière 1], [Lin-
Rivière 2]). We also use arguments of Geometric Measure Theory devel-
oped in [Ambrosio-Soner]. The first important tool in our proof is a
variant of a monotonicity formula earlier used in [Rivière 1]. Such for-
mulas play a central role in the theory of minimal surfaces, harmonic maps,
and regularity theory for elliptic problems (see for instance [Giaquinta]).
The second important ingredient is the g-ellipticity theorem, which

bounds |ue | away from zero as soon as the local energy is bounded by
g |log e| with g small:

Theorem 2. Let u=ue: B1 Q C be a solution of

−Du=
1
e2
u(1− |u|2) in B1

for some e ¥ (0, 1/2). Assume

Ee(u) [ g |log e|.

Then

|u(0)| \ 1−Kga, (8)

where K > 0 and a > 0 depend only on N.

The name g-ellipticity is motivated as follows: once (8) holds we may
write ue=re exp ije, with re=|ue | and the equation for the phase je
becomes

div(r2
e Nje)=0,

which is uniformly elliptic.
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In two dimensions, this type of result originated simultaneously in
[Bethuel-Rivière] and [Struwe]. Though the proof of g-ellipticity in 2-d is
simple and uses techniques introduced in [Bethuel-Brezis-Hélein 2], it
turns out to be an extremely useful tool. It serves to analyze the local vor-
ticity, provided the energy of the map is bounded by K0 |log e| with K0

large, even for maps not satisfying (GL)e. It appears in a large number of
papers dealing with 2-d variational methods ([Almeida-Bethuel 2], [Zhou-
Zhou], [Bethuel-Saut]), or involving the more subtle functional of super-
conductivity ([Almeida], [Serfaty]). For surveys on these questions see
[Bethuel] or [Rivière 2].
In higher dimension, the first g-ellipticity result was given in [Rivière 1]

under the name ‘‘g-compactness’’ ( for N=3 and minimizing maps),
then in [Lin-Rivière 1] (for arbitrary dimension, minimizing maps), in
[Lin-Rivière 2] for N=3, ue not necessarily minimizing, and finally in
[Bethuel-Brezis-Orlandi] in the general case. In Section III we present a
simplified proof of the [Bethuel-Brezis-Orlandi] result as well as a bound-
ary version.
A key point in the proof of Theorem 1 is estimate (7). When N=2,

ge — g and W is star-shaped this was proved in [Bethuel-Brezis-Hélein 2] as
follows. First, Pohozaev identity provides immediately a uniform bound on
the integral of the potential, namely

1
e2

F
W

(1− |ue |2)2 [ C, (9)

where C is independent of e. Then, the derivation of (7) from (9) is
explained in [Bethuel-Brezis-Hélein 2], Chapter X; it relies on a Hodge
decomposition of ue×Nue and the property div(ue×Nue)=0.
When N=2 and W is not star-shaped, the proof of (7) is more delicate.

Instead of (9) one establishes the weaker form (10) below via a local
Pohozaev identity (on a scale of order ea, a < 1) combined with an elemen-
tary maximal covering argument (the balls B(ai, R) are disjoint while the
balls B(ai, 8R) cover W̄) as in [Struwe] and [Bethuel-Rivière]. From (10)
one obtains (7) using exactly the same Hodge decomposition as above and
the rest of the argument is unchanged.
We now return to dimension N \ 3. The first and main step in the proof

of (7) is

Proposition 1. Fix b ¥ ( 12 , 1) and set

Ae, b={x ¥ W; |ue(x)| [ 1−b},
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where ue is a solution of (GL)e satisfying (H1), (H2). Then

1
e2

F
W 5 Ae, b

(1− |ue |2)2 [ Cb , (10)

where Cb depends on W, M0, C0 and is independent of e.

The proof of Proposition 1 is for N \ 3 quite involved and uses a
number of ingredients:

— Local Pohozaev identities (as in [Bethuel-Rivière], [Bethuel],
[Rivière 1], [Lin-Rivière 2]),

— Interior monotonicity formulas ([Chen-Struwe], [Chen-Lin],
[Rivière 1], [Lin-Rivière 1]),

— Boundary monotonicity formulas ([Lin-Rivière 1]),
— Besicovitch covering theorem.

Finally, once Proposition 1 is established, the W1, p estimate as well as
properties (i) to (vii) are proved by adapting the methods of [Bethuel-
Brezis-Hélein 2]. In contrast with the 2-d case where the Hodge decompo-
sition is fairly elementary, the case N \ 3 requires a heavier machinery
described in the Appendix, where we follow the presentation of [Iwaniec-
Scott-Stroffolini] and [Giaquinta-Modica-Souček].
Combining the g-ellipticity with the W1, p bounds we are able to show

concentration of energy on a singular set S of Hausdorff dimension N−2.
Then, g-regularity asserts that {uen} converges in strong norms locally away
from S.
Once the g-regularity has been established we are in a position to apply

the beautiful theory of [Ambrosio-Soner], which yields immediately the
geometric properties of S (statement (viii) and (ix) of Theorem 1).

We call the attention of the reader that some results in the paper are
purely local, while others are truly global. For example, the results in
Section II, III, IV are purely local. By contrast, the W1, p estimate is not
local. Indeed, if for instance ue satisfies

−Due=
1
e2
ue(1− |ue |2) in B1

and Ee(ue) [ g |log e| with g small—or even o(|log e|)—it is wrong to infer
that

||ue ||W1, 1(B1/2 ) [ C

or any compactness property, even in L1
loc, see [Brezis-Mironescu] and

Remark III.4 below. The W1, p estimates in Section VI really uses the full
information on the boundary condition ge.
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The plan is the following:

II. Monotonicity formulas
III. The g-ellipticity
IV. Interior H1 estimates imply Ck bounds
V. Proof of Proposition 1
VI. GlobalW1, p estimates, 1 [ p < N

N−1

VII. g-regularity
VIII. Convergence outside the singular set S
IX. Properties of S and mg

II. MONOTONICITY FORMULAS

II.1. Interior Monotonicity

We first recall the standard Pohozaev identity:

Lemma II.1. Let x0 ¥ W, and r > 0 be such that Br(x0) … W. Assume u is
a solution of (GL)e, then

F
Br (x0 )

N−2
2

|Nu|2+
N
4e2

(1− |u|2)2=r F
“Br (x0 )

|N 2 u|2

2
−
1
2
:“u
“n
:2+ 1

4e2
(1− |u|2)2.

Let R > 0 be such that Br(x0) … W. For 0 < r < R, set

Ee(x0, r)=
1
2
F
Br (x0 )

|Nu|2+
1
4e2

F
Br (x0 )

(1− |u|2)2,

and

Ẽe(x0, r)=r2−NEe(x0, r).

Monotonicity formulas are concerned with quantities of the type
Ẽe(x0, r) (note that r2−N >Br |Nu|

2 is dimensionless). They play an important
role in elliptic regularity theory (see [Giaquinta], [Schoen-Uhlenbeck
1, 2]). In the context of the Ginzburg–Landau equation for Rk-valued
maps they were introduced in [Chen-Struwe], [Chen-Lin], and used
extensively in [Rivière 1], and then in [Lin-Rivière 1, 2].

Lemma II.2 (Interior Monotonicity). Assume u is a solution of (GL)e in
BR(x0), then

d
dr

(Ẽe(x0, r))=
1

rN−2 F
“Br (x0 )

:“u
“n
:2+ 1

rN−1 F
Br (x0 )

(1− |u|2)2

2e2
, for r < R.
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Proof. First one has,

d
dr

(Ee(x0, r))=F
“Br (x0 )

|Nu|2

2
+

1
4e2

F
“Br (x0 )

(1− |u|2)2

=F
“Br (x0 )

|N 2 u|2

2
+
1
2
: “u
“n
:2+ 1

4e2
(1− |u|2)2.

Hence

d
dr

(Ẽe(x0, r))=−
N−2
rN−1 Ee(x0, r)+

1
rN−2 F

“Br (x0 )

|N 2 u|2

2
+
1
2
:“u
“n
:2

+
1
4e2

(1− |u|2)2

=−1N−2
rN−1 F

Br

|Nu|2

2
+

N−2
4e2rN−1 F

Br
(1− |u|2)22

+
1

rN−2 F
“Br

|N 2 u|2

2
+
1
2
:“u
“n
:2+ 1

4e2
(1− |u|2)2

=−1N−2
rN−1 F

Br

|Nu|2

2
+

N
4e2rN−1 F

Br
(1− |u|2)22

+
1

2e2rN−1 F
Br
(1− |u|2)2

+
1

rN−2 F
“Br

|N 2 u|2

2
+
1
2
:“u
“n
:2+ 1

4e2
(1− |u|2)2.

Using Lemma II.1, we obtain

d
dr

(Ẽe(x0, r))=−5 1
rN−2 F

“Br

|N 2 u|2

2
−
1
2
:“u
“n
:2+ 1

4e2
(1− |u|2)26

+
1

2e2rN−1 F
Br
(1− |u|2)2

+
1

rN−2
5F
“Br

|N 2 u|2

2
+
1
2
:“u
“n
:2+ 1

4e2
(1− |u|2)26

=
1

rN−2 F
“Br

:“u
“n
:2+ 1

rN−1 F
Br

(1− |u|2)2

2e2
,

which yields the result.
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A straightforward consequence is

Corollary II.1. Assume u is a solution of (GL)e on BR(x0) … W, then

(i) The function rW Ẽe(x0, r) is nondecreasing in (0, R).
(ii) In particular,

-0 < r < R, Ẽe(x0, r) [ Ẽe(x0, R) [ R2−NEe(ue).

Moreover

F
R

0

5 1
rN−2 F

“Br (x0 )

:“u
“n
:2+ 1

rN−1 F
Br (x0 )

(1− |u|2)2

2e2
6 dr=Ẽe(x0, R) (II.1)

and

F
BR (x0 )

1
rN−2
1 :“u
“n
:2+ 1

2(N−2)e2
(1− |u|2)22 dx [

N
N−2

Ẽe(x0, R). (II.2)

Formula (II.2) is obtained integrating by parts some terms in (II.1).

II.2. Boundary Monotonicity Formulas

Throughout the paper, we will use the following notation:

B̌r(x0)=Br(x0) 5 W

Ee(x0, r)=F
B̌r (x0 )

ee(u)=F
Br (x0 ) 5 W

ee(u),

and

Ẽe(x0, r)=r2−NEe(x0, r).

Set d0=dist(x0, S), for x0 ¥ W̄. The following result can be easily
deduced from [Lin-Rivière 1] (Lemma II.5, with a=1

2 ).

Lemma II.3. We have, for every x0 ¥ W̄, and any r such that

0 < r < inf {R1, d
2
0},

d
dr

{eLr
1/2
Ẽe(x0, r)} \ r2−N F

“Br (x0 ) 5 W
:“u
“n
:2+r1−N F

B̌r (x0 )

(1− |u|2)2

2e2
−C,

where R1, L and C are constants depending only on W, on S, on d0 and on
M0, C0 ( from (H1), (H2)), but not on r and e.

After integration, a straightforward consequence of Lemma II.3 is

Corollary II.2. Let x0 ¥ W̄, and R > 0 such that R [ inf {R1, d
2
0},

where d0=dist(x0, S). Then we have
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Ẽe(x0, r) [ C(Ẽe(x0, R)+R), for every 0 < r < R, (II.3)

where C is some constant independent of e and x0.
Moreover,

F
R

0

1
rN−2 F

“Br (x0 ) 5 “W
:“u
“n
:2+ 1

rN−2 F
B̌r (x0 )

(1− |u|2)2

2e2
[ C(Ẽe(x0, R)+R) (II.4)

and

F
B̌r (x0 )

1
rN−2
1 :“u
“n
:2+(1−|u|2)2

e2
2 [ C(Ẽe(x0, R)+R). (II.5)

A second result from [Lin-Rivière 1] (Lemma II.6 there) will play a
fundamental role.

Lemma II.4. For any x0 ¥ W, we have

Ẽe(x0, r)=r2−NEe(x0, r)=
1

rN−2 F
Br (x0 ) 5 W

ee(u) [M1 |log e|,

where M1 is a constant independent of e, r and x0.

The proof relies on the two monotonicity formulas above and a careful
study of all integrals for x0 near S.

II.3. Consequences of the Monotonicity

Consider, for m > 0, the sets

Sm={x ¥ W; dist(x, S) [ m},

Km=W0 S̊m={x ¥ W; dist(x, S) \ m}.

Here we will take m=e1/8 and we apply Lemma II.3 with

e1/2 [ r [ e1/4.

This yields

d
dr

(eLr
1/2
Ẽe(x0, r)) \ r2−N F

“Br (x0 ) 5 W
:“u
“n
:2+r1−N F

B̌r (x0 )

(1− |u|2)2

e2
−C.

Integrating from e1/2 to e1/4, we obtain

F
e
1/4

e
1/2

r2−N F
“Br (x0 ) 5 W
:“u
“n
:2+F

e
1/4

e
1/2

r1−N F
B̌r (x0 )

(1− |u|2)2

e2
[ C(e1/4+Ẽe(x0, e1/4))

[M2 |log e|, (II.6)
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where M2 > 0 is some constant, independent of e, r, x0. For the last
inequality we have used Lemma II.4.
Set for r > 0 and x0 ¥ W̄

Ir(x0)=
1

rN−3 F
“Br (x0 ) 5 W
:“u
“n
:2+ 1

rN−2 F
B̌r (x0 )

(1− |u|2)2

2e2
.

We deduce, from (II.6):

Proposition II.2. Let m=e1/8, and x0 ¥Km. There exists some radius
r(x0) ¥ (e1/2, e1/4) such that

Ir(x0 )(x0) [ 4C 1 e
1/4+Ẽe(x0, e1/4)

|log e|
2 [ 4M2. (II.7)

Proof. We argue by contradiction and assume that (for some e) and
every r ¥ (e1/2, e1/4)

1
rN−3 F

“Br (x0 ) 5 W
:“u
“n
:2+ 1

rN−2 F
B̌r (x0 )

(1− |u|2)2

2e2
\ 4C 1 e

1/4+Ẽe(x0, e1/4)
|log e|

2 .

Dividing by r and integrating on the interval (e1/2, e1/4) we obtain

F
e
1/4

e
1/2

r2−N F
“Br (x0 ) 5 W
:“u
“n
:2+F

e
1/4

e
1/2

1
rN−1 F

B̌r (x0 )

(1− |u|2)2

2e2
\ 4C(e1/4+Ẽe(x0, e1/4)),

a contradiction with (II.6).

Remark II.1. We call the attention of the reader to the fundamental
estimate for the potential

F
Br(x0) (x0 ) 5 W

(1− |u|2)2

2e2
[ 4M2r(x0)N−2, (II.8)

which is a consequence of (II.7). It will play a basic role in the proof of
Proposition 1.

III. THE g-ELLIPTICITY

III.1. g-Ellipticity in the Interior.

Throughout this section, we assume that W=BR(0) … RN, N \ 2, and
that u=ue: BR(0)Q C is a solution of the equation

−Du=
1
e2
u(1− |u|2) in BR(0), (III.1)

for some e ¥ (0, 1/2).
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A typical result in this section is that, if

Ẽe(0, R)=
1

RN−2 Ee(0, R) [ g : log e

R
: , (III.2)

with g sufficiently small (less than a constant depending only on N), then

|u(0)| \ 1
2 . (III.3)

As already mentioned in the Introduction, this type of result was first con-
sidered in dimension two in [Bethuel-Brezis-Hélein 2], Lemma (IV.2), and
then in [Bethuel-Rivière] and [Struwe]. In higher dimensions it was
proved in [Rivière 1], [Lin-Rivière 1, 2], under various restrictive
assumptions. The general case was settled in [Bethuel-Brezis-Orlandi],
with more elementary arguments than in [Rivière 1], [Lin-Rivière 1], [Lin-
Rivière 2](which uses Lorentz spaces). The original name given to this
phenomenon in [Rivière 1] was ‘‘g-compactness,’’ which is misleading
because it suggests that the family of function (ue) is compact for some
topology. In fact a construction from [Brezis-Mironescu] (see also Remark
III.4 below) provides already for N=2, an example of a family (ue)
satisfying (III.1) and

Ee(0, R)=o(|log e|),

such that no subsequence of {ue} converges on a set of positive measure.
Hence, {ue} is not relatively compact, even in L1! We call it instead
‘‘g-ellipticity’’ for the following reason. If we apply the above mentioned
result, we obtain in fact that (III.2) with a smaller g implies (see Proposi-
tion VII.1)

|ue(x)| \
1
2

on B 10, R
2
2 . (III.4)

We then may write u=ue in terms of its modulus r and phase j

u=r exp(ij) in B 10, R
2
2 .

