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Let Q be a bounded, simply connected, regular domain of RY, N >2. For
0<e<l, let u,: Q > C be a smooth solution of the Ginzburg-Landau equation in
Q with Dirichlet boundary condition g,, i.e.,

1
_Aus=72us(1_|ue|2) ian
€ (GL),

U, =g, on 0Q.
We are interested in the asymptotic behavior of u, as ¢ goes to zero under

the assumption that E,(u,) < M, |logé¢| and some conditions on g, which allow
singularities of dimension N —3 on 0f2.  © 2001 Elsevier Science

I. INTRODUCTION

Let 2 be a bounded, simply connected, regular domain of RY, N > 2.
For 0 <e <1, let u,: 2 — C be a smooth solution of the Ginzburg-Landau
equation in Q, with Dirichlet boundary condition g,, i.e.,
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1
—Au, == u,(1—|u,|?) in Q,
€ (GL),

u, =g, on 09Q.

We are interested in the asymptotic behavior of u, as ¢ goes to zero.

The case N =2 and g, = g: 92 — S' smooth, independent of ¢, has been
extensively studied since the work of [Bethuel-Brezis-Hélein 1, 27]. The
main result is the convergence of minimizers u, of the corresponding
Ginzburg-Landau energy

_1 2 1 2y2
Ew)=3 [ Vul+5[ (1=l

to a limit u, having a finite number |d| of point singularities, where
d = deg(g, 022). Moreover, E,(u,) =7 |d| |log ¢]+0O(1) as ¢ — 0. This result
was originally established for star-shaped domains in [Bethuel-Brezis-
Hélein 2] and subsequently extended to general domains in [Struwe] (see
also [Del Pino-Felmer] for a simple reduction of the general case to the
star-shaped case).

If u, is a (nonminimizing) solution of (GL), and Q is star-shaped, the
same conclusion still holds except that the number of singular points of u,
is not necessarily |d|. There are two fundamental estimates in the proof:

E,(u,) <C |logél, )
”ue”Wl’p < Cp Vp < 2 (2)

When @ is not star-shaped, estimate (1) need not hold for general solutions
of (GL), (see [Bethuel-Brezis-Hélein 2], Remark X.1). However, if one
assumes (1) for a solution u, of (GL), then one may still prove that u, — u,
having a finite number of singularities (see [ Bethuel ] and also [Riviére 27).

From now on we consider the case N > 3.

If g, = g: 0Q2 — S' is smooth and 9 is simply connected, then one may
write g = exp i@p,, where ¢, is smooth. Minimizers u, of E, converge (at
least in H') to u, = exp i, where @, is the harmonic extension of ¢,. The
same conclusion holds when 2 is star-shaped and u, is any solution of
(GL),. This follows from the (easy) estimate

E,(u,)<C, 3)

and the results in Section IV below. The validity of estimate (3) for N >3
and g smooth is a basic difference between the case N =2 and N > 3; this
is a consequence of Pohozaev identity, which takes a different form when
N =2 and when N > 3.
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The case of a simply connected domain is open:

Conjecture. Assume 0RQ is simply connected, #, is a (nonminimizing)
solution of (GL), with g, =g:0Q2 — S' smooth, then (3) holds and
U, = Uy = EXP IPy.

Having in mind physical and geometrical problems involving singulari-
ties, we wish to handle cases where u, admits singularities. Therefore, we
assume that the Dirichlet data g is singular. (An alternative way of pro-
ducing singularities is to consider a Neumann boundary condition, see
[Almeida], [ Almeida-Bethuel 1]; singularities can also be generated by an
exterior field, see [ Serfaty], [ Sandier-Serfaty]).

In this paper, we will concentrate our attention on singularities of codi-
mension two, and then it is natural to assume that the energy of u, blows
up like |log ¢|:

H1. There exists a constant M, >0 such that, for 0 <e<1, the
Ginzburg-Landau energy of u, is smaller than M| |log &, that is

1 1 1
Ew)=] ew= 1] wurer[ S pogs. )

Such an assumption is automatically satisfied if «, is a minimizer of E,
and g, = g has simple singularities, e.g.,

x—a;
N=3  g= [

near its singularities a; € 0Q. More generally, (H1) holds for minimizers if
g, =ge H"0Q; S") (N > 3), see [Bourgain-Brezis-Mironescu 1, 2].