Equation (III.1) for r and j becomes, in B(0, R2 ),

˛div(r
2 Nj)=0

−Dr+r |Nj|2=
1
e2

r(1−r2).
(III.5)
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Hence condition (III.4) says that the first equation in (III.1) is uniformly
elliptic.
The main result of this section is

Theorem 2. There exist constants K > 0, and a > 0, depending only on
N such that (III.2) (with arbitrary g) implies

|u(0)| \ 1−Kga. (III.6)

Remark III.1. Another important point is the following: formulas
(III.1) and (III.2) make sense for functions u: BR(0)Q Rk, for any k. The
reader may wonder whether conclusion (III.3) also makes sense for any
k > 2. The answer is:
Yes in dimension N=2 (see part D below)
No in dimension N> 2 (see part E below).

Remark III.2. In fact this type of problem can be imbedded in a more
general setting: let W: Rk Q R, W \ 0, be a smooth function, and let
M={W=0}. Assume M is a smooth manifold without boundary. Solu-
tions of (III.1) are replaced by solutions of

−Du=
1
e2
W −(u) in W … RN, (III.1Œ)

and the Ginzburg–Landau energy is replaced by Ee(u)=
1
2 >W |Nu|2+

1
e
2 >W W(u). The natural question is to find conditions under which (III.1Œ)
and (III.2) with g small implies, e.g.,

dist(u(0), M) [ d, for small d > 0. (III.3Œ)

We have not investigated that question.

Throughout this section K will denote ‘‘absolute’’ constants (depending
possibly on N) that are independent of g, e, R, etc...

We now turn to the proof of Theorem 2. After scaling, we may assume
throughout the rest of Section III.1,

R=1.

We will also assume without loss of generality g < 1
4 . If there is no

ambiguity, we will write Br instead of Br(0). In fact we are going to prove
that the conclusion of Theorem 2 holds for 0 < e < eN, where eN > 0, and
depends only on N; if eN [ e [ 1, the conclusion (III.6) still holds, but it is
very easy to establish by standard arguments.
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The proof of Theorem 2 is divided into four parts. The case N=2 will
be studied in Part D.
In Part B and C we need N \ 3 while Part A holds for N \ 2.

Part A: Choosing a ‘‘Good’’ Radius r0

Lemma III.1. Let 0 < d < 1
16 and assume 0 < e < d2. There exists some

constant K > 0 such that if u is a solution of (III.1), then there exists some
r0 ¥ (e1/2, d), depending on u, e and d, such that

1
rN−2
0

F
Br0

(1− |u|2)2

2e2
[Kg |log d|, (III.7)

F
r0

dr0

5 1
rN−1 F

Br

(1− |u|2)2

2e2
+

1
rN−2 F

“Br

:“u
“n
:26 dr [Kg |log d|, (III.8)

and

0 [
Ee(0, r0)
rN−2
0

−
Ee(0, dr0)
(dr0)N−2 [Kg |log d|. (III.9)

Proof. Choose an integer k such that

e1/2 1d
4
2−(k+1)

[ d, e1/2 1d
4
2−(k+2)

> d. (III.10)

For j=0, ..., k consider the intervals

Ij=11
d

4
2−j e1/2, 1d

4
2−j−1 e1/22 .

Clearly, these intervals are disjoint and 1k
j=0 Ij … (e1/2, d). Hence, by

Corollary II.1

C
k

j=0
F
Ij

5 1
rN−2 F

Sr

:“u
“n
:2+ 1

rN−1 F
Br

(1− |u|2)2

2e2
6 dr [ Ee(0, d)

dN−2 [ Ee(0, 1)

[ g |log e|,

where we have used the monotonicity formulas and (III.2) for the last
inequality. Since

k+1 \
1
2
|log e1/2|
|log d|

,
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we therefore deduce that there exists some j0 ¥ {0, ..., k} such that

F
Ij0

· · · [ g
|log e|
k+1

[ 4g |log d|. (III.11)

Set r̃0=( d4
−j0 −1) e1/2: (III.11) says that

F
r̃0

d

4 r̃0

1 1
rN−1 F

Br

(1− |u|2)2

e2
+

1
rN−2 F

Sr

:“u
“n
:22 [ 4g |log d|.

By the mean-value formula we then deduce that there exist some
r0 ¥ [

d
4 r̃0, r̃0] such that (III.7) and (III.8) are satisfied. Finally, (III.9)

follows from (III.8) and Lemma II.2.

Comment. Note that Lemma III.1 involves only scale invariant quanti-
ties. We will use heavily this fact in Step 3; we will apply the conclusions of
Step 2 (which is stated on B1) after a change of scale xQ r0x.

Part B: d-Energy Decay

This step is the heart of the proof: it is specific to complex-valued
Ginzburg–Landau equation. This is a new and basic estimate for the energy.

Theorem 3. Let u be a solution of (III.1) with R=1, then

Ee(0, d) [K 35F
B1

(1− |u|2)2

e2
6

1
3

Ee(0, 1)

+5F
B1

(1− |u|2)2

e2
6

2
3

+dNEe(0, 1)4 . (III.12)

The starting point is the identity

4 |u|2 |Nu|2=4 |u×Nu|2+|N |u|2|2, (III.13)

which holds for any map from R to Rk; in the special case where k=2,
|u(x0)| ] 0, we may write near x0

u(x)=r exp(ij),

and then

u×Nu=r2 Nj,

i.e., u×Nu plays the role of the gradient of the phase. The advantage of the
form (III.13) is that u×Nu is always globally well defined, while the phase
need not to be well-defined when u vanishes somewhere.
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The conclusion of the theorem is an estimate for the energy on Bd. The
difficult part is always the contribution of the phase, i.e., u×Nu. In this
part, we will make use of the following known estimates (see [Bethuel-
Brezis-Hélein 1, 2], [Brezis]).

Lemma III.2. Assume u verifies (III.1) on B1. Then

|u| [K, |Nu| [
K
e

in B1/2.

Proof of Theorem 3. We divide the proof in several steps.

Step 1: Hodge–de Rham decomposition of u×Nu.
As in [Bethuel-Brezis-Hélein 2], we observe that

div(u×Nu)=0 in B1, (III.14)

that is ;N
i=1

“

“xi
(u× “u

“xi
)=0; this holds because

C
N

i=1

“

“xi
1u× “u

“xi
2=C

N

i=1

“u
“xi

×
“u
“xi

+u×Du=u×Du=0,

by (III.1). In order to invoke Poincaré’s Lemma it is more convenient to
write (III.14) using the formalism of differential forms (see Appendix). This
yields

dg(u×du)=0 in B1, (III.15)

where du=;N
i=1

“u
“xi
dxi and dg denotes the Hodge star operator,

dg=±a da.
By the mean-value inequality, we may find some r1 ¥ [

1
4 ,

1
2] such that

F
“Br1

|Nu|2 [ 8 F
B1
|Nu|2,

F
“Br1

(1− |u|2)2 [ 8 F
B1
(1− |u|2)2.

(III.16)

Let t be the solution of the auxiliary Neumann problem

˛Dt=0 in Br1

“t

“n
=u×

“u
“n

on “Br1 .
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Note that t exists since div(u×Nu)=0 implies by integration >“Br1 (u×
Nu) · n=0. Moreover, we have

F
Br1

|Nt|2 [K F
B1

|Nu|2

2
[KEe(u).

Since t is harmonic on Br1 , we have by standard elliptic estimates, for
0 < d [ r1,

F
Bd
|Nt|2 [KdN F

Br1

|Nt|2 [KdN F
B1
|Nu|2. (III.17)

By construction we verify that

div[(u×Nu−Nt) 1Br1 ]=0, in D −(RN),

where 1A denotes the characteristic function of the set A. In the formalism
of differential forms this becomes

dg[(u×du)−dt) 1Br1 ]=0 in D −(RN).

By classical Hodge theory (see Appendix, Proposition A.7) there exists
some 2- form j on RN such that j ¥H1

loc(R
N) and

dgj=(u×du−dt) 1Br1 in RN, (III.18)

dj=0 in D −(RN), (III.19)

||Nj||Lp(RN) [Kp(||Nu||Lp(Br1 )+||Nt||Lp(Br1 )), -1 < p <+., (III.20)

|j(x)||x|N−1 tends to zero at infinity. (III.21)

We therefore have

u×du=dgj+dt in Br1 . (III.22)

In order to bound the L2-norm of u×du on Bd, we turn next to estimates
for dgj.

Step 2: Improved estimates for Nj on Bd when |u| 4 1.
Let us first explain what is going on. Assume first that

|u| — 1.

Then we claim

Dj=0 in D −(RN0“Br1 ),
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i.e., all the components of the form j are harmonic on RN0“Br1 . Indeed,
recall that −D=dgd+ddg, so that, since dj=0,

−Dj=ddgj=d[(u×du−dt) 1Br1 ] in RN.

Therefore it suffices to check

d(u×du)=0 on Br1 .

We have

d(u×du)=C
i < j

±2(uxi ×uxj ) dxi Ndxj

If |u|=1 and if u takes its values in R2, the vectors uxi and uxj are colinear,
so that

uxi ×uxj=0, -i, j.

This would not be true if u takes its values in Rk, k \ 3. This is the only
place where we use the fact that u is complex-valued.
Since j is harmonic, for 0 < e < 1

8 ,

F
Bd
|Nj|2 [ CdN F

Br1

|Nj|2

[ CdN F
B1
|Nu|2.

This shows that >Bd |Nj|2 has a good decay as d goes to zero.
In our situation, u does not take its values in S1. Instead we play on the

‘‘smallness’’ of the integral 1
e
2 >B1 (1− |u|2)2, i.e. |u| is close to 1, and we

propose to use this fact in order to control >Bd |Nj|2. To make the estimate
precise it is convenient to introduce a ‘‘smooth’’ projection of u on S1.
Let 0 < b < 1

4 , to be determined later and let f: R+Q (1, 1
1−b) be any

smooth function such that

˛f(t)=
1
t

if t \ 1−b

f(t)=1 if t [ 1−2b

|fŒ| [ 4 for any t ¥ R+.

(III.23)

Define on RN the function a as

a(x)=˛f
2(|u(x)|) in Br1

1 outside,
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so that

0 [ a−1 [ 4b in RN. (III.24)

Note that

f2(|u|) u×du=f(|u|) u×d(f(|u|) u),

hence

d(au×du)=d(f2(|u|) u×du)=d(f(|u|) u×d(f(|u|) u) in Br1 ,

i.e.,

d(au×du)=C
i < j

2(f(|u|) u)xi ×(f(|u|) u)xjdxi Ndxj.

Now we turn to j. We have

d(adgj)=w1+w2+w3 in DŒ(RN),

where

w1=1Br1 d(au×du)=1Br1 C
i < j

2(f(|u|) u)xi ×(f(|u|) u)xjdxi Ndxj ,

w2=s“Br1
f(|u|) u×duNdr, (r=|x|),

w3=d(−1Br1 a dt)=d(1Br1 (1−a) dt)−d(1Br1 dt)

=d(1Br1 (1−a) dt)+s“Br1
drNdt — w3, 1+w3, 2 .

Here s“Br1
stands for the surface measure on “Br1 . Finally we write

−Dj=ddgj=d(adgj)+d((1−a) dgj) in DŒ

=w1+w2+w3+w4,

where

w4=d((1−a) dgj).

Set

ji=G f wi ,
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where G(x)=cN |x|2−N is the fundamental solution of −D in RN. Since j

tends to zero at infinity by (III.21) and each ji tends to zero at infinity
(because each wi has compact support), we conclude that

j=C
4

i=1
ji.

We now proceed to estimate separately each ji (we also make use of the
obvious notation j3=j3, 1+j3, 2).

Estimate for j4. We have

F
R
N
|Nj4 |2 [Kb2 F

B1
|Nu|2. (III.25)

Proof of (III.25). We have

−Dj4=w4=d((1−a) dgj).

Multiplying by j4 and integrating we obtain

F
R
N
|Nj4 |2 [ ||1−a||L. ||Nj||L2 ||Nj4 ||L2,

and thus

F
R
N
|Nj4 |2 [Kb ||Nu||L2(B1 ) ||Nj4 ||L2(RN),

by (III.17), (III.20), (III.24), which yields the result.

Estimate for j3, 1. As above,

F
R
N
|Nj3, 1 |2 [ 4b2 F

B1
|Nu|2. (III.26)

Estimate for j2 and j3, 2. Observe that j2 and j3, 2 are harmonic on Br1
(recall that r1 ¥ (1/4, 1/2)). By standard elliptic estimates for harmonic
functions (see, e.g., [Bethuel-Brezis-Orlandi], Appendix),

||Nj2 ||L.(B1/8 ) [K 1F
“Br1

|Nu|22
1/2

,

||Nj3, 2 ||L.(B1/8 ) [K 1F
“Br1

|Nt|22
1/2

.
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Therefore

F
Bd
|Nj3, 2 |2+|Nj2 |2 [KdN F

B1
|Nu|2, -0 < d < 1

8 . (III.27)

Estimate for j1. We start with the crucial observation that

|w1 | [Kb−2 (1− |u|2)2

e2
in B1. (III.28)

Proof of (III.28). We must distinguish the two regions

Vb={x ¥ B1; |u(x)| \ 1−b}, Wb={x ¥ B1; |u(x)| [ 1−b}.

Recall that

w1=1Br1 d(au×du)=1Br1 C
i < j

2(f(|u|) u)xi ×(f(|u|) u)xj dxi Ndxj.

On Vb we have f(|u(x)|)=
1

|u(x)| and therefore

(f(|u|) u)xi ×(f(|u|) u)xj=0, for i ] j.

OnWb we have, by Lemma III.2

|(f(|u|) u)xi | [
K
e
,

so that

|w1 | [
K
e2

[
K
e2

b−2b2 [
K
e2

b−2(1− |u|)2 [Kb−2 (1− |u|2)2

e2
,

which yields (III.28).
The final crucial estimate is

||j1 ||L.(RN) [
K
b2 Ee(0, 1). (III.29)

Indeed

j1(x)=F
R
N

cN
|x−y|N−2 w1(y) dy=F

Br1

cN
|x−y|N−2 w1(y) dy,
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so that

|j1(x)| [
K
b2 F

Br1

(1− |u(y)|2)2

e2 |x−y|N−2 dy.

Assume |x| [ r1. Since Br1 … B1/2(x) we have

|j1(x)| [
K
b2 F

B1/2 (x)

(1− |u(y)|2)2

e2 |x−y|N−2 dy.

Next we invoke the monotonicity formula (II.2) centered at the point x, to
assert that

F
B1/2 (x)

(1− |u(y)|2)2

e2 |x−y|N−2 dy [KEe 1x,
1
2
2 [KEe(0, 1).

Hence for every x ¥ Br1

|j1(x)| [Kb−2Ee(0, 1).

Recall that Dj1=0 outside Br1 , so that by the maximum principle

||j1 ||L.(RN)=||j1 ||L.(Br1 ) [Kb−2Ee(0, 1),

which is (III.29).
Going back to the equation

−Dj1=w1 in RN,

we conclude

F
R
N
|Nj1 |2 [ ||j1 ||L.(RN) F

Br1

|w1 |,

so that

F
R
N
|Nj1 |2 [Kb−4 F

B1

(1− |u|2)2

e2
Ee(0, 1). (III.30)

Step 2 completed: The estimate for j. We are combining all the esti-
mates for j1, j2, j3, 1, j3, 2 and j4. This yields, for 0 < d < 1/8,

F
R
N
|Nj|2 [K(b2+dN) F

B1
|Nu|2+Kb−4 F

B1

(1− |u|2)2

e2
Ee(0, 1). (III.31)
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Step 3: Improved estimates for N(|u|2) on Bd. The equation for |u|2 reads

−D(1− |u|2)+
2(1− |u|2) |u|2

e2
=2 |Nu|2.

Multiplying by 1− |u|2 and integrating on Br1 we obtain

F
Br1

|N |u|2|2+
2(1− |u|2)2 |u|2

e2
=2 F

Br1

(1− |u|2) |Nu|2+F
“Br1

(1− |u|2)
“|u|2

“n
.

From (III.16) we deduce

:F
“Br1

(1− |u|2)
“ |u|2

“n
: [Ke 1F

B1

(1− |u|2)2

e2
21/2 1F

B1
|Nu|22

1/2

.

On the other hand

:F
Br1

(1− |u|2) |Nu|2: [K F
Vb2

b2 |Nu|2+Kb−2 F
Wb2

(1− |u|2)2

e2

[Kb2 F
B1
|Nu|2+Kb−2 F

B1

(1− |u|2)2

e2
. (III.32)

Finally, we have

F
Br1

|N |u|2|2 [K 1b2 F
B1
|Nu|2+b−2 F

B1

(1− |u|2)2

e2

+e 1F
B1

(1− |u|2)2

e2
21/2 1F

B1
|Nu|22

1/22

[K 1b2 F
B1
|Nu|2+b−2 F

B1

(1− |u|2)2

e2
2 . (III.33)

Step 4: The final estimate. Proof of Theorem 3 completed. We must
prove that -d < 1/8,

Ee(0, d) [K 1F
B1

(1− |u|2)2

e2
21/3 Ee(0, 1)

+K 1F
B1

(1− |u|2)2

e2
22/3+KdNEe(0, 1).

Proof. Recall that

4 |u|2 |Nu|2=4 |u×Nu|2+|N |u|2|2,
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and thus

4 |Nu|2=4 |u×Nu|2+|N |u|2|2+4(1− |u|2) |Nu|2

[ 8(|Nj|2+|Nt|2)+|N |u|2|2+4(1− |u|2) |Nu|2 by (III.22).

Combining (III.31), (III.17), (III.33), and (III.32) we obtain

F
Bd
|Nu|2 [K 1b2 F

B1
|Nu|2+b−2 F

B1

(1− |u|2)2

e2
+dN F

B1
|Nu|2

+b−4Ee(0, 1) F
B1

(1− |u|2)2

e2
2 ,

which yields

F
Bd
ee(u) [K 1b2Ee(0, 1)+b−2 F

B1

(1− |u|2)2

e2
+b−4Ee(0, 1) F

B1

(1− |u|2)2

e2
2

+KdN F
B1
|Nu|2.

Set

pe=F
B1

(1− |u|2)2

e2

and choose b=p1/6
e , if pe [ ( 18)

6. We obtain

F
Bd
ee(u) [K(p1/3

e Ee(0, 1)+p2/3
e )+KdN F

B1
|Nu|2.

If pe \ ( 18)
6 the inequality is obvious, using only the first term on the right

hand side.

Part C: Proof of Theorem 2 Completed when N \ 3
We start with a solution ue of (III.1) on B1 satisfying the estimate

Ee(0, 1) [ g |log e|. (III.34)

Recall that in Part A we have exhibited some r0 ¥ (e1/2, d), where d is
fixed but to be determined later, such that

1
rN−2
0

F
Br0

(1− |u|2)2

e2
[Kg |log d|, (III.35)

Ee(0, r0)
rN−2
0

−
Ee(0, dr0)
(dr0)N−2 [Kg |log d|. (III.36)
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We apply Theorem 3 to the function uÄ(x)=u(r0x) on B1. The equation
for uÄ is

−DuÄ=
uÄ(1− |uÄ |2)

eÄ
2 in B1,

where eÄ=
e
r0
. Note in particular that eÄ ¥ (

e
d , e1/2).

We apply Theorem 3 to uÄ, with the same d as above. Here EÄe denotes
the Ginzburg–Landau energy relative to uÄ.

EÄeÄ (0, d) [KEÄeÄ (0, 1) 1F
B1

(1− |uÄ |2)2

eÄ
2
21/3+K 1F

B1

(1− |uÄ |2)2

eÄ
2
22/3

+KdNEÄeÄ (0, 1).

By scaling we have the identities

EÄeÄ (0, 1)=Ẽe(0, 1),

EÄeÄ (0, d)=
1

rN−2
0

Ee(0, dr0)=d2−NẼe(0, dr0),

and

F
B1

(1− |uÄ |2)2

e2Ä
=

1
rN−2
0

F
Br0

(1− |u|2)2

e2
.

Going back to u, we find

1
rN−2
0

Ee(0, dr0) [KẼe(0, r0) 1
1

rN−2
0

F
Br0

(1− |u|2)2

e2
21/3

+K 1 1
rN−2
0

F
Br0

(1− |u|2)2

e2
22/3

+KdNẼe(0, r0). (III.37)

Using (III.36) and (III.35) we obtain

Ẽe(0, r0) [ Ẽe(0, dr0)+Kg |log d|

[
K

dN−2 Ẽe(0, r0)(g |log d|)1/3+
K

dN−2 (g |log d|)2/3

+Kd2Ẽe(0, r0).
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Hence

Ẽe(0, r0) 11−K 1g
1/3 |log d|1/3

dN−2 +d222 [ K
dN−2 (g |log d|)2/3.

Now we choose d=g1/3N if g1/3N > e2, i.e. g > e6N (otherwise, see later),
then

Ẽe(0, r0)(1−Kg2/3N |log g|) [Kg (N+2)/3N |log g|2/3.

If g [ g0 (g0 is an absolute constant) we have

Ẽe(0, r0) [Kg (N+2)/3N |log g|2/3. (III.38)

In the case g [ e6N, inequality (III.38) still holds, as a consequence of
monotonicity and (III.34).
Finally, we invoke monotonicity once more to assert that, -r [ r0

Ẽe(0, r) [ Ẽe(0, r0) [Kg (N+2)/3N |log g|2/3.

In particular, for r=e,

1
eN

F
Be
(1− |u|2)2 [ Ẽe(0, e) [Kg (N+2)/3N |log g|2/3. (III.39)

We now conclude immediately with the help of the following lemma

Lemma III.3. Let u be a solution of (III.1) on B1 with N \ 2. Then

1− |u(0)| [K 1 1
eN

F
Be
(1− |u|2)22

1/(N+2)

.

Proof. Set k=|u(0)| and assume that k [ 1 (otherwise there is nothing
to be proved). By Lemma III.2 we have

|u(x)−u(0)| [
K
e
|x| [

1−k
2

,

provided |x| [ e(1−k)
2K — c. Therefore |u(x)| [ 1+k

2 on Bc. We distinguish two
cases.

Case 1. c < e. Then

F
Bc
(1− |u|2)2 [ F

Be
(1− |u|2)2.
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On the other hand

F
Bc
(1− |u|2)2 \ F

Bc
(1− |u|)2 \ 11−k

2
22 |Bc |=KeN(1−k)N+2,

by definition of c. Consequently

(1−k)N+2 [
K
eN

F
Be
(1− |u|2)2,

and the conclusion follows.

Case 2. c \ e. Then

|u(x)| [
1+k
2

in Be ,

and

F
Be
(1− |u|2)2 \ 11−k

2
22 |Be |.

Therefore

(1−k)N+2 [ (1−k)2 [
K
eN

F
Be
(1− |u|2)2,

and the conclusion of the lemma follows.

Part D: Theorem 2 when N=2

As we have already mentioned, the statement of Theorem 2 when N=2
still holds for any solution u of (III.1) with values into Rk, k \ 2.
We start again with a solution ue of (III.1), satisfying the estimate

Ee(0, 1) [ g |log e|.

By Part A (with d=1
8), there exists some r0 ¥ (e

1/2, 18) such that

1
e2

F
Br0

(1− |u|2)2 [Kg.

In particular

1
e2

F
Be
(1− |u|2)2 [Kg,
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so that by Lemma III.3

1− |u(0)| [Kg1/4,

and the proof is complete. We emphasize that the two ingredients Part A
and Lemma III.3 are valid for any solution with values into Rk. It is only
Part B (and thus Part C) which requires the assumption k=2.

Part E. Some additional remarks.

Remark III.3. The conclusion of Theorem 2 fails when N \ 3 and
k \ 3.
First, we assume that N=3 and k=3. Let ue be a minimizer of Ee on B1

with the boundary condition

u(x)=x on “B1 .

Clearly

Ee(ue) [ Ee 1
x
|x|
2=1

2
F
B1

:N 1 x
|x|
2:2 <+.,

so that (III.3) is fulfilled with g=C |log e|−1.
If the conclusion of Theorem 2 holds we would deduce that |ue |Q 1

uniformly on B1/2. On the other hand

ue(x)Q ug(x)=
x
|x|

strongly in H1(B1),

by Theorem 7.1 in [Brezis-Coron-Lieb] (see also [Lin 1]). In particular,
ue Q ug strongly in H1(Sr) for a.e. sphere Sr=“Br.
In view of the stability of the degree for maps h: S2 Q S2 under strong

H1 convergence (via the Kronecker representation formula as in [Schoen-
Uhlenbeck 2] or via VMO-degree as in [Brezis-Nirenberg]) we conclude
that for a.e. r ¥ (0, 1/2)

deg 1 ue
|ue |

, Sr 2Q 1 as e Q 0.

This is impossible because

deg 1 ue
|ue |

, Sr 2=0 for all r ¥ (0, 1/2).
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In the general case, N \ 3 and k \ 3 we use the ue above considered as a
map from B1 … RN with values in Rk, with ue independent of the variables
x4, x5, ..., xN.

Remark III.4. As we already mentioned in the Introduction, the
assumptions in Theorem 2 do not guarantee compactness of the sequence
{ue}, even in L1

loc , even when N=3, as long as k \ 2. The lack of com-
pactness is due to the phase. In [Brezis-Mironescu], the authors con-
structed a sequence ue of solutions of (III.1) satisfying

Ee(ue)=o(|log e|),

and ue has no subsequence converging a.e. on a set of positive measure. For
the convenience of the reader we recall the argument. Let

vn=exp(inx1) and gn=vn | “B1 .

Let ue, n be a minimizer of Ee in H
1
gn . Clearly

Ee(ue, n) [ Ee(vn) [Kn2. (III.40)

On the other hand, by [Bethuel-Brezis-Hélein 1] we know that for each
fixed n, ue, n tends to vn in L.(B1) as e Q 0. We may then construct a
sequence en Q 0 such that

||uen , n−vn ||L. [
1
n

(III.41)

and also

Een (uen , n)=o(|log en |).

It is well known that vn converges weakly s(L., L1) to zero, and hence
uen , n Q 0 weakly s(L., L1) by (III.41).
We now argue by contradiction. Suppose that uen , n converge a.e. to

a limit, say u, on a set A with meas(A) > 0. Necessarily u=0 a.e. On
the other hand, |uen , n |Q 1 as nQ., uniformly. Hence |u|=1 a.e. on A,
a contradiction.
In this example, the noncompactness of the sequence ue is ‘‘generated’’

by the oscillations of the boundary conditions ge. The situation becomes
totally different if one prescribes further assumptions on the boundary
conditions ge. This is explained in Section VII.
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III.2. g-Ellipticity at the Boundary

We are going to extend, in this section, the result of Theorem 2 to the
case where BR(x0) intersects the boundary of W. Throughout this section,
x0 will be a point in W̄, and R > 0 will be such that

0 [ R [ d2
0 — dist(x0, S)2, R [ R1 , (III.42)

where R1 is the constant in Lemma II.3 (monotonicity formula at the
boundary). We are going to prove

Theorem 2bis. Let g > 0, x0 ¥ W and R > 0 verifying (III.42). There
exist constants K > 0, a > 0 depending only on N, and 0 < e0 < 1 depending
only on g, W, M0 and C0 such that, if ue is a solution to (GL)e verifying (H1)
and (H2) with

0 < e < inf{e0, R4} (III.43)

and

Ẽe(ue) [ g :log e

R
: , (III.44)

then

1− |u(x0)| [Kga. (III.45)

The proof of Theorem 2 bis follows the same arguments as the proof of
Theorem 2. For each part A, B, C we will briefly point out the modifica-
tion to be made.

Part A. Choosing a Good Radius

We have the following variant of Lemma III.1.

Lemma III.1bis. Let 0 < d < 1
16 and assume

0 < e < e1 — inf 3R4, 1 d
R
24, e− R1

g 4 . (III.46)

Let ue be a solution of (GL)e verifying (H1), (H2), (III.42), (III.44). Then,
there exists some r0 ¥ (e1/2, e1/4) such that

1
rN−2
0

F
B̌r0 (x0 )

(1− |u|2)2

e2
[Kg |log d|, (III.47)

0 [ Ẽ(x0, r0)−Ẽ(x0, dr0) [Kg |log d|. (III.48)
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Proof. The argument is similar to the proof of Lemma III.1. By
(III.46), e1/4 [ R. Choose k ¥N such that

e1/2 1d
4
2−(k+1)

[ e1/4, and e1/2 1d
4
2−(k+2)

> e1/4. (III.49)

Consider for j=0, ..., k the intervals

Ij=11
d

4
2−j e1/2, 1d

4
2−(j+1)

e1/22 .

These intervals are disjoint and 1k
j=0 Ij … (e1/2, e1/4). Set

cj=F
Ij

5 1
rN−2 F

Šr (x0 )

:“u
“n
:2+ 1

rN−1 F
B̌r (x0 )

(1− |u|2)2

e2
6 .

By Corollary II.2, we have

C
k

j=0
cj [K(Ẽe(x0, e1/4)+e1/4)

[K(Ẽe(x0, R)+R) [K(Ẽe(x0, R)+R1),

where we have invoked monotonicity again for the last inequalities. On the
other hand, by (III.49),

k+1 \
|log e1/4|
|log d|

=
1
4
|log e|
|log d|

.

Therefore for some j0 ¥ {0, ..., k}

cj0 [K |log d| 1Ee(x0, R)+R1

|log e|
2

[K |log d| 1g+ R1

|log e|
2 [Kg |log d|,

by (III.44) and (III.46). The proof is then completed as in Lemma III.3.

Part B. d-Energy Decay Near the Boundary

We have

Theorem 3bis. Let ue be a solution to (GL)e verifying (H1), (H2),
x0 ¥ W̄, and r > 0 such that, for d0=dist(x0, S),

r [ inf{R1, d
2
0}, (III.50)

where R1 is the constant in Lemma II.3 (monotonicity formula).
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Then, for all 0 < d < 1/4,

Ee(x0, dr) [ C 1 1
rN−2 F

B̌r (x0 )

(1− |u|2)2

e2
21/3 (Ee(x0, r)+rN−1)

+C 1 1
rN−2 F

B̌r (x0 )

(1− |u|2)2

e2
22/3

+CdN(Ee(x0, r)+rN−1). (III.51)

For the proof, we follow the same steps and arguments as in the proof of
Theorem 3. We must however devote special care to the boundary condi-
tions: for that purpose, we will use the result of the Appendix (in particular
Propositions A.6 and A.7). Before we give the details of the modifications
to be made in the proof of Theorem 3, we recall the following basic esti-
mates (see [Bethuel-Brezis-Hélein 1, 2]),

|ue | [ 1 on W̄, |Nue | [
C
e

on W̄, (III.52)

for any solution ue of (GL)e verifying (H1) and (H2). In order to simplify
the presentation of the proof of Theorem 3 bis, we will assume throughout
that near x0, “W is flat (i.e. an (N−1)-dimensional hyperplane locally
near x0).
Changing possibly the coordinates, we may write

x0=(0, x0, N) ¥ RN−1×R+,

so that our assumption on “W can be rephrased as

Cr — Br(x0) 5 “W … RN−1×{0}. (III.53)

Finally, we will also assume throughout that

Br/8(x0) 5 “W ]”, 1 i.e. x0, N [
r
8
2 . (III.54)

Otherwise, the proof of (III.51) is an easy consequence of Theorem 3.

Proof of Theorem 3bis (assuming (III.53)).

Step 1: Hodge–de Rham decomposition of u×Nu. Let r1 ¥ [r/4, r/2] be
such that

r F
Šr1

|Nu|2 [ 8 F
B̌r
|Nu|2,

r F
Šr1

(1− |u|2)2 [ 8 F
B̌r
(1− |u|2)2,

(III.55)

464 BETHUEL, BREZIS, AND ORLANDI



where Šr — Šr(x0)=“Br(x0) 5 W and B̌r — B̌r(x0)=Br(x0) 5 RN
+. Likewise,

consider

Cr1=Br1 (x0) 5 “W … Cr … RN−1×{0},

so that

“B̌r1 (x0)=Šr1 2 Cr1 , Šr1 5 Cr1=”.

(Note that Cr1=BN−1
r2 ×{0}, where r22=r21−x2

0, N ; in particular r
2
2 \

3
4r

2
1.)

By (H2), |ge |=1 on Cr1 and is smooth. Therefore we may write, on Cr1 ,

ge=exp(iYe),

where Ye is a smooth function defined on Cr1 , so that

ge×Nge=NYe on Cr1 , (III.56)

where N denotes the tangential gradient.
On the other hand, since r1 [ r [ d2

0 (by assumption (III.50)),

|Nge | [
C0

d
[

C0

`r1
.

Hence, since |Nge |=|NYe | on Cr1 ,

|NYe | [
C0

`r1
on Cr1 . (III.57)

Next, we introduce the solution t defined on B̌r1 (x0) of the elliptic
problem

˛
Dt=0 in B̌r1 (x0)

“t

“n
=u×

“u
“n

on Šr1 (x0)

t=Ye on Cr1 (x0).