We make use of a second assumption which is more artificial but quite
convenient. It has been introduced in [Lin-Riviére 1] and concerns the
behavior of the boundary data g,: 02 — C.

H2. There exists a finite collection 2 of smooth (N — 3)-dimensional
submanifolds of 082, such that

lg.(x)) =1, if xe0Q and d(x)=dist(x,2)>e, |g|<1, VxedQ,
(H2.1)

and

Go

for k=1,2 |V1—gg|\mc

on 00, (H2.2)
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where C, is some constant independent of ¢. Here V; denotes tangential
differentiation.
When N = 3 (so that X is a collection of points), and

x—a;

g(x) ~
|x—a
near its singularities a; € 0Q2, then g, is a natural smooth approximation
of g.

As a consequence of (H2.1), (H2.2) (with £ = 1) one deduces easily

[ IV-glP<Cllogsl, )
0Q
[ Vrelr<c,. vp<2. ®)
and
1 2y2
5[ a-lepr<c. (©)
&7 Jon

Here, and in what follows, the constants C and C, depend on £, X, C, and
M,, but they are independent of &; we emphasize the dependence of C, on
p, because it blows-up as p 1 2.

Our main results are summarized in the following theorem.

THEOREM 1. Assume 1< p<~; and let u, be a solution of (GL,)
satisfying (H1)-(H2). Then, for any 0 < & < 1, we have

[ vur<c,. ()
Q

For a subsequence ¢, —0, there exist a map u, e W?(Q) and map
g« € WE2(0R) such that
(1) |ul=10nQ, |gl =1, uy = gy on 0Q;

() wu, > u, inW"2(Q), g, — g in W-P(09);

(i) div(uye X Vu,) =0in Q;

@iv) e, (u,)/lloge,| = us as measures, where p, is a bounded
measure on £2.
Set & = supp(p);

(V) & is a closed subset of Q with #" &) < +o0;
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Vi)  u, € C°(Q2\ &), and for any ball B(x,, r) included in Q\ & there
exists a function @, € C*(B(x,, 1)), such that Ap, =0, u, = exp(ip);
(vil) u, — u, in CX(K), for any compact subset K of Q\ &;
(viil) & is # N~ rectifiable;
(iX) . is a stationary varifold.

The case N =2 (with slightly different assumptions on the boundary
data: g is fixed and smooth) is treated in the book [Bethuel-Brezis-
Hélein 2] (Chapter X, p. 101-136). See also [ Bethuel], [ Brezis].

The case N >3 and u, minimizing has been extensively treated in
[Riviére 1] (for N = 3), [ Lin-Riviére 1], and also in [Sandier] (for N = 3),
[Alberti-Baldo-Orlandi] and [Jerrard-Soner] via I'-convergence argu-
ments. In this case, it is proved moreover that % is area-minimizing. The
case N = 3, and u, not minimizing has been studied in [Lin-Riviére 2].

Our proofs borrow many ingredients from the works quoted above (in
particular [Bethuel-Brezis-Hélein 2], [Riviére 1], [Lin-Riviére 1], [Lin-
Riviére 2]). We also use arguments of Geometric Measure Theory devel-
oped in [Ambrosio-Soner]. The first important tool in our proof is a
variant of a monotonicity formula earlier used in [Riviére 1]. Such for-
mulas play a central role in the theory of minimal surfaces, harmonic maps,
and regularity theory for elliptic problems (see for instance [ Giaquinta]).

The second important ingredient is the #-ellipticity theorem, which
bounds |u,| away from zero as soon as the local energy is bounded by
7 |log &| with # small:

THEOREM 2. Let u=u,: B, —» C be a solution of
1 ) .
—Au=?u(1—|u| ) in B,

for some ¢ € (0, 1/2). Assume
E,(u) <n|logse|.
Then
u(0)| > 1—Kn", ®)

where K > 0 and a. > 0 depend only on N.