(III.58)

(The existence of t is standard). As in Step 1 of the proof of Theorem 3, we
have

dg([u×du−dt] 1B̌r1 )=0 in DŒ(RN
+). (III.59)
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We may now invoke Proposition A.8 of the Appendix, to assert the
existence of a 2-form j, defined on RN

+, such that j ¥H1
loc(R

N
+),

dgj=[u×du−dt] 1B̌r1 in RN
+, (III.60)

dj=0 in RN
+, (III.61)

j 2 =0 on “RN
+=RN−1×{0}, (III.62)

||Nj||Lp(RN
+)

[Kp(||Nu||Lp(B̌r1 (x0 ))+||Nt||Lp(B̌r1 (x0 ))) (III.63)

-1 < p <+.,

|j(x)| |x|N−1 remains bounded as |x|Q+. (|x| > r). (III.64)

We have therefore

u×du=dgj+dt in B̌r1 (x0). (III.65)

In particular, since on Cr1 , (u×du) 2 =(ge×dge) 2 =(dY) 2 =(dt) 2 , we
conclude

(dgj) 2 =0 on “RN
+=RN×{0}. (III.66)

Step 2: Improved estimates for Nj on B̌dr(x0).
As in the proof of Theorem 3, we consider the function a defined on RN

+

by a(x)=(|f(|u(x)|)|)2 on B̌r1 , and a(x)=1 outside. Then, we have

d(adgj)=w1+w2+w3 in DŒ(RN
+),

where

w1=1B̌r1 (x0 ) C
i < j

2(f(|u|) u)xi ×(f(|u|) u)xj dxi Ndxj ,

w2=sŠr1 (x0 )
f(|u|) u×duNdr, (r=|x−x0 |),

w3=d(1B̌r1 (x0 )(1−a) dt)+sŠr1
drNdt−sCr1

dxN Ndt

— w3, 1+w3, 2+w3, 3 ,

where s stands for surface measure. Set also

w4=d((1−a) dgj),

so that

Dj=w1+w2+w3+w4 .
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For i=1, 2, 3, 4, consider the solution ji ¥H
1
loc(R

N
+) of the problem

˛Dji=wi in RN
+

(ji) 2 =0, (dgji) 2 =0 on “RN
+=RN−1×{0}

|ji(x)|Q 0 as |x|Q+..

(III.67)

Set F=j−;4
i=1 ji. In view of the previous estimates,

DF=0 in RN
+,

(F) 2 =0, (dgF) 2 =0 on “RN
+=RN−1×{0},

|F(x)| |x|N−1 remains bounded as |x|Q+.,

so that, by Proposition A.3, F=0, i.e.

j=C
4

i=1
ji . (III.68)

We now proceed to estimate t, and then each ji separately.

Estimate for t. We claim that

F
B̌r1 (x0 )

|Nt|2 [ C 1F
B̌r1 (x0 )

|Nu|2+rN−12 (III.69)

and that, for 0 < d < 1
4 ,

F
B̌dr (x0 )

|Nt|2 [ CdN 1F
B̌r (x0 )

|Nu|2+rN−12 . (III.70)

Proof of (III.69) and (III.70). We may write t=t1+t2, where t1 is the
solution of

˛Dt1=0 in B̌r1 (x0)

t1=Ye on Cr1 ,
“t1

“n
=0 on Šr1 ,

and t2 is the solution of

˛Dt2=0 in B̌r1 (x0)

t2=0 on Cr1 ,
“t2

“n
=u×

“u
“n

on Šr1 .
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By standard estimates,

||Nt1 ||L.(B̌r (x0 )) [ sup
x ¥ Cr1

|NYe |(x) [
C

`r
,

so that for any 0 < d < 1 such that dr [ r1,

F
B̌dr (x0 )

|Nt1 |2 [KdNrN ||Nt1 ||
2
L. [ C dNrN−1. (III.71)

For t2 we have, by (III.55),

F
B̌r1 (x0 )

|Nt2 |2 [Kr1 F
Šr1 (x0 )

|Nu|2 [K F
B̌r1 (x0 )

|Nu|2, (III.72)

and by standard elliptic estimates, for 0 < d < 1 such that dr [ r1,

F
B̌dr (x0 )

|Nt2 |2 [KdN F
B̌r (x0 )

|Nt|2,

F
B̌dr (x0 )

|Nt|2 [KdN F
B̌r (x0 )

|Nu|2.

(III.73)

Combining (III.71) and (III.72) we obtain (III.69). Likewise combining
(III.71) and (III.73), we obtain (III.70).

Estimate for ||Nj||L2(RN
+)
. In view of (III.63) (for p=2) and (III.69), we

are led to

F
R
N
+

|Nj|2 [ C 1F
B̌r (x0 )

|Nu|2+rN−12 . (III.74)

Estimate for j4. We multiply the equation −Dj4=d((1−a) dgj) by j,
and integrate on RN

+. Since 1−a=0 on “RN
+, integration by parts and

computations similar to those for (III.25) and (III.74) yield

F
R
N
+

|Nj4 |2 [ Cb2 1F
B̌r (x0 )

|Nu|2+rN−12 . (III.75)

Estimate for j3, 1. As in the proof of Theorem 3, we obtain, using
(III.69),

F
R
N
+

|Nj3, 1 |2 [ Cb2 1F
B̌r (x0 )

|Nu|2+rN−12 . (III.76)
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Estimate for j2, j3, 2, and j3, 3. Using (III.69), we obtain as in the proof
of Theorem 3, for 0 < d < 1

4 ,

F
B̌dr (x0 )

|Nj2 |2+|Nj3, 1 |2+|Nj3, 3 |2 [ CdN 1F
B̌r (x0 )

|Nu|2+rN−12 . (III.77)

Estimate for j1. We observe first that, as a consequence of (III.52), the
same arguments as in the proof of Theorem 3 show that

|w1 | [ C
b−2

e2
(1− |u|2)2 in B̌r(x0). (III.78)

Next, we claim that

||j1 ||L.(RN
+)

[
C

b2rN−2 (Ee(x, r)+rN−1). (III.79)

Proof of (III.79). By Proposition A.3 of the Appendix, we have, for
every x ¥ RN

+,

|j1(x)| [ F
R
N
+

2cN
|x−y|

|w1(y)| dy=F
B̌r1 (x0 )

2cN
|x−y|

|w1(y)| dy

[
C
b2 F

B̌r1 (x0 )

(1− |u(y)|2)2

e2 |x−y|N−2 dy.

By the maximum principle, we deduce

||j1 ||L.(RN
+)
= sup

x ¥ B̌r1 (x0 )
|j1(x)|, (III.80)

and, for x ¥ B̌r1 (x0), B̌r1 (x0) … Br/2(x),

|j1(x)| [
C
b2 F

B̌r/2 (x)

(1− |u(y)|2)2

e2 |x−y|N−2 dy. (III.81)

By inequality (II.5) of Corollary II.2, we have

F
B̌r/2 (x)

(1− |u(y)|2)2

e2 |x−y|N−2 dy [ C 1 Ẽe 1x,
r
2
2+r2

[ C(Ẽe(x0, r)+r), (III.82)

where we have used, for the last inequality, the fact that B̌r/2(x) … B̌r(x0).
Combining (III.80), (III.81), and (III.82) we deduce (III.79).
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Finally, as in the proof of Theorem 3, we combine (III.78) and (III.79) to
obtain

F
R
N
+

|Nj1 |2 [
C
b2
5 1
rN−2 F

Br1 (x0 )

(1− |u|2)2

e2
6 (Ee(x, r)+rN−1). (III.83)

Step 2 completed. Combining the estimates for j1, j2, j3, 1, j3, 2, j3, 3,
and j4 we are led to, for 0 < d < 1/4 and 0 < b < 1/8,

F
B̌dr (x0 )

|Nj|2 [ C(b2+dN) 1F
B̌r (x0 )

|Nu|2+rN−12

+Cb−4 1 1
rN−2 F

(1− |u|2)2

e2
2 (Ee(x0, r)+rN−1). (III.84)

Step 3: Estimate for N(|u|2). The same argument as in the proof of
Theorem 3 yields

F
B̌r1 (x0 )

|N(|u|2)|2 [ C 1b2 F
B̌r (x0 )

|Nu|2+b−2 F
B̌r (x0 )

(1− |u|2)2

e2
2 . (III.85)

Step 4: Combining (III.84) and (III.85), we complete the proof of
Theorem 3 bis as in the proof of Theorem 3.

Part C. Proof of Theorem 2bis Completed when N \ 3.

The argument is similar to Part C of the proof of Theorem 2. In Part A,
we found (provided e [ e1) an r0 ¥ (e1/2, e1/4) such that (III.47) and (III.48)
hold. Applying Theorem 3 bis to x0 and r=r0, we obtain

Ee(x0, dr0) [ C 1 1
rN−2 F

B̌r0 (x0 )

(1− |u|2)2

e2
21/3 (Ee(x0, r0)+rN−1

0 )

+C 1 1
rN−2 F

B̌r0 (x0 )

(1− |u|2)2

e2
22/3+CdN(Ee(x0, r0)+rN−1

0 )

[ C(g |log d|)1/3 (Ee(x0, r0)+rN−1
0 )

+CrN−2
0 (g |log d|)2/3+CdN(Ee(x0, r0)+rN−1

0 ),

where we have used (III.47). Hence, by (III.48),

Ẽe(x0, r0) [Kg |log d|+Ẽe(x0, dr0)

[Kg |log d|+Kd2−N(g |log d|)2/3

+C(d2−N(g |log d|)1/3+d2)(Ẽe(x0, r0)+r0),
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and therefore

Ẽe(x0, r0)[1−C(g1/2 |log d|1/3 d2−N+d2)] [Kd2−N(g |log d|)2/3+r0 .

We choose d=g
1
3N. Then

Ẽe(x0, r0)[1−C(g
2
3N |log g|)] [Kg

N+2
3N |log g|2/3+r0 .

If g [ g0 (g0 some constant), then, since r0 [ e1/4,

Ẽ(x0, r0) [Kg
N+2
3N |log g|2/3+r0 .

Set e0=inf{e1, Kg
N+2
3N |log g|2/3}. If e < e0, then

Ẽ(x0, r0) [Kg
N+2
3N |log g|2/3,

and we conclude as in the proof of Theorem 3.

IV. INTERIORH1 ESTIMATES IMPLY Ck BOUNDS

In this section, we assume that ue is a solution of

−Due=
1
e2
ue(1− |ue |2) in B1 (IV.1)

and that

F
B1
|Nue |2+

(1−|ue |2)2

e2
[ L0 , (IV.2)

for some (arbitrary) constant L0 independent of e. The goal is to control all
the Ck norms of ue in B1/2, independently of e.
In the interesting situations where vorticity appears, estimate (IV.2) is

not satisfied in all of W. However, away from a certain singular set S,
(IV.2) is valid, and ue is bounded in Ck away from S. The main result in
this Section, Theorem IV.1 below, will be used in Section VIII to establish
Ck convergence of ue outside S.

Theorem IV.1. Assume ue verifies (IV.1) and (IV.2). Then for every
k ¥N,

||ue ||Ck(B1/2 ) [ Ck , (IV.3)

:: 1− |ue |2

e2
::
Ck(B1/2 )

[ Ck . (IV.4)
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Proof. Let r0 > r1 > r2 > r3 ¥ (1/2, 7/8).

Step 1: |ue |Q 1 uniformly on B7/8 as e Q 0.

Proof. If x ¥ B7/8 then B(x, 1/8) … B1 and Ee(x, 1/8) [ L0, i.e.

Ẽe(x, 1/8) [ 8N−2L0 .

Therefore by Theorem 2

|ue(x)| \ 1−Kgae ,

where K and a depend only on N, and

ge=
8N−2L0

|log 8e|
. (IV.5)

This completes the proof of Step 1.

Step 2: d-Energy decay.
Let x ¥ B7/8 and 0 < r < 1/8. Then, for any 0 [ d [ 1/2,

Ẽe(x, dr) [K(d2+d2−N(e+gae )) Ẽe(x, r), (IV.6)

where ge is defined in (IV.5). Here and below K denotes generic constants
depending only on N. In particular, there exists d0 ¥ (0, 1/2), e0 > 0, such
that for e < e0, -0 < r < 1/8,

Ẽe(x, d0r) [
1
2Ẽe(x, r). (IV.7)

Proof. We may always assume that e is sufficiently small so that

|ue | \
1
2 in B7/8 .

We then write

ue=re exp(ije) in B7/8 ,

and we may assume moreover

1
|B7/8 |

F
B7/8

je ¥ [0, 2p).

First, we turn to the contribution of the phase je. We have

−Dje=−div((1−r2
e ) Nje) in B(x, r) … B7/8 .
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Let j̃e be the harmonic function defined on B(x, r) verifying j̃e=je on
B(x, r). In particular, we have

F
B(x, r)

|Nj̃e |2 [ F
B(x, r)

|Nje |2 (IV.8)

and

F
B(x, dr)

|Nj̃e |2 [KdN F
B(x, r)

|Nj̃e |2 [KdN F
B(x, r)

|Nje |2. (IV.9)

Multiplying the equation

−D(je− j̃e)=−div((1−r2
e ) Nje) in B(x, r)

by je− j̃e, and integrating on B(x, r), we obtain

F
B(x, dr)

|N(je− j̃e)|2 [Kgae F
B(x, r)

|Nje |2. (IV.10)

Combining (IV.9) and (IV.10), we are led to

F
B(x, dr)

|Nje |2 [K(dN+gae ) F
B(x, r)

|Nue |2.

We turn to re. The same computations as in the proof of Theorem 3,
step 3, yield

F
B(x, r/2)

|Nre |2+
(1−r2

e )
2

e2
[K(e+gae ) F

B(x, r)
|Nue |2. (IV.11)

Combining (IV.10) and (IV.11) we derive (IV.6), and (IV.7) follows from
the fact that ge Q 0 as e Q 0.

Step 3: There exists a constant C > 0, and h0 ¥ (0, 1) such that, for
e < e0,

||ue ||C0, h0 (Br0 )
[ C. (IV.12)

Proof. Iterating (V.7) with r=1/8, we obtain, for e [ e0,

Ẽe(x, dk
0
1
8) [ ( 12)

k Ẽe(x,
1
8) [ C( 12)

k, -k ¥N.

For r ¥ (0, 1/8), let k ¥N be such that dk+1
0 [ 8r [ dk

0 , i.e.

k [
|log 8r|
|log d0 |

[ k+1.

ASYMPTOTICS FOR GINZBURG–LANDAU 473



By monotonicity, we have, for x ¥ B7/8,

Ẽe(x, r) [ Ẽe(x, dk
0r) [ C( 12)

k+1=C exp((k+1) log 1
2)

[ C exp(m0 log(8r))=C(8r)m0

[ Crm0,

where m0=(log 1
2)(log d0)−1 > 0.

In particular, we have established that for some constants C > 0, for
e < e0, -0 < r < 1/8,

F
B(x, r)

|Nue |2 [ CrN−2+m0. (IV.13)

In view of a classical theorem of Morrey (see, e.g., [Giaquinta]), (IV.13)
implies (IV.12) with h0=m0/2.

Step 4: There exists a constant C > 0 such that for e < e0

||ue ||C1, h0 (Br1 )
[ C. (IV.14)

Proof. In view of (IV.12), we deduce that

||r2
e ||C0, h0 (Br0 )

[ C.

Since je satisfies the equation

div(r2
e Nje)=0 in Br0 ,

which is uniformly elliptic with C0, h0 coefficient r2
e , it follows from Schauder

theory (see for instance [Gilbarg-Trudinger], Theorem 8.3.2) that

||je ||C1, h0 (Br1 )
[ C ||je ||C0, h0 (Br0 )

[ C,

by (IV.12).
From now on we proceed as in [Bethuel-Brezis-Hélein 1].

Step 5: We have

1−r2
e [ Ce2 in Br2 .

Proof. Set te=1−re. Then we have

−Dte+
1
e2

re(1+re) te=re |Nje |2 in B1 ,
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thus

−Dte+
1
2e2

te [ C in Br1

by Step 4. Applying Lemma 2 in [Bethuel-Brezis-Hélein 1] we deduce that

||te ||L.(Br2 ) [ Ce2.

Step 6: We have

||Nje ||Ck
loc
[ C,

||1−re ||Ck
loc
[ Ce2.

Proof. The proof is by induction on k. For k=0, this is a consequence
of the estimates of Step 4 and 5. The passage from k to k+1 is done as in
step B6 of Lemma 2 in [Bethuel-Brezis-Hélein 1].

Corollary IV.1. Under the assumption of Theorem IV.1, we have, for
some sequence en Q 0,

uen Q ug=exp(ijg) in Ck
loc(B1)

for every k ¥N, where jg is some harmonic function. Moreover,

1− |ue |2

e2
Q |Nug |2=|Njg |2 in Ck

loc(B1).

Remark IV.1. There is a version of Theorem IV.1 up to the boundary
“W but only for C1, a norms. C2 convergence does not hold near the
boundary since Due=0 on “W away from S, while its limit satisfies
−Dug=ug |Nug |2 on W̄0S, (ug and S are defined in Section VIII). This
requires some work, the arguments are basically the same as Steps 1–4
above.

V. PROOF OF PROPOSITION 1

The proof of Proposition 1 relies in a crucial way on the subtle
Besicovitch Covering Theorem. We give first a statement of this theorem,
following the presentation of [Giaquinta-Modica-Souček], p. 30 (see also
[Giaquinta], [Evans-Gariepy]).

ASYMPTOTICS FOR GINZBURG–LANDAU 475



Theorem V.1 (Besicovitch Covering Theorem). Let E be a subset of RN

and let r: EQ R be a positive bounded function defined on E. Then one can
choose an at most countable family of points L :={xi}i ¥N in E such that

(i) E …1i B(xi, r(xi))
(ii) The balls B(xi,

1
3 r(xi)) are mutually disjoint

(iii) The balls B(xi, r(xi)), xi ¥ L can be distributed in z(N) families
Bk of disjoint closed balls, where z(N) is a constant depending only on N.

Next we turn back to our situation. For 0 < e < 1, let m=e1/8,

Km={x ¥ W; dist(x, S) \ m},

and let E be the set

E=Ab 5Km={x ¥ W ; |u(x)| [ 1−b, dist(x, S) > e1/8}. (V.1)

We apply Theorem V.1 to the set E and take as function r the function
defined on Km in Proposition II.2.
Since E is bounded and

e1/2 [ r(x) [ e1/4, -x ¥ E,

the family L is bounded. Applying Theorem V.1, we obtain

Proposition V.1. There exists a finite family L={xi}1 [ i [ l, l ¥N, such
that

E=Ab 5Km … 0
l

i=1
B(xi, r(xi)), xi ¥ E.

Moreover, the balls Bi :=B(xi, r(xi)) can be distributed in z(N) families
Bk of disjoint balls. We have therefore

E=Ab 5Km … 0
z(N)

i=1

1 0
Bi ¥Bk

Bi
2 . (V.2)

We are now able to proceed to the proof of Proposition 1 (stated in the
Introduction).

Proof of Proposition 1 completed. One proceeds in several steps:

Step 1: We have

F
Ab 5Km

(1− |u|2)2

e2
[ C 1 C

l

i=1
rN−2
i
2 , (V.3)

where the constant C is independent on e, and where ri=r(xi).
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Proof. We deduce from (V.2) that

F
Ab 5Km

(1− |u|2)2

e2
[ 1 C

l

i=1
F
B(xi , ri )

(1− |u|2)2

e2
2 .

In view of Proposition II.2 and the definition of ri, we have

F
B(xi , ri )

(1− |u|2)2

e2
[ CrN−2

i ,

and the conclusion follows.

Step 2: Let x ¥ Ab 5Km. Then for any e1/2 [ r [ e1/4,

Ee(x, r) \ Cb1/arN−2 |log e|. (V.4)

Proof. Let g=r2−N Ee (x, r)
|log e| . Since x ¥ Ab, |u(x)| [ 1−b.

On the other hand, by Theorem 3 bis

1−Kga [ |u(x)| < 1−b,

hence

b [Kga,

i.e., g \ Cb1/a and

r2−NEe(x, r) \ Cb1/a : log e

r
: .

Since e1/2 [ r [ e1/4 the conclusion follows.

Step 3: Upper bound for ; l
i=1 r

2−N
i . Since in each family Bk, for k=1

to z(N), the balls Bi are disjoint we have

F
1Bi ¥Bk

Bi
ee(u)= C

Bi ¥Bk

Ee(xi, ri).

By step 2

Ee(xi, ri) \ Cb1/arN−2
i |log e|,

and by (H1), for any k=1 to z(N)

F
1Bi ¥Bk

Bi
ee(u) [ F

W

ee(u) [M0 |log e|.
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Hence

C C
Bi ¥Bk

b1/arN−2
i |log e| [M0 |log e|,

so that for any k,

C
Bi ¥Bk

b1/arN−2
i [ C.

Thus, we obtain the upper bound

C
l

i=1
rN−2
i [ Cz(N) b−1/a. (V.5)

Step 4: We have

F
Ab 5Km

(1− |u|2)2

e2
[ Cb−1/a. (V.6)

Proof. Combine (V.3) and (V.5).

Step 5: We have, for Sm=W0Km,

F
Sm

(1− |u|2)2

e2
[ Ce1/8 |log e|Q 0 as e Q 0. (V.7)

Proof. For any x ¥ W0Km, dist(x, S) [ e1/8. By standard covering, we
may find points zi, for i=1, ..., qe, on S such that

B(zi, e1/8) 5 B(zj, e1/8)=” if i ] j, (V.8)

0
qe

i=1
B(zi, 8e1/8) ‡Km. (V.9)

It follows from (V.8) that the number of points zi, i.e. qe can be bounded as

0 [ qe [ Cr−(N−3)HN−3(S), where r=e1/8, (V.10)

and from (V.9) we deduce that

F
Km

(1− |u|2)2

e2
[ 4 F

K
ee(u) [ C C

qe

i=1
Ee(zi, 8r). (V.11)

On the other hand, by Lemma II.4,

Ee(zi, 16r) [M2rN−2 |log e|.
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Inserting this relation into (V.11), we obtain

F
Km

(1− |u|2)2

e2
[ CqerN−2 |log e|

[ Cr−N+3rN−2 |log e|, by (V.10)

[ Cr |log e|=Ce1/8 |log e|,

which yields the result.

Step 6: Proof of Proposition 1 completed. Combining (V.6) with (V.7)
we obtain (10) and complete the proof.

Remark V.1. Proposition 1 assumes that ue satisfies the boundary
condition ue=ge on “W, with ge satisfying (H2). If we drop the boundary
condition, there will be an interior version of Proposition 1.

Proposition 1bis. Let ue be a solution of

−Due=
1
e2
ue(1− |ue |2) in BR .

For b ¥ ( 12 , 1), set

Ae, b={x ¥ BR
2
, |ue(x)| [ 1−b}.

Then

F
Ae, b

(1− |ue |2)2

e2
[ Cb 1

Ee(ue)
|log eR |
22 ,

where Cb depends only on b (and is independent of e).

The proof of Proposition 1bis follows the same strategy as above—in
fact, it is even easier because it does not involve any boundary condition.
As a consequence of Proposition 1bis, we may approach the boundary of

W, and obtain the following

Corollary V.1. Let ue be a solution of

−Due=
1
e2
ue(1− |ue |2) in W.

Let 0 < a < 1, 12 < b < 1 and let

Ae, a, b={x ¥ W, dist(x, “W) \ ea, |ue(x)| [ 1−b}.
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Then

F
Ae, a, b

(1− |ue |2)2

e2
[ Ca, b 1

Ee(ue)
|log e|
22 ,

where Ca, b depends on W, a, b but not on e.

We emphasize once more that there is no assumption involving the
boundary of W.

VI. GLOBAL ESTIMATES INW1, p, 1 [ p < N
N−1

VI.1. Introduction

In this section our first aim will be to establish for 1 [ p < N
N−1 the bound

(7), that is

F
W

|Nue |p [ Cp,

for any solution ue to (GL)e verifying (H1), (H2). As in [Bethuel-Brezis-
Hélein 2], Section X, this is the main ingredient (together with g-ellipticity)
in order to establish compactness properties of the set {ue}0 [ e [ 1 of solu-
tions verifying (H1) and (H2).
As in Section III our starting point is once more the equation

dg(ue×due)=0 in W, (VI.1)

and again we will use extensively Hodge–de Rham decompositions. An
important difference here is however that we must work on the whole
domain (instead of small balls) and that the boundary conditions on “W
will be used in a fundamental way (actually, they must to be used in order
to establish (7), see remarks at the end of Section III).
Since our analysis involves many questions related to differential forms

(some of them not so widely well known, in particular those concerning
boundary conditions), we will collect in the Appendix some background
material, which we will use in later investigation.

VI.2. Linear Problems Associated to the Ginzburg–Landau System

Let u=ue be a solution of (GL)e verifying (H1), (H2). In order to derive
(7) we write, as in Section III

4 |u|2 |Nu|2=4 |u×Nu|2+|N |u|2|2, (VI.2)
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and our first goal will be to prove for 1 [ p < N
N−1

F
W

|u×Nu|p [ Cp.

To that aim, we write first a first-order system of equations for the
1-form

m=u×Nu=C
N

i=1
u×
“u
“xi

dxi.

VI.2.1. An Elliptic System of First-Order Equations

As in Section III, let 0 < b < 1/4 to be determined later, and let
f: R+Q [1, 1/(1−b)] be a function verifying (III.23), that is

˛f(t)=
1
t

if t \ 1−b

f(t)=1 if t [ 1−2b

|fŒ| [ 4 for any t ¥ R+.

(VI.3)

In W, let a be the function defined by

a(x)=f2(|u(x)|) in W, (VI.4)

so that, as already observed,

1 [ a [ 1+4b in W. (VI.5)

On W we consider also the 2-form w defined by

d(au×du)=C
i < j

2(f(|u|) u)xi ×(f(|u|) u)xj dxi Ndxj.

As in Section III we have

w(x)=0 if |u(x)| > 1−b (VI.6)

and

|w(x)| [Kb−2 (1− |u|2)2

e2
. (VI.7)

As an immediate, yet crucial consequence of Proposition 1, we obtain
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Corollary VI.1. We have

||w||L1=F
W

|w(x)| [Kb−2 — Cb. (VI.8)

Remark that Cb is a constant depending only on b, W, etc., but not on e.
At this stage we have now a system of two first-order equations for

m=u×du, namely

˛dgm=0 in W

d(am)=w in W,

(compare with Corollary A.1 and the remarks thereafter), where w is
bounded in L1 uniformly in e. As we will see, this system, together with the
boundary condition m 2 =ag×dg on “W yields an Lp bound for m. Perhaps
the simplest way to derive this result is to use a Hodge–de Rham decom-
position.

VI.2.2. Hodge–de Rham Decomposition and Second Order Linear Elliptic
Equations

In view of Proposition A.7 of the Appendix (with l=1), there is a func-
tion H defined on W and a 2-form F defined on W, such that

am=dH+dgF in W, (VI.9)

with

˛dF=0 in W

H=0 on “W

F 2 =0 on “W.

(VI.10)

We will show next that F verifies an elliptic equation involving w.

Lemma VI.1. We have

˛ −DF=w in W

F 2 =0 on “W

(dgF) 2 =A on “W,

(VI.11)

where A is the 1-form defined on “W as

A=ag×dg. (VI.12)
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Proof. Since −D=ddg+dgd, and since dF=0 on W, it follows

−DF=ddgF+dgdF=ddgF

=d(am−dH)=d(am)=w,

so that we obtain the first equation.
Since H=0 on “W, (dH) 2 =0 on “W and

(am) 2 =(dH) 2 +(dgF) 2 =(dgF) 2 on “W,

hence the third relation is established.

Remark VI.1. Note that at this stage we have not used the equation for
u, and in particular equation VI.11 for F holds for any map u: W Q R2

(provided it is sufficiently regular). Similar Hodge–de Rham decomposi-
tions will turn out to be useful for instance in evolution problems, as we
will show in forthcoming works. The time coordinate, in that case, must be
included with the space coordinates.

Remark VI.2. The boundary data g enters directly in the definition of F.

Remark VI.3. In the case where |u| \ 1−b on W, then we have DF=0
on W, that is

ddgF=0 in W.

Applying Hodge–de Rham decomposition to dgF we may assert that there
exists some function j, defined on W such that

dj=dgF.

We then verify easiliy that for some constant C

u(x)=|u| exp(ij+C). (VI.13)

In the general case, however, u must vanish, and w is not zero and repre-
sents, through Eq. (VI.11), the obstruction (in particular the topological
obstruction) to the lifting property (VI.13).

Remark VI.4. If N=2 and ge=g on “W (with |g|=1) then F becomes

F=F12 dx1 Ndx2
w=2(f(|u|) u)x1 ×(f(|u|) u)x2 dx1 Ndx2 .
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In this case the condition F 2 =0 is automatically verified and (VI.11)
becomes

−DF12=2(f(|u|) u)x1 ×(f(|u|) u)x2 in W, (VI.14)

“F12

“n
=g×gy on “W. (VI.15)

This type of equation and, in particular, the boundary condition (VI.15)
have been studied and used extensively in [Bethuel-Brezis-Hélein 2]. This
shows in particular that the equation (VI.11) for the 2-form F is the natural
extension to higher dimension of the elliptic problems involving the
function F12 in case N=2.
Next we derive the equation for the function H.

Lemma VI.2. The function H verifies the elliptic equation, with Dirichlet
boundary conditions

˛div(a−1NH)=dg((1−a−1) dgF) in W

H=0 on “W.
(VI.16)

Proof. First note that by (VI.5)

0 <
1

1+4b
[ a−1 [ 1, (VI.17)

so that we may multiply (VI.9) to assert

u×du=a−1 dH+a−1 dgF.

Hence,

dg(u×du)=dg(a−1 dH)+dg(a−1 dgF)

=dg(a−1 dH)+dg((a−1−1) dgF),

and the conclusion follows by Eq. (VI.1).

Remark VI.5. Note that here Eq. (GL)e (and its consequence (VI.1))
enters in a crucial way in the derivation of (VI.16). Together with Proposi-
tion 1, it will actually be the only place where it will be used in order to
bound ||u×du||Lp for 1 [ p < N

N−1 .

VI.2.3. Bounds on ||NH||Lp, ||NF||Lp, for 1 [ p < N
N−1

Since F enters directly in the equations (VI.16) for H, whereas the
equation for F involves only w and g, we will begin with estimates for F.
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Proposition VI.1. We have, for 1 [ p < N
N−1 ,

||NF||Lp [ Cb, p,

where Cb, p is a constant depending on b, p, W, g but independent on e.

Proof. In view of Proposition A.2 of the Appendix, we have

||NF||Lp [ Cp(||w||L1+||ag×dg||L1),

and the conclusion follows from Corollary VI.1, together with the estimate

||ag×dg||L1 [ C,

which is an easy consequence of (H2).
We next turn to the function H. This is the stage where we must make a

suitable choice for the parameter b.

Proposition VI.2. Let 1 [ p < N
N−1 . There is some 0 < b0 < 1/4

(depending possibly only on p and W) and a constant C > 0 (depending
possibly on p and W but not on b0) such that, for 0 < b < b0

||NH||Lp(W) [ C|b| ||NF||Lp(W) [ Cb, p .

Proof. We write the operator div(a−1N) as a perturbation of the
Laplacian, that is

div(a−1NH)=DH+div((a−1−1) NH) in W.

Let D−1
0 denote the inverse of the Laplacian with Dirichlet boundary

condition on W, i.e.,

D−1
0 : W−1, p(W)QW1, p

0 (W)

fW D−1
0 f=w,

where w is the unique solution inW1, p(W) of

˛Dw=f in W

w=0 on “W.

Since 1 < p <+., standard elliptic estimates show that D−1
0 is a continu-

ous linear operator fromW−1, p(W) toW1, p
0 (W). Set

Y=dg((1−a−1) dgF).
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By (VI.5) we have

|a−1−1| [ 4b, (VI.18)

so that, for some constant K,

||Y||W−1, p(W) [Kb ||NF||Lp(W).

We now write (VI.16) as

˛DH=div(1−a−1) NH+g in W

H=0 on “W,

which can be reformulated as

H=D−1
0 (div(1−a−1) NH)+c, (VI.19)

where c ¥W1, p
0 (W) is given by

c=D−1
0 (Y).

Finally, we define the linear operator T: W1, p
0 (W)QW1, p

0 (W) by

Tv=D−1
0 (div(1−a−1) Nv),

for any v ¥W1, p
0 (W). Clearly T is continuous. Moreover, by (VI.18) we

have

||T|| [Kb. (VI.20)

Equation (VI.19) can now be written as

(Id−T) H=c,

where Id denotes the identity map onW1, p
0 (W). We choose b0 so small that

Kb0 [
1
2 ,

where K is the constant in (VI.20). Therefore, for b [ b0, Id−T is invert-
ible and

||H||W1, p [ ||(Id−T)−1|| ||c||W1, p

[K ||Y||W−1, p [Kb ||NF||Lp ,

which completes the proof.
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VI.2.4. Lp Estimates for |u×du|, 1 [ p < N
N−1

Let 1 < p < N
N−1 be given, and choose b=b0, where b0 is the constant

introduced in the proof of Proposition VI.6. With this choice of b, the
function a is also determined. Since

u×du=a−1 dH+a−1 dgF,

we deduce from the results of previous section,

Proposition VI.3. Let 1 [ p < N
N−1 be given. There is a constant Kp,

depending only on W, p, C0 and K0 such that for any solution ue of (GL)e
verifying (H1), (H2) we have

F
W

|ue×due |p [Kp .

VI.3. Estimates for |N |ue ||, 1 [ p < 2

We follow here closely the argument of [Bethuel-Brezis-Hélein 2],
Lemma X.13. Let 1 [ p < 2 and set

r=|ue |.

The equation for r is

−Dr+
1
r3 |u×du|2=

1
e2

r(1−r2) in W. (VI.21)

We are going to prove

Proposition VI.4. Let 1 [ p < 2. There exists a constant Kp and
0 < a < 1 depending only on p, W, K0, C0 such that, for 0 < e < 1,

F
W

|Nr|p [K0e
a.

Proof. We introduce the set

S={x ¥ W, r(x) > 1− e1/2}

and the function

r̄=max{r, 1−r1/2},
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so that r=r̄ on S and

0 [ 1− r̄ [ e1/2 in W. (VI.22)

We multiply (VI.21) by r̄−1 and integrate over W:

F
W

Nr Nr̄+F
W

r(1−r2)(1− r̄)
e2

=F
W

1− r̄

r3 |u×du|2+F
“W

“u
“n

(1− r̄),

F
W0S

|Nr|2 [ e1/2 F
W

1
r3 |u×Nu|2+F

“W

|N |u| |(1− r̄).