The name #-ellipticity is motivated as follows: once (8) holds we may
write u, = p, exp ip,, with p, =|u,| and the equation for the phase ¢,
becomes

div(p? Vo,) =0,

which is uniformly elliptic.
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In two dimensions, this type of result originated simultaneously in
[Bethuel-Riviére] and [Struwe]. Though the proof of #-ellipticity in 2-d is
simple and uses techniques introduced in [Bethuel-Brezis-Hélein 2], it
turns out to be an extremely useful tool. It serves to analyze the local vor-
ticity, provided the energy of the map is bounded by K| |log¢| with K,
large, even for maps not satisfying (GL),. It appears in a large number of
papers dealing with 2-d variational methods ([ Almeida-Bethuel 2], [ Zhou-
Zhou], [Bethuel-Saut]), or involving the more subtle functional of super-
conductivity ([Almeida], [Serfaty]). For surveys on these questions see
[Bethuel] or [Riviére 2].

In higher dimension, the first #-ellipticity result was given in [Riviére 1]
under the name ‘‘#-compactness” (for N =3 and minimizing maps),
then in [Lin-Riviére 1] (for arbitrary dimension, minimizing maps), in
[Lin-Riviére 2] for N =3, u, not necessarily minimizing, and finally in
[Bethuel-Brezis-Orlandi] in the general case. In Section III we present a
simplified proof of the [ Bethuel-Brezis-Orlandi] result as well as a bound-
ary version.

A key point in the proof of Theorem 1 is estimate (7). When N =2,
g. =g and Q is star-shaped this was proved in [ Bethuel-Brezis-Hélein 2] as
follows. First, Pohozaev identity provides immediately a uniform bound on
the integral of the potential, namely

1
;fg (1—1Ju|?)*<C, ©)

where C is independent of &. Then, the derivation of (7) from (9) is
explained in [Bethuel-Brezis-Hélein 2], Chapter X; it relies on a Hodge
decomposition of u, x Vu, and the property div(u, x Vu,) = 0.

When N =2 and Q is not star-shaped, the proof of (7) is more delicate.
Instead of (9) one establishes the weaker form (10) below via a local
Pohozaev identity (on a scale of order &% o < 1) combined with an elemen-
tary maximal covering argument (the balls B(a;, R) are disjoint while the
balls B(a,, 8R) cover Q) as in [Struwe] and [Bethuel-Riviére]. From (10)
one obtains (7) using exactly the same Hodge decomposition as above and
the rest of the argument is unchanged.

We now return to dimension N > 3. The first and main step in the proof
of (7) is

PrROPOSITION 1. Fix e (3, 1) and set

Ae,ﬂ = {XEQ; |u£(x)| < l_ﬂ}9
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where u, is a solution of (GL), satisfying (H1), (H2). Then

1
= (—=u,*)? < Gy, (10)

& Qnd.p

where Cy depends on Q, M, C, and is independent of .

The proof of Proposition 1 is for N >3 quite involved and uses a
number of ingredients:

— Local Pohozaev identities (as in [Bethuel-Riviére], [Bethuel],
[Riviére 1], [ Lin-Riviére 21]),

— Interior monotonicity formulas ([Chen-Struwe], [Chen-Lin],
[Riviére 1], [ Lin-Riviére 1]),

— Boundary monotonicity formulas ([ Lin-Riviére 1]),

— Besicovitch covering theorem.

Finally, once Proposition 1 is established, the W7 estimate as well as
properties (i) to (vii) are proved by adapting the methods of [Bethuel-
Brezis-Hélein 2]. In contrast with the 2-d case where the Hodge decompo-
sition is fairly elementary, the case N >3 requires a heavier machinery
described in the Appendix, where we follow the presentation of [Iwaniec-
Scott-Stroffolini] and [ Giaquinta-Modica-Soucek].

Combining the -ellipticity with the W'? bounds we are able to show
concentration of energy on a singular set & of Hausdorff dimension N —2.
Then, #-regularity asserts that {u, } converges in strong norms locally away
from &.

Once the n-regularity has been established we are in a position to apply
the beautiful theory of [ Ambrosio-Soner], which yields immediately the
geometric properties of & (statement (viii) and (ix) of Theorem 1).