From assumption (H1) we deduce that

F
W

1
r3 |u×Nu|2 [K |log e|,

whereas it follows from (H2) that 1− r̄(x)=0 if x ¥ “W, dist(x, S) \ e, so
that

F
“W

|N |u|| (1− r̄) [ e1/2 F
“W 5 dist(x, S) [ e

|N |u||

[Ke1/2 meas{x ¥ “W, dist(x, S) [ e} [Ke2N−2/2 [K.

Here we have used the fact that

|Nu| (x) [
K
e

-x ¥ W̄.

Combining the previous relations we obtain

F
S
|Nr|2 [Ke1/2 |log e|. (VI.23)

Finally, since by (H1)

F
W

(1−r2)2 [Ke2 |log e|

and since (1−r2) \ e1/2 on W0S, we obtain

|W0S| [Ke |log e|.
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Hence

F
W0S

|Nr|p [ 1F
W

|Nr|22
p/2

|w0S|1−p/2

[K |log e|p/2 |W0S|1−p/2

[Ke1−p/2 |log e|. (VI.25)

Combining (VI.24) with (VI.25) we deduce the result.

VI.4. Proof of (7) Completed

Since we have now proved Lp bounds for the gradient of the phase as
well as the gradient of the modulus, it suffices to combine the two estimates
to bound ||Nu||Lp. More precisely, we have

|u| |Nu| [ |u×Nu|+|Nr|

We distinguish the cases |u| \ 1/2 and |u| [ 1/2. Recall that

A1/2={x ¥ W, |u|(x) [ 1
2 },

so that

|Nu| [ 2 |u×Nu|+|Nr| in W0A1/2 .

Hence, for 1 [ p < N
N−1

F
W0A1/2

|Nu|p [ Cp(||u×Nu||pLp(W)+||Nr||pLp(W)) [Kp , (VI.26)

by Propositions VI.3 and VI.4, where Kp depends only on p, W, K0, C0. On
the other hand we have, by the bound

|Nu| [
K
e
,

F
A1/2

|Nu|p [Ke−p F
A1/2

(1− |u|2)2 [Ke2−p,

(VI.27)

where we have used Proposition 1 for the last inequality.
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Combining (VI.26) and (VI.27) we deduce

F
W

|Nue |p [Kp, for 1 [ p <
N

N−1
,

that is, (7) is established.

VII. g-REGULARITY

We first recall the main g-ellipticity assertion in Section III: if ue is a
solution of

−Due=
1
e2
ue(1− |ue |2) in BR (VII.1)

and if

Ẽe(ue, R) [ g0 : log
e

R
: , (VII.2)

with g0 sufficiently small (depending only on N), then

|ue(x)| \
1
2 in BR/2 . (VII.3)

We emphasize once more that no boundary condition is assumed. We
also recall that in the absence of restrictions on the boundary condition,
there is no hope to infer from (VII.1) and (VII.2) (even with small g0) any
compactness for ue, e.g. in L1 (see the example in [Brezis-Mironescu]
which is also described in Remark III.4).
In the previous section, we established global W1, p estimates, 1 [ p <

N
N−1 , assuming ue=ge on “W, where ge satisfies (H2). Here we will show
how to gain further regularity (uniformly in e) in the region where (VII.2)
holds with g0 sufficiently small. This gain is established in two steps. First,
we prove that (VII.2) with small g0 implies

Ẽe 1ue,
3R
4
2 [ C, independently of e, (VII.4)

and (VII.4) combined with the analysis in Section IV yields

||Nue ||C0, a(B(x0 , R/2)) [ C,
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and even

||ue ||Ck(B(x0 , R/2)) [ C,

if B(x0, R) does not intersect the boundary “W.
Here is the main result in this section:

Proposition VII.1. There exists constants g0 > 0, R2 > 0 depending
possibly on W, S, M0, C0, but not on e, such that if ue is a solution of (GL)e
verifying (H1) and (H2), and if x0 ¥ W̄ and R > 0 are such that

0 < R < R2 dist
2(x0, S), (VII.5)

and

Ẽe(x0, R) [ g0 : log
e

R
: , (VII.6)

then, for e < R/16,

|ue(x)| \
1
2
, -x ¥ B̌ 1x0,

3R
4
2 , (VII.7)

and

Ẽe 1x0,
R
2
2 [ C(x0, R), (VII.8)

where C(x0, R) is a constant depending on x0, R, W, S, M0 and C0, but not
on e.

Proof. Let K and a be the constants in Theorem 2 bis. Let g1 > 0 be
such that

1−Kga1=
1
2 .

The constant R2 is choosen in such a way that, if x0 and R satisfy (VII.5),
then

R
4
< inf{R1, dist2(x, S)}, (VII.9)

for every x ¥ B̌(x0,
3R
4 ), where R1 is the constant in Lemma II.3.
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If x ¥ B(x0,
3R
4 ), then B(x,

R
4 ) … B(x0, R) and Ee(x,

R
4 ) [ Ee(x0, R), i.e.

Ẽe 1x,
R
4
2 [ 4N−2Ẽe(x0, R).

If ue verifies (VII.6), it follows that

Ẽe 1x,
R
4
2 [ 4N−2g0 : log

e

R
: [ 4N−2g0 1 : log

4e

R
:+|log 4|2

[ 2 · 4N−2g0 1 : log
4e

R
: 2 , (VII.10)

since e < R
16 . Choose g1=2·4N−2g0, so that (VII.10) yields

Ẽe 1x,
R
4
2 [ g1 : log

4e

R
: .

In view of (VII.9), we may now invoke Theorem 2 bis to assert that

|ue(x)| \ 1−Kga1=
1
2 ,

i.e. (VII.7) is established.
We turn next to (VII.8). Since |ue | \ 1/2 on B̌(x0,

3R
4 ), we may write

ue=re exp(ije) in B̌ 1x0,
3R
4
2 ,

where re=|ue |, and where the real-valued function je is defined on
B̌(x0,

3R
4 ) up to an integer multiple of 2p. We may therefore impose the

additional condition

1
|B̌ (x0,

3R
4 )|

F
B̌(x0 ,

3R
4 )

je ¥ [0, 2p). (VII.11)

By (7) in the Introduction we have, on the other hand,

F
B̌(x0 ,

3R
4 )
|Nje |p+|Nre |p [ Cp -1 [ p <

N
N−1

, (VII.12)

where Cp does not depend on e. As already seen, je verifies the equation

div(r2
e Nje)=0 in B̌ 1x0,

3R
4
2 , (VII.13)
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which is uniformly elliptic on B̌(x0,
3R
4 ), since r2

e \ 1/4. We may now
invoke standard elliptic theory to assert, in view of (VII.11), (VII.12), and
the fact that

|N 2 je(x)| [ C(x0, R) on B 1x0,
3R
4
2 5 “W,

by (H2), that we have the stronger H1 bound on the smaller domain
B̌(x0,

5R
8 ),

F
B̌(x0 ,

5R
8 )
|Nje |2 [ C(x0, R), (VII.14)

where C(x0, R) denotes a constant depending on x0, R, W, S, M0, C0, but
not on e.
Finally, we turn to re. recall that re verifies the equation

−Dre+re |Nje |2=
1
e2

re(1−r2
e ). (VII.15)

Let z be a smooth function on RN such that supp z … B(x0,
5R
8 ), z \ 0, and

z — 1 on B̌(x0,
R
2 ). We multiply equation (VII.15) by (1−re) z and integrate

on B̌(x0,
5R
8 ) (note that 1−re — 0 on “W 5 B(x0,

5R
8 )). We obtain

F
B̌(x0 ,

5R
8 )

5|Nre |2+
re(1−r2

e )
e2

(1+r)6 z

[ F
B̌(x0 ,

5R
8 )
[|Nje |2 z+|Nre | |Nz|](1−re). (VII.16)

Therefore we deduce, by (VII.14) and (VII.12),

F
B̌(x0 ,

R
2 )
|Nre |2+

(1−r2
e )

2

e2
[ C(x0, R). (VII.17)

Combining (VII.17) and (VII.14) we obtain (VII.8).

VIII. CONVERGENCE OUTSIDE THE SINGULAR SET S

VIII.1. Extraction of Subsequences: ug and mg Are Born!

In the previous sections, we established the following bound, for solu-
tions ue of (GL)e verifying (H1) and (H2):

F
W

|Nue |p [ Cp , for any 1 [ p <
N

N−1
. (VIII.1)
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We emphasize once more that the constant Cp depends on p, W, S, C0 and
M0, but is independent of e and ue. By assumption (H1), we have the
obvious bound

F
W

ee(ue)
|log e|

[M0 , (VIII.2)

whereas, by (H2), we have

F
“W

|N 2 ge |p [ Cp , for any 1 [ p <
N

N−1
. (VIII.3)

Set

me=
ee(ue)
|log e|

.

In view of inequalities (VIII.1) to (VIII.3), given any sequence en Q 0, we
may extract a subsequence (still denoted en), such that

uen E ug inW1, p(W), for any 1 [ p <
N

N−1
; (VIII.4)

gen E gg inW1, p(“W), for any 1 [ p <
N

N−1
, (VIII.5)

and the convergence is in C1(K) for any compact subset K of “W0S;

men E mg in the weak f topology of M(W̄)=[C(W̄)]g, (VIII.6)

in other words

F
W

men (x) z(x)Q F
W

mgz, -z ¥ C(W̄).

Set S=supp mg.
In the above convergences, ug denotes a map belonging to W1, p(W, S1)

(i.e. |ug |=1 a.e.), for any 1 [ p < N
N−1 , gg belongs to W1, p(“W, S1) 5

C1(“W0S), for any 1 [ p < N
N−1 and mg is a bounded positive measure on

W̄. Note that by the trace theorem,

ug=gg on “W, (VIII.7)
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and passing to the limit in the equation

div(uen ×Nuen )=0 in W,

we deduce

div(ug ×Nug)=0 in W. (VIII.8)

VIII.2. S has N−2 Hausdorff Dimension

The main result of this subsection is

Theorem VIII.1. We have

HN−2(S) <+.. (VIII.9)

The main ingredient in the proof is the following

Proposition VIII.1. Let x0 ¥ W̄,R > 0, such that 0 < R < R2 dist
2(x0, S).

Assume

mg(B̌(x0, R)) < g0RN−2, (VIII.10)

where g0 and R2 are defined in Proposition VII.1. Then we have

mg
1 B̌ 1x0,

R
2
22=0, i.e. B̌ 1x0,

R
2
2 … W̄0S=W̄0 supp mg .

(VIII.11)

Proof. It follows from (VIII.10) that there exists some n0 ¥N such that
for n \ n0

Ẽen (x0, R) [ g0 : log
en

R
: , (VIII.12)

and therefore by Proposition VI.1 we obtain (for n \ n0)

Ẽen (x0, R) [ C(x0, R). (VIII.13)

Dividing (VIII.13) by |log en |, (VIII.11) follows.

Proof of Theorem VIII.1 completed. We must prove that there is a con-
stant C > 0 such that for any d > 0, S is covered by a finite number nd of
balls of radius d, such that

nd ·dN−2 [ C. (VIII.14)
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Let {xi}i ¥ I be a family of points in W̄ such that

B 1xi,
d

2
2 5 B 1xj,

d

2
2=” for i ] j, (VIII.15)

W̄ …0
i ¥ I

B(xi, d). (VIII.16)

In view of (VIII.15), we have

ÄI [ CdN, (VIII.17)

where C depends on W. Next let J … I be defined by

J={i ¥ I, mg(B(xi, 2d)) \ g0d
N−2},

where g0 is defined in Proposition VII.1. Since by (H1) mg(W̄) [M0 and
since a point in W may belong to at most K different balls B(xi, 2d) (where
K ¥N is a constant depending only on N), we have

ÄJ [KM0d
2−N. (VIII.18)

On the other hand we claim that

supp mg … 0
i ¥ J

B(xi, d). (VIII.19)

Indeed, if i ¨ J, then mg(B(xi, 2d)) < g0d
N−2 and therefore by Proposition

VIII.1, we obtain mg(B̌(xi, d))=0, so that

B̌(xi, d) … W̄0 supp mg, for i ¨ J,

and (VIII.19) follows.
Combining (VIII.18) and (VIII.19), we obtain (VIII.14) with nd=ÄJ and

the proof of Theorem VIII.1 is completed.
We close this subsection with an additional remark which will be crucial

in Section IX.

Proposition VIII.2. For x ¥ W, the function

rW
mg(B(x, r))

rN−2

is nondecreasing. Set

Gg(x)= lim
rQ 0+

mg(B(x, r))
rN−2 .
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Then

Gg(x) \ g0 for any x ¥S 5 W.

Proof. The first assertion is a straightforward consequence of the
interior monotonicity formula, whereas the second assertion follows
directly from Proposition VIII.1.

VIII.3. Convergence on W0S

In this subsection we prove

Theorem VIII.2. ug ¥ C.(W0S) and for every ball B(x, R) … W0S we
have ug=exp ijg, where jg is harmonic.
Moreover, for every compact subset K of W,

uen Q ug in Ck(K), -k ¥N,

1− |uen |
2

e2n
Q |Nug |2 in Ck(K), -k ¥N.

Proof. Let x ¥ W and d > 0 such that B(x, 2d) … W0S and 2d <
R2 dist2(x, S). Then mg(B(x, 2d))=0 and by Proposition VII.1

Een (x, d) [ C(x, d) -n ¥N,

where C(x, d) is independent of e. By Corollary IV.1,

ug=exp ijg in B(x, d),

where jg is harmonic, and

uen Q ug in Ck
loc(B(x, d)), -k ¥N,

1− |uen |
2

e2n
Q |Nug |2 in Ck

loc(B(x, d)), -k ¥N.

The conclusion follows by a covering argument.

IX. PROPERTIES OF S AND mg

We finally complete the proof of Theorem 1 by the following result (see,
e.g., [Simon] for definitions of rectifiable set and stationary varifold).
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Theorem IX.1. S is a countably HN−2-rectifiable set, and mg is a
stationary varifold in W.

Remark IX.1. To be more precise, the statement of Theorem IX.1
means: S is rectifiable, and the varifold Vg=V(S, Gg) (see [Simon],
Chapter 4) is stationary.

Proof. Both statements are an immediate and direct consequence of the
analysis carried out in [Ambrosio-Soner] in the parabolic case (any solu-
tion of (GL)e is of course a stationary solution of the corresponding para-
bolic equation). In their proof, they made use of an additional assumption
on Gg (Condition (1.4) there). This assumption is precisely the one estab-
lished in Proposition VIII.2, and is therefore verified by solutions of (GL)e
satisfying (H1) and (H2).

Comment. Here we sketch some of the main ideas in the proof in
[Ambrosio-Soner], applied to the elliptic case considered here.
The starting point is the identity

F
W

1ee(ue) dij−
“ue
“xi

·
“ue
“xj
2 “X i

“xj
=0, -X ¥ [C1

c(W)]N. (IX.1)

This classical identity (see, e.g., [Hélein]) expresses the fact that the stress
energy tensor field for solutions ue to the Ginzburg–Landau equation is
divergence free.
Set

aij, e=
1

|log e|
1ee(ue) dij−

“ue
“xi

·
“ue
“xj
2 .

Note that aij, e is a symmetric matrix with trace larger than (N−2) me, and
a little linear algebra shows that its eigenvalues are less or equal to me.
Moreover,

|aij, e | [Nme . (IX.2)

Extracting possibly a further subsequence from en we may then assert that

aij, en Q aij, g in the sense of measures.

In view of (IX.2) we have |aij, g | [Nmg, therefore we may write

aij, g(x)=Aij(x) mg for mg a.e. x ¥ W,
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where the matrix Aij(x) is symmetric, with trace larger than N−2 and
eigenvalues less or equal to one. Passing to the limit in (IX.1) we obtain

F
W

Aij(x)
“X i

“xj
dmg(x)=0 -X ¥ [C1

c(W)]N. (IX.3)

The crucial point is to show that the matrix Aij(x) represents the orthogo-
nal projection on a (N−2)-dimensional subspace Px of RN. By a blow-up
argument (see Theorem 3.8c), Lemma 3.9 and Remark 3.10 in [Ambrosio-
Soner]), using the fact that Gg(x) \ g0 on S, one concludes first that
Aij(x) has at least two eigenvalues equal to zero. Then, since as already
observed the trace of Aij(x) has to be larger than N−2 and its eigenvalues
do not exceed 1, one deduces that Aij(x) has precisely N−2 eigenvalues
equal to 1 and two eigenvalues equal to zero. This means that Aij(x)
represent the orthogonal projection on the space Px spanned by the eigen-
vectors corresponding to the eigenvalue 1. Hence Px and mg define a vari-
fold Vg. Formula (IX.3) asserts precisely that the first variation of Vg
vanishes, i.e. Vg is stationary.
Next we invoke a classical theorem in [Allard] (see also [Simon],

Theorem 42.4) which asserts that a varifold having locally bounded first
variation (in particular, a stationary varifold) and positive density is recti-
fiable. In our case the positive density of Vg follows directly from Proposi-
tion VIII.2. Therefore S is rectifiable, Px is the approximate tangent plane
to S at x, and Vg=V(S, Gg).

Remark IX.2. Stationary varifolds are an extension of the notion of
minimal surfaces. However, unlike minimal surfaces, they might have
rather singular behavior. It is generally conjectured that for an m-dimen-
sional stationary varifold the singular set has null Hm measure.

Remark IX.3. In case ue is minimizing for the Ginzburg–Landau
energy it is proved that Gg is an integer multiple of p and S is area-mini-
mizing (see [Lin-Rivière 1], [Sandier], [Jerrard-Soner], [Alberti-Baldo-
Orlandi]).

APPENDIX

A. Elliptic Problems Involving Differential Forms

A.1. Basic Definitions

We will follow here essentially the presentation of [Iwaniec, Scott,
Stroffolini] and [Giaquinta-Modica-Souček]. Let N ¥N and l ¥N, we
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denote by L lRN the set of l-covectors on RN. If I=(i1, ..., il) is an ordered
l-uple, 1 [ i1 < i2 < · · · < il [N, we set

dxI=dxi1 N · · · Ndxil .

The set L(l, N) of all distinct l-uples I yields a basis of L lRN, so that we
may write an element a of L lRN as

a= C
I ¥ L(l, N)

aI dxI

where aI ¥ R. A canonical scalar product on L lRN is defined as

Oa, bP= C
I ¥ L(l, N)

aIbI .

Recall also that the Hodge star operator a

a : L lRN Q LN−lRN

is the linear operator defined, for a ¥ L lRN by

aNj=Oaa, jP dx1 N · · · NdxN,

for any j ¥ LN−lRN. In particular

a1=dx1 N · · · NdxN a dx1 N · · · NdxN=1

and

aa=(−1) l(N−l) IdLlRN . (A.1)

Since for a and b in L lRN, Oa, bP=Oaa, abP it follows that

aNab=Oa, bP dx1 N · · · NdxN .

We turn now to differential forms. Let W be a smooth domain in RN.
A differential l-form on W is a distribution on W with values in L lRN.
Therefore, every l-form w on W may be written as

w(x)= C
I ¥ L(l, N)

wI(x) dxI , (A.2)

where the coefficients wI are distributions in DŒ(W). We will denote
DŒ(L lW) the set of l-forms. Similarly we denote C.(L lW̄) (respectively,
C.c (L

lW)) the set of l-forms with smooth (respectively, smooth with
compact support in W) coefficients in W̄.
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If a, b are two l-forms in C.c (L
lW)we set

Oa, bP=F
W

Oa(x), b(x)P dx1 · · · dxN=F
W

aNab. (A.3)

Clearly O , P defines a scalar product on C.c (L
lW) and we extend its defini-

tion by density to various situations, for instance a ¥ C.c (L
lW), b ¥

DŒ(L lW)...
With these notations the exterior differential d: DŒ(L lW)QDŒ(L l+1W) is

expressed, if w is given by (A.2), by

dw(x)=C
N

k=1

1 C
1 [ i1 < · · · < il [N

“wi1 · · · il

“xk
dxk Ndxi1 N · · · Ndxil 2 .

If w1 ¥DŒ(L l1W) and w2 ¥ C
.

c (L
l2W), then we have the Leibnitz rule

d(w1 Nw2)=dw1 Nw2+(−1) l1 w1 Ndw2 . (A.4)

The formal adjoint of d, for the scalar product given by (A.3), is the
Hodge-codifferential dg, defined by

dg=(−1)Nl+1 ada: DŒ(L l+1W)QDŒ(L lW),

so that if a ¥ C.c (L
lRN), b ¥ C.c (L

l+1RN)

Oda, bP=Oa, dgbP. (A.5)

The operators d and dg enjoy the important properties

d p d=0, dg
p dg=0.

The Laplace operator for forms D is defined as

−D=ddg+dgd: DŒ(L lW)QDŒ(L lW).

If w is given by (A.2), then D expresses in cartesian coordinates

Dw= C
1 [ i1 < · · · < [ il [N

Dwi1 · · · il dxi1 N · · · Ndxil . (A.6)

Finally, we define the gradient Nw of an l-form w by

Nw=1 “w
“x1

, ...,
“w

“xN
2 ¥ [DŒ(L lW)]N,
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where for i=1, ..., N

“w

“xi
= C

1 [ i1 < · · · < il [N

“wi1 · · · il

“xi
dxi1 N · · · Ndxil .

If a and b are in C.(L lW̄) we set

ONa, NbP=C
N

i=1

7 “a
“xi

,
“b

“xi
8 .

If a and b belong to C.c (L
lW) we deduce from (A.5) that

−ODa, bP=Oda, dbP+Odga, dgbP,

whereas we deduce from (A.6) that

−ODa, bP=− C
I
ODaI, bIP=C

I
ONaI, NbIP=ONa, NbP.

Hence, we obtain

Oda, dbP+Odga, dgbP=ONa, NbP. (A.7)

A.2. Restrictions to the Boundary

Since W is assumed smooth, near every point x0 ¥ “W, we may construct
a local system of coordinates (x̃1, ..., x̃N) such that x̃N=0 on “W and such
that the curves {x̃i=ci , i=1, ..., N−1} are orthogonal to “W. Every dif-
ferential form w ¥ C.(L lW̄) can therefore be written, in a neighborhood of
x0, as

w= C
1 [ i1 < · · · < il [N

w̃i1 · · · il dx̃i1 N · · · Ndx̃il .

We decompose w (in the neighborhood of x0) as

w=w 2 +wN ,

where

w 2 (x)= C
1 [ i1 < · · · < il < N

w̃i1 · · · il dx̃i1 N · · · Ndx̃il

wN(x)= C
1 [ i1 < · · · < il=N

w̃i1 · · · il−1 , N dx̃i1 N · · · Ndx̃N .
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This decomposition does not depend on the specific choice of coordinates
(x̃1, ..., x̃N). Note that on “W

(dw) 2 =d(w 2 ),

and in particular, if w 2 =0, then (dw) 2 =0.
Orienting the surface “W according to the outward normal, Stokes

formula (i.e., integration by parts) gives

F
W

dw=F
“W

w 2 . (A.8)

Next, we set

C.2 (L
lW̄)={w ¥ C.(L lW̄), w 2 =0 on “W}.

Using integration by parts one may prove that relation (A.6) extends to
forms in C.2 (L

lW̄), that is

Lemma A.1. Let a and b be two l-forms in C.2 (L
lW̄). Then we have the

identity

Oda, dbP+Odga, dgbP=ONa, NbP. (A.9)

A straightforward, yet important, consequence of Lemma A.1 is the
following:

Corollary A.1. Let w ¥ C.(L lW̄) such that w verifies the system of
first-order equations

dw=0 in W (A.10)

dgw=0 in W (A.11)

w 2 =0 on “W.

Then w=0 in W.

Remark A.1. In the case N=2, l=1 we have w=w1 dx1+w2 dx2 and
(A.10), (A.11) become

“w2

“x1
−
“w1

“x2
=0,

“w1

“x1
+
“w2

“x2
=0.
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We recognize above the Cauchy–Riemann relation for w̃=w1−iw2, that is
the previous relations can be rephrased as

“w̃

“z̄
=0,

i.e., w̃ is holomorphic.

Remark A.2. In analogy with the previous situation, solutions to
(A.10) and (A.11) are called harmonic forms. Note that a harmonic form w

verifies Dw=0, but the converse is not necessarily true, i.e. there are forms
verifying Dw=0, but not (A.10) or (A.11).

A.3. Sobolev Spaces

Let 1 < p <+.. Let w ¥DŒ(L lW) be an integrable form. For x ¥ W, set

|w(x)|2=Ow(x), w(x)P=C
I

w2
I(x),

and let

Lp(L lW)={w ¥DŒ(L lW), s.t. |w| ¥ Lp(W)},

equipped with the Lp norm

||w||Lp=1F
W

|w|p2
1
p

.

Similarly, we define the Sobolev spaceW1, p(L lW)

W1, p(L lW)={w ¥ Lp(L lW), Nw ¥ [Lp(L lW)]N},

equipped with the norm

||w||pW1, p=||w||pLp+||Nw||pLp .

Finally, we set

W1, p
2 (L lW)={w ¥W1, p(L lW), w 2 =0}.

The above spaces are all Banach spaces. For p=2 they are Hilbert spaces,
in particular W1, 2(L lW) (respectively, W1, 2

2 (L lW)) is a Hilbert space for the
scalar product

Oa, bP1=Oa, bP+ONa, NbP.
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The standard density results of smooth functions in Sobolev spaces extend
to Sobolev spaces for forms, in particular we have

Lemma A.2. C.c (L
lW) (resp. C.2 (L

lW̄)) is dense in W1, p(L lW) (resp.
W1, p

2 (L lW)).

Likewise, Poincaré inequality holds for the spaceW1, p
2 (L lW). We have

Lemma A.3. If W is bounded and smooth, then there exists a constant Cp,
depending only on W and p, such that for any w ¥W1, p

2 (L lW),

||w||Lp [ Cp ||Nw||Lp . (A.13)

In particular, || || 2 , 1, p defined by

||w|| 2 , 1, p=||Nw||Lp -w ¥W1, p
2 (L lW)

defines a norm onW1, p
2 (L lW) which is equivalent to || ||1, p.

In the case p=2, since C.2 (L
lW̄) is dense in W1, 2

2 (L lW), (A.9) still holds
for a and b inW1, 2

2 (L lW) and therefore

||Na||2L2=||da||2L2+||dga||2L2 , -a ¥W1, 2
2 (L lW). (A.14)

A.4. A Second Order Elliptic Equation: Existence, Uniqueness

In the next sections we will often have to deal with the following situa-
tion. Let 1 [ l [N, w ¥ L2(L lW) and A ¥ L2(L l−1

“W). We consider the
elliptic problem

−Dk=w in W (A.15)

k 2 =0 on “W (A.16)

(dgk) 2 =A on “W (A.17)

Clearly, (A.16) corresponds to a Dirichlet type boundary condition,
whereas, as we will see in a moment, (A.17) corresponds to a Neumann-
type boundary condition.
First we will prove that this problem possesses a unique (weak) solution

(in W1, 2
2 (L lW)). For this purpose, we first derive its variational formula-

tion.

Lemma A.4. Assume m and A are smooth. Then k ¥ C.2 (L
lW̄) is a solu-

tion to (A.15), (A.16), (A.17) if and only if for any t ¥ C.2 (L
lW̄) we have

Odk, dtP+Odgk, dgtP=Ow, tP−F
“W

AN (ak) 2 . (A.18)
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Proof. As usual, we multiply Eq. (A.15) by t and integrate by parts.
We give a few details of the computations in order to illustrate the different
operations we have introduced so far.
Since −D=ddg+dgd, we have to compute Oddgk, tP and Odgdk, tP.

We have by (A.4)

Oddgk, tP=F
W

ddgkNat=F
W

d(dgkNat)−(−1) l dgkNd(at).

By Stokes formula

F
W

d(dgkNat)=F
“W

(dgkNat) 2 =F
“W

(dgk) 2 N (at) 2

=F
“W

AN (at) 2 .

On the other hand, since aa=(−1) l(N−l) Id,

F
W

dgkNd(at)=(−1) l(N−l) F
W

dgkNaad(at)

=(−1) l(N−l) F
W

dgkNa(−1)Nl+1 dgt=(−1)1−l
2
Odgk, dgtP.

Combining the previous identities we obtain

Oddgk, tP=Odgk, dgtP+F
“W

AN (at) 2 .

Similarly, using the fact that t 2 =0 on “W we obtain

Odgdk, tP=Odk, dtP,

and equality (A.18) follows.
In view of (A.18) and of the density of C.2 (L

lW̄) in W1, 2
2 (L lW) we will

say that k ¥W1, 2
2 (L lW) is a weak solution of (A.15) to (A.17) if and only if

(A.18) holds for any t ¥W1, 2
2 (L lW). Applying Riesz theorem together with

Lemma A.3 and equality (A.4) we obtain

Proposition A.1. For any w ¥ L2(L lW),A ¥ L2(L l−1
“W) equation (A.15),

(A.16), (A.17) possesses a unique weak solution in W1, 2
2 (L lW).

In order to see that the standard elliptic theory (for functions) applies to
our problem, we will discuss in the next subsection the nature of the
boundary conditions (A.16), (A.17).
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A.5. Comments about the Boundary Conditions

In order to understand the nature of the boundary conditions we will
consider first the case where W is locally a half space, i.e., W=RN

+=
RN−1×[0,+.).

(A) The case W=RN
+=RN−1×[0,+.)={xN \ 0} (locally). Let 1 [

l [N−1 and let L(l, N) be the set of ordered l-uples. We decompose
L(l, N) into two disjoint subsets L1(l, N) and L2(l, N), where

L1(l, N)=L(l, N−1)={(i1, ..., il) ¥ L(l, N), il [N−1}

and

L2(l, N)={(i1, ..., il) ¥ L(l, N), il=N}

={(i1, ..., il−1, N), (i1, ..., il−1) ¥ L(l−1, N−1)},

so that

L(l, N)=L1(l, N) 2 L2(l, N), L1(l, N) 5 L2(l, N)=”.

For every l-form k on W we have in coordinates

k= C
I ¥ L(l, N)

kI dxI .

With these notations we obtain

k 2 = C
I ¥ L1(l, N)

kI dxI , kN= C
I ¥ L2(l, N)

kI dxI .

Condition (A.16) can therefore be rephrased as the Dirichlet condition

kI(x)=0 on “W, -I ¥ L1(l, N),

or

ki1 , ..., il (x)=0 on “W, if 1 [ i1 < · · · < il [N−1.

Likewise we may express (A.17) in coordinates to obtain (the computations
are slightly more involved) the Neumann boundary condition

“kIŒ, N

“xN
=
“kIŒ, N

“n
=eIŒAIŒ on “W, -IŒ ¥ L(l−1, N−1),
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where eIŒ=±1, that is

“ki1 , ..., il−1 , N

“n
=±Ai1 , ..., il−1 , -1 [ i1 < · · · < il−1 [N−1.

In other words, we see that each component kI verifies one of the standard
elliptic problems, namely −DkI=0, in W, kI=0 on “W, if I ¥ L1(l, N),
−DkI=0, in W,

“kIŒ, N

“n
=eIŒAIŒ on “W,

if I=(IŒ, N) ¥ L2(l, N). Hence standard elliptic estimates for the Laplacian
(with either Dirichlet or Neumann boundary conditions) apply to k.

(B) The general case. In case W is a smooth bounded domain, we may
reduce the study to the previous case introducing, locally near the bound-
ary, curvilinear coordinates as in Section A.2. The first step in this classical
construction is to cover W̄ (which is compact) by a finite number m of balls
Bk such that, for some number m0 < m we are in one of the following
situations:

(i) if k [ m0, Bk … W

(ii) if k > m0, Bk 5 W is diffeomorphic to B+=B1(0) 5 RN
+.

Next let {qk}1 [ k [ m be a partition of unity subordinate to the covering
{Bk}1 [ k [ m of W, i.e. such that qk ¥ C

.

c (Bk), qk \ 0 and

C
m

k=1
qk=1 in W.

In case (ii), i.e. k > m0, we may construct a C. diffeomorphism
fk : B+Q Bk 5 W such that the following conditions hold

fk({xN=0} 5 B1)=“W 5 Bk,

fk(“B1 5 {xN > 0})=“Bk 5 W,
(A.19)

on{xN=0} 5 B1,
“fk(x)
“xN

is orthogonal to “W 5 Bk , (A.20)

7“fk(x)
“xN

,
“fk(x)
“xi
8=0 on{xN=0} 5 supp qk -1 [ i [N−1,

(A.21)
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where O , P denotes the standard scalar product on RN. This last relation
expresses the fact that the normal to “W be pulled back by fk to a normal
vector on “B+, on {xN=0} 5 supp qk.
Let kk=qkk, so that k=;m

k=1 kk. Note that

Dkk=qk Dk+Nqk ·Nk+k Dqk ,

i.e.,

Dkk=qkw+Nqk ·Nk+k Dqk in W.

We distinguish now the cases (i) and (ii).

Case (i), i.e., k [ m0. We obtain the elliptic problem for k

˛Dkk=qkw+Nqk ·Nk+kDqk in W

kk=0 on “W,
(A.22)

i.e., a standard Dirichlet problem.