We call the attention of the reader that some results in the paper are
purely local, while others are truly global. For example, the results in
Section II, III, IV are purely local. By contrast, the W'” estimate is not
local. Indeed, if for instance u, satisfies

1
_Aus=_2ue(1_|ue|2) in Bl
&
and E,(u,) <7 |log ¢] with # small—or even o(|log ¢|)—it is wrong to infer
that

|2, [l 'Bi)2) <C

or any compactness property, even in L, , see [Brezis-Mironescu] and
Remark II1.4 below. The W? estimates in Section VI really uses the full
information on the boundary condition g,.
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The plan is the following:

II.
III.
Iv.

V.
VL

VII.
VIII.
IX.

Monotonicity formulas

The #-ellipticity

Interior H' estimates imply C* bounds
Proof of Proposition 1

Global W' ? estimates, 1 < p < 75
n-regularity

Convergence outside the singular set &
Properties of % and u,

II. MONOTONICITY FORMULAS

I1.1. Interior Monotonicity

We first recall the standard Pohozaev identity:

Lemma I1.1.

a solution of (GL),, then

[ T2 - =r |

- (x0)

1|0u
2 |on

[V~ u|2
0B, (xo) 2

Let R > 0 be such that B,(x,) = Q2. For 0 <r < R, set

and

EGon=g] Wul4gs] (-l

- (

Ee(x09 r) = r2—NE£(x0’ r)'

439

Let x, € Q, and r > 0 be such that B,(x,) < Q. Assume u is

1
0 (L=l

Monotonicity formulas are concerned with quantities of the type
E,(x,, r) (note that r>=~ jBr |Vu|? is dimensionless). They play an important
role in elliptic regularity theory (see [Giaquinta], [Schoen-Uhlenbeck
1, 2]). In the context of the Ginzburg-Landau equation for R*-valued
maps they were introduced in [Chen-Struwe], [Chen-Lin], and used
extensively in [ Riviére 1], and then in [ Lin-Riviére 1, 2].

Lemma I1.2 (Interior Monotonicity).
Br(xy), then

d - 1
E (Ee(xo’ r)) = N2 LB (x0)

Ou
on

2+ 1 f (1—ul?)?
" Up ey 282

Assume u is a solution of (GL), in

r<R.
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Proof. First one has,

[Vu|*

d
d . _ 1 1 —1ul?)?
dr( e(XO’ r)) 3B, (xo) 2 +482 J;’)B (xo) ( |u| )
Vs “| 22
= N2 1_
9B, (xp) 2 2 6 + 2( lul )
Hence
d - N-=-2 1 Vrul® 1)0u
a2 E(X0: 7)) PN e(xo’r)—i_r"’*zjas,(xo) 2 "alan

1
+ oz (1)’

N=2 |Vu?> N-2 o
- _< N1 Lr P +4£2rN—1 L' (1—1ul*)
1 [V +ul?
720 2 +2

2

( —lul?)?

6

N-2 |Vu* N .
= _< N1 L ) +482rN*1f3, (T—1[ul®)

r

1 2y2
o], (=)

%L IVT2ul2+2 guz 42(1_|”|2)2'
Using Lemma I1.1, we obtain
N I L e el
b [ (=l
YN
=y o] ], S

which yields the result.
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A straightforward consequence is

CoOROLLARY II.1. Assume u is a solution of (GL), on Bg(x,) = Q, then
() The function r— E,(x,, r) is nondecreasing in (0, R).

(i) In particular,

Vo<r< Ra EE(XO’ 7) < Es(x09 R) < RZ_NEe(us)'

Moreover
R 1 oul? 1 (1_|u|2)2 B
n dr=E, R 1I.1
J0 |:VN_2J‘68,()<0) on +rN—1JB,(xO) 262 r 2 (X0, R)  (IL1)
and
L f|oupr, 1 N
on 1—[ul?)? )dx < —— E,(xo, R). (112
J.BR(xo)rN2< on +2(N—2)82( |u| ) ) x N—2 a(xo ) ( )

Formula (I1.2) is obtained integrating by parts some terms in (IL.1).
I1.2. Boundary Monotonicity Formulas
Throughout the paper, we will use the following notation:

Br(xo) = Br(x0) nQo

Es(x09 r) =1. ee(u) = es(“)a
)

B, (xo B, (x)n 2
and
Es(xo’ 7') = r27NEs(x05 r)'

Set d, = dist(x,, ~X), for x, Q. The following result can be easily
deduced from [Lin-Riviére 1] (Lemma I1.5, with « =1).

Lemma I1.3.  We have, for every x, € Q, and any r such that

0<r<inf{R,,d}},
J e oul? (1—|u|2)2
L (e E (x0, 1)} 212N Fm e O v N
dr {e (X0, 1)} =7 -LB,(xo)f\Q on r £§r(xo) 2¢?

where R,, A and C are constants depending only on Q, on X, on d, and on
M,, C, (from (H1), (H2)), but not on r and ¢.

After integration, a straightforward consequence of Lemma II.3 is

COROLLARY I1.2. Let x,€Q, and R>0 such that R<inf{R,,d}},
where d, = dist(x,, 2'). Then we have
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E,(x,, r) <C(E,(x,, R)+R), forevery 0<r<R, (IL.3)

where C is some constant independent of ¢ and x,,.

Moreover,

R 1 oul? 1 (1—u®? ~

__ - <C(E,(xy, )+R 11.4
jo rNin.('iB,(xo)na.Q on ersz,(xo) 2¢? (E.(x0, R)+R) (IL.4)
and

6_u
on

2 (A—u»?
82

) <C(E(x R)+R).  (L3)

j 1
B, (x0) rV-2

A second result from [Lin-Riviére 1] (Lemma I1.6 there) will play a
fundamental role.

Lemma I1.4. For any x, € 2, we have

~ 1
Es(x05 r) = r27NE£(x09 r) ="~ ee(u) < Ml |10g 8'1
r

Lﬁ()ﬂo)ﬁﬂ

where M| is a constant independent of e, r and x,.

The proof relies on the two monotonicity formulas above and a careful
study of all integrals for x, near 2.

I1.3. Consequences of the Monotonicity
Consider, for u > 0, the sets

2, ={xeQ;dist(x, 2) < pu},
K,=0Q\Z2,={xeQ;dist(x, ) > u}.
Here we will take 4 = ¢'/® and we apply Lemma I1.3 with
e?<r<elt
This yields

oul?

_ (1—1ul*)?
1-N

-———C.
on tr -[E,(xo)

2

d -
(e E (v, ) =N |
dr 0B, g

(x0)nQ

1/2

Integrating from &'/ to ¢!/%, we obtain

1/4

e ou
Jor 77
e\/? 0B, (%) N Q2

g ot 1-N (1—|M|2)2 1/4 =~ 1/4
n +f1/2 r JB( N < C(e*+E,(x4,€7%)
& . (0

<M, |logél, (IL.6)
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where M, >0 is some constant, independent of e, r, x,. For the last
inequality we have used Lemma I1.4.
Set for r > 0 and x, € Q

@
on

21 (1—ul*)?
| .

1
L(x) === r

r J‘t3B,(x0)nQ

B.(x) 2¢?
We deduce, from (II.6):

ProposITION 11.2.  Let u=¢'"%, and x, € K .- There exists some radius
r(xo) € ('72, €'/*) such that

VAL E (x,, €%

I <4C
r(xo)(xo) ( |10g 8|

> <4M,. I1.7)
Proof. We argue by contradiction and assume that (for some &) and

every r € (¢'/2, &'/%
1 Oou

on

Pl j (1—IuI2)2>4C <81’4+Ee(xo,8”4)>_

-2 [log ¢

pV-3 f@B,(xo)nQ

By (x0) 2¢2

1/2
b

Dividing by r and integrating on the interval (¢!/2 &'/*) we obtain

ou
on

81/4 N
Jon ]
/2 0B, (x9) N Q2

a contradiction with (IL.6).

2

.[811//: er_lj (1—|u»?

> 4C(£ 14 + Es (xO » € 1/4))9

By (x0) 2¢?

&

Remark I1.1. We call the attention of the reader to the fundamental
estimate for the potential

f (1—[ul»?