Case (ii), i.e., k > m0. Here the analysis is slightly more involved. We
consider the pull-back k̃k on B+ for kk by the diffeomorphism fk, that is

k̃k=fg
k (kk) in B+. (A.23)

Note that one recovers easily kk from k̃k by the inverse pull-back

kk=(f−1
k )g (k̃k), (A.24)

so that, since f−1
k is smooth, any estimate on k̃k gives a similar estimate for

kk, and we may work on B+. We consider also the pull-back gk=(gk
ij),

1 [ i, j [N of the standard euclidean metric (dij), 1 [ i, j [N on Bk 5 W

by fk, i.e.

gk
ij=7

“fk

“xi
,
“fk

“xj
8 in B+.

Let ck=(ckij) be the inverse matrix of (g
k
ij), and let

gk=|det(gk
ij)|.

The Laplace operator Dgk with respect to the metrics gk is defined as

Dgkf=C
i [ j

“

“xi
1ckij `gk “f

“xj
2 , -f ¥ C2(B+),
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that is, Dgkf is an elliptic operator of the second order in divergence form
with smooth coefficients.
We are now able to write the equations for k̃k. As usual, we use coordi-

nates on B+ and write

k̃k= C
I ¥ L(l, N)

k̃I dxI in B+.

Then k̃I verifies

˛
−Dgk̃I=[fg

k (qkw+Nqk ·Nk+k Dqk)]I in B+

k̃I=0 on “B+5 {xN \ 0}

k̃I=0 if I ¥ L(l, N−1) on B+5 {xN=0}

“k̃IŒ, N

“xN
=eIŒ gNN[fg

k (A)]IŒ if IŒ ¥ L(l−1, N−1), on B+5 {xN=0}.

(A.25)

Note that the last relation is in particular a consequence of (A.21), that is,
for each IŒ ¥ L(l−1, N−1), IŒ=(i1, ..., il−1), we have -s=1, ..., l−1,

gis N=0, cis , N=0 on supp qk 5 {xN=0},

and

cNN=g−1
NN .

We see that the system (A.25) is very similar to that studied in Section A.4.
Therefore standard elliptic estimates may be applied to assert higher
regularity results, for instance

Lemma A.5. Let 1 < p <+.. If m ¥ Lp(L l(W), then k ¥W2, p(L l(W)
and

||k||W2, p [ C||m||Lp .

A.6. Estimates Involving L1-norms of the Data

We are going to establish in this Section, estimates à la Stampacchia for
problem (A.15), (A.16), (A.17) (similar estimates have been established in
[Baldo-Orlandi]). More precisely, we have the following

Proposition A.2. Let 1 [ p < N
N−1 . There exists a constant C=C(p, W)

depending only on p and W such that, for any solution k of problem (A.15),
(A.16), (A.17), we have

||k||W1, p [ C(p, W)(||m||L1 (W)+||A||L1 (“W)).
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The proof of Proposition A.2 involves a duality argument of
Stampacchia. More precisely, we are going to use in the proof the follow-
ing:

Lemma A.6. Let q \ 2 and let h=(h1, ..., hN) ¥ [Lq(L lW)]N. Assume
moreover that h has compact support in W. Let z ¥W1, 2

2 (L lW) be the weak
solution of

˛Dz=C
N

i=1

“

“xi
hi in W

z 2 =0 on “W

(dgz) 2 =0 on “W,

(A.26)

that is z ¥W1, 2
2 (L lW) is the unique solution to the variational problem

F
W

Odz, dtP+Odgz, dgtP=F
W

Oh, NtP=F
W

C
N

i=1
hi
“

“xi
t

-t ¥W1, q
2 (L lW). (A.27)

Then z ¥W1, q
2 (L lW) and there exists a constant C(q, W) such that

||z||W1, q [ C(q, W) ||h||Lq .

We postpone the proof of Lemma A.3 and show how it implies Proposi-
tion A.2.

Proof of Proposition A.2. Let q > N be such that 1
p+

1
q=1, let E=

[C.c (L
lW)]N. By density of C.c (L

lW) in Lq(L lW) and by duality we have

||Nk||Lp(W)=sup 3F
W

Oh, NkP, h ¥ E, ||h||Lq=14 . (A.29)

For h ¥ E, ||h||Lq=1, let z be the solution of (A.27) and take t=k as a test
function in (A.27). This yields

F
W

Oh, NkP=F
W

Odz, dkP+Odgz, dgkP.

On the other hand, taking t=z as a test function in (A.18) we are led to

F
W

Odz, dkP+Odgz, dgkP=F
W

Om, zP+F
“W

AN (az) 2 .
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Combining the two equations we obtain

F
W

Oh, NkP=F
W

Om, zP+F
“W

AN (az) 2 . (A.30)

Since q > N,W1, q(L lW)+ L.(L lW), and

||z||L.(W) [ C ||z||W1, q(W).

It follows from Lemma A.3 that

||z||W1, p(W) [ C ||h||Lq(W)=C,

hence ||z||L.(W) [ C. Going back to (A.30) this yields

F
W

Oh, NkP [ C(||w||L1(LlW)+||A||L1(Ll−1“W)).

Equality (A.29) yields then the conclusion.

Proof of Lemma A.6. Since q \ 2, it follows from (A.27) that (A.26) has
a unique weak solution z ¥W1, 2

2 (L lW) with

||z||1, 2 [ C ||h||L2 [ C ||h||Lq . (A.31)

We use next the construction introduced in Section A.5B to reduce the
problem to a standard elliptic equation. For 1 [ k [ m we set

zk=qkz,

so that (A.31) implies

||zk ||1, 2 [ C ||h||Lq -1 [ k [ m.

We distinguish next two cases.

Case 1. k [ m0. We may write zk=z0
k+z1

k , where z0
k is the solution of

the problem

˛Dz0
k=qk C

N

i=1

“h
“xi

in Bk

z0
k=0 on “Bk ,

and z1
k is the solution of

˛Dz1
k=Nqk ·Nzk+zkDqk in Bk

z1
k=0 on “Bk .
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Standard elliptic estimates yield

||z0
k ||1, q [ C ||h||Lq

and

||z1
k ||2, 2 [ ||zk ||1, 2 [ C ||h||Lq .

In the case q [ 2g= 2N
N−2 , we haveW

2, 2 +W1, q and therefore we are led to

||zk ||1, q [ C ||h||Lq . (A.32)

If q > 2g we obtain the same conclusion using a bootstrap argument.

Case 2. k > m0. In this case we consider z̃k=fg(zk) and we write the
equations for z̃k (see (A.25)). Arguing as before we obtain

||z̃k ||1, q [ C ||h||Lq ,

Since zk=(f−1)g (z̃k) we deduce similarly the bound (A.32).
Since (A.32) holds for any k, the Lemma is established.

A.7. Elliptic problems on RN
+

Let RN
+=RN−1×(0,+.). In the proof of Theorem 3 bis (g-ellipticity at

the boundary) we use the following

Proposition A.3. Let w ¥ L1(L lRN
+) with compact support K ¥ RN

+. Let
f be a solution of

˛ −Df=w in RN
+

f 2 =0 on RN−1×{0}

(dgf) 2 =0 on RN−1×{0}.

Assume moreover that |f(x)|Q 0 as |x|Q+.. Then, for I ¥ L1(l, N),

fI=G+
D f wI,

and for I ¥ L2(l, N),

fI=G+
N f wI,

where G+
D (respectively, G+

N) denote the fundamental solution of −D on RN
+

with homogeneous Dirichlet (respectively, Neumann) boundary conditions on
“RN

+=RN−1×(0,+.). In particular, -x ¥ RN
+,

|f(x)| [ 2cn F
R
N
+

|w| (y)
|x−y|N−2 dy.
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A.8. Hodge–de Rham Decomposition

The Hodge–de Rham decomposition asserts that every l-form m on the
simply connected domain W can be decomposed as

m=dH+dgF,

where H is a (l−1)-form on W and F represents a (l+1)-form. In general
there is no uniqueness of such a decomposition. We may therefore impose
auxiliary conditions, in particular on the boundary. We have

Proposition A.4. Let 1 < p <+., and m ¥ Lp(L lW). There exists a
unique H ¥W1, p(L l−1W) and a unique F ¥W1, p(L l+1W) such that

˛m=dH+dgF in W,

dgH=0, dF=0 in W,

H2 =0, F 2 =0 on “W.

(A.33)

Moreover there exists a constant C > 0 such that

||H||W1, p+||F||W1, p [ ||m||Lp .

Proof. (A) Existence. Let k be the solution of

˛ −Dk=m in W

k 2 =0 on “W

(dgk) 2 =0 on “W.

By Lemma A.5 we have k ¥W2, p(L lW). Set

˛H=dgk

F=dk.

Since Dk=d(dgk)+dg(dk)=dH+dgF we verify that H and F satisfy
(A.33).

(B) Uniqueness. By linearity it suffices to verify that if H and F verify
(A.33) with m=0, then H=0, F=0.
If m=0 we have

DH=dgdH=dg(dH+dgF)=dgm=0,
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so that H verifies

˛ −DH=0 in W

H2 =0 on “W

(dgH) 2 =0 on “W.

Hence H=0 by Proposition A.1. Similarly one proves that F=0.

A.9. Hodge–de Rham Decomposition on RN

In this subsection, we consider the case where m is in DŒ(L lRN) with
compact support K in RN, i.e. m ¥ EŒ(L lRN).
Consider the l-form k defined by

k=G f m, (A.34)

where

G=cN
1

|x|N−2

is the fundamental solution of −D in RN. By construction, we have

−Dk=m, (A.35)

i.e.,

d(dgk)+dg(dk)=m.

We set as before

H=dgk, F=dk in RN.

Note that, in view of (A.34), k, H, and F are smooth on RN0K. We
obtain, therefore

Proposition A.5. Let m ¥DŒ(L lRN), with compact support K ¥ RN.
Then there exist H ¥DŒ(L l−1RN), F ¥DŒ(L l+1RN), smooth on RN0K such
that

m=dH+dgF in DŒ(L lRN),

dgH=0, dF=0 in DŒ(L lRN).

Note that for the previous Hodge–de Rham decomposition we have not
uniqueness, since k is not the unique solution to (A.35).
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In order to obtain uniqueness we must impose conditions at infinity (i.e.,
as |x|Q+.) on H and F. Since in this paper we only have to deal with
functions, we restrict our attention to the case where m is a bounded
measure. We have

Proposition A.6. Let m ¥DŒ(L lRN) be a bounded measure with
compact support K. Then there exists a unique H ¥DŒ(L l−1RN), a unique
F ¥DŒ(L l+1RN), smooth on RN0K, such that

m=dH+dgF in DŒ(L lRN),

dgH=0, dF=0 in DŒ(L lRN),

and there exists R > 0, K > 0, such that

|H(x)| |x|N−1 [ C, |F(x)| |x|N−1 [ C, for |x| \ R. (A.37)

Proof. Clearly H and F, given by (A.36), verify (A.37). For the
uniqueness it suffices to prove that the solution H0, F0 to the homogeneous
problem

dH0+dgF0=0, dgH=0, and dF=0 in RN,

verifying (A.37) are H0=0, F0=0. In view of (A.38),

DH0=0, DF0=0,

and the conclusion is therefore a classical result for harmonic functions.
Finally, we have

Proposition A.7. Let m ¥DŒ(L lRN) be a bounded measure with com-
pact support K, such that

dgm=0 in DŒ(L lRN).

Then, there exists a unique F ¥DŒ(L l+1RN), smooth on RN0K, such that

m=dgF in RN,

dF=0 in RN,

and

|F(x)| |x|N−1 Q 0 as |x|Q+..

Proof. It suffices to check that H, F given by Proposition A.4 are such
that H=0: this is a consequence of the fact that DH=0.
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For (A.40), note that, integrating (A.39), we obtain

F
R
N

m=0. (A.41)

On the other hand, by (A.36),

F=d(G f m)=d 1C
I
(G f mI) dxI 2

=C
I, j

“G
“xj

f mI dxj NdxI .

The conclusion (A.40) then follows from the fact that | “G
“xj
| |x|N−1 remains

bounded as |x|Q+., combined with (A.41).

A.10. Hodge–de Rham Decomposition on RN
+

The previous results can be adapted with minor changes to the case
W=RN

+ — RN−1×(0,+.). In Section III.2 (g-ellipticity at the boundary),
we use the following

Proposition A.8. Let m ¥DŒ(L lRN
+) be a bounded measure on RN

+ with
compact support K in RN

+. There exists a unique H ¥ Lp
loc(L

l−1RN
+), a unique

F ¥ Lp
loc(L

l+1RN
+), with |NH| ¥ Lp(RN

+), |NF| ¥ Lp(RN
+), for any 1 [ p < N

N−1 ,
such that

˛m=dH+dgF in RN
+

dgH=0, dF=0 in RN
+

H2 =0, F 2 =0 on “RN
+=RN−1×{0}.

Moreover, H ¥ C.(RN
+0K), F ¥ C.(RN

+0K), and

|H(x)| |x|N−1 [ C, |F(x)| |x|N−1 [ C, if |x| > R,

where R is such that K … BR and C is some constant depending on m.
If dgm=0 then H=0, i.e., m=dgF.
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Currents and the Calculus of Variations,’’ Springer-Verlag,
Berlin/New York, 1998.

[Gilbarg-Trudinger] D. Gilbarg and N. Trudinger, ‘‘Elliptic Partial Differential
Equations of Second Order,’’ Springer-Verlag, Berlin/New
York, 1983.

[Hélein] F. Hélein, ‘‘Applications harmoniques, lois de conservations
et repères mobiles,’’ Diderot, Paris, 1996.

[Iwaniec-Scott-Stroffolini] T. Iwaniec, C. Scott, and B. Stroffolini, Nonlinear Hodge
theory on manifolds with boundary, Ann. Mat. Pura Appl.
(4) 157 (1999), 37–115.

[Jerrard-Soner] R. Jerrard, and H. M. Soner, The Jacobian and the
Ginzburg–Landau energy, preprint, 1999.

[Lin] F. H. Lin, A remark on the map x/|x|, C.R. Acad. Sci. Paris
(I) 305 (1987), 529–531.

[Lin-Rivière 1] F. H. Lin and T. Rivière, Complex Ginzburg–Landau equa-
tion in high dimensions and codimension 2 area minimizing
currents, J. Eur. Math. Soc. 1 (1999), 237–311. [erratum,
J. Eur. Math. Soc. 1 (1999)]

[Lin-Rivière 2] F. H. Lin and T. Rivière, A quantization property for static
Ginzburg–Landau vortices, preprint, 2000.

[Mironescu] P. Mironescu, Les minimiseurs locaux pour l’équation de
Ginzburg–Landau sont à symétrie radiale, C.R. Acad. Sci.
Paris (I) 323 (1996), 593–598.

[Ochvinnikov-Sigal] Y. Ochvinnikov and I. Sigal, paper in preparation.
[Rivière 1] T. Rivière, Line vortices in the U(1) Higgs model, COCV 1

(1996), 77–167.
[Rivière 2] T. Rivière, Asymptotic analysis for the Ginzburg–Landau

equations, Boll. UMI 8 (1998), 537–575.
[Sandier] E. Sandier, Ginzburg–Landau minimizers from RN+1 to RN

and minimal connections, preprint, 1999.
[Sandier-Serfaty] E. Sandier and S. Serfaty, On the energy of type-II super-

conductors in the mixed phase, Rev. Math. Phys. 12 (2000),
1219–1257.

ASYMPTOTICS FOR GINZBURG–LANDAU 519



[Schoen-Uhlenbeck 1] R. Schoen and K. Uhlenbeck, A regularity theory of harmo-
nic maps, J. Differential Geom. 17 (1982), 307–335.

[Schoen-Uhlenbeck 2] R. Schoen and K. Uhlenbeck, Boundary regularity and the
Dirichlet problem for harmonic maps, J. Differential Geom.
18 (1983), 253–268.

[Serfaty] S. Serfaty, Local minimizers for the Ginzburg–Landau energy
near critical magnetic fields, I and II, Comm. Contemp. Math.
1 (1999), 213–254 and 295–333.

[Simon] L. Simon, Lectures on geometric measure theory, in ‘‘Pro-
ceedings of the Centre for Math. Analysis, Australian Nat.
Univ.,’’ Canberra, 1983.

[Struwe] M. Struwe, On the asymptotic behavior of the Ginzburg–
Landau model in 2 dimensions, J. Differential Equations 7
(1994), 1613–1624. [Erratum, 8 (1995) 224]

[Zhou-Zhou] F. Zhou and Q. Zhou, A remark on the multiplicity of
solutions for the Ginzburg–Landau equation, Ann. Inst. H.
Poincaré, Analyse Non Linéaire 16 (1999), 255–267.

520 BETHUEL, BREZIS, AND ORLANDI


	I. INTRODUCTION
	II. MONOTONICITY FORMULAS
	III. THE ...-ELLIPTICITY
	IV. INTERIOR ... ESTIMATES IMPLY ... BOUNDS
	V. PROOF OF PROPOSITION 1
	VI. GLOBAL ESTIMATES IN ...
	VII. ...-REGULARITY
	VIII. CONVERGENCE OUTSIDE THE SINGULAR SET ...
	IX. PROPERTIES OF ... AND ...
	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