2
o (0) 02 28

<AM,r(x)V 2, (IL8)

which is a consequence of (I1.7). It will play a basic role in the proof of
Proposition 1.

III. THE #-ELLIPTICITY

I1.1. u-Ellipticity in the Interior.
Throughout this section, we assume that Q = B;(0) = RY, N >2, and

that u = u,: Bz(0) — C is a solution of the equation

1
—Mu=—u(l—|u®)  in Bg(0), (IIL1)
&

for some ¢ € (0, 1/2).
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A typical result in this section is that, if

E(0,R) = E,(0,R) <7

RV-2 log — ‘ (I1I1.2)

with # sufficiently small (less than a constant depending only on N), then
[u(0)| > 5. (I11.3)

As already mentioned in the Introduction, this type of result was first con-
sidered in dimension two in [ Bethuel-Brezis-Hélein 2], Lemma (IV.2), and
then in [Bethuel-Riviére] and [Struwe]. In higher dimensions it was
proved in [Riviére 1], [Lin-Riviére 1, 2], under various restrictive
assumptions. The general case was settled in [Bethuel-Brezis-Orlandi],
with more elementary arguments than in [Riviére 1], [ Lin-Riviére 1], [Lin-
Riviére 2](which uses Lorentz spaces). The original name given to this
phenomenon in [Riviere 1] was “m-compactness,” which is misleading
because it suggests that the family of function (u,) is compact for some
topology. In fact a construction from [ Brezis-Mironescu] (see also Remark
I11.4 below) provides already for N =2, an example of a family (u,)
satisfying (IIL.1) and

E,(0, R) = o(|log &),

such that no subsequence of {u,} converges on a set of positive measure.
Hence, {u,} is not relatively compact, even in L'l We call it instead
“p-ellipticity”” for the following reason. If we apply the above mentioned
result, we obtain in fact that (II1.2) with a smaller # implies (see Proposi-
tion VIIL.1)

1 R
|u,(x)| == on B <0, —>. (111.4)
2 2
We then may write u = u, in terms of its modulus p and phase ¢
R
u=pexp(ip) inB<0,5>.

Equation (II1.1) for p and ¢ becomes, in B(0, %),

div(p> Vg) =0

~ , 1 (I11.5)
Ap+p [Vol"= 5 p(1—p7).
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Hence condition (II1.4) says that the first equation in (IIL.1) is uniformly
elliptic.
The main result of this section is

THEOREM 2. There exist constants K >0, and o> 0, depending only on
N such that (I11.2) (with arbitrary n) implies

[u(0)| > 1—Kn™. (I11.6)

Remark II1.1. Another important point is the following: formulas
(II1.1) and (II1.2) make sense for functions u: Bg(0) — R*, for any k. The
reader may wonder whether conclusion (II1.3) also makes sense for any
k > 2. The answer is:

Yes in dimension N =2 (see part D below)

No in dimension N > 2 (see part E below).

Remark II1.2. In fact this type of problem can be imbedded in a more
general setting: let W:R¥* > R, W >0, be a smooth function, and let
M = {W =0}. Assume M is a smooth manifold without boundary. Solu-
tions of (II1.1) are replaced by solutions of

1
—Au= p W'(u) in QcRY, (I11.1")

and the Ginzburg-Landau energy is replaced by E,(u) =3[, [Vu|*+

g gy P y E(u) =30 [Vul
%sg W (u). The natural question is to find conditions under which (III.1")
and (II1.2) with # small implies, e.g.,

dist(u(0), M) <6, for small ¢ > 0. (I11.3")

We have not investigated that question.

Throughout this section K will denote “absolute” constants (depending
possibly on N) that are independent of n, ¢, R, etc...

We now turn to the proof of Theorem 2. After scaling, we may assume
throughout the rest of Section III.1,

R=1.

We will also assume without loss of generality #<j}. If there is no
ambiguity, we will write B, instead of B,(0). In fact we are going to prove
that the conclusion of Theorem 2 holds for 0 < & < ¢y, where &y >0, and
depends only on N; if &y < e < 1, the conclusion (II1.6) still holds, but it is
very easy to establish by standard arguments.
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The proof of Theorem 2 is divided into four parts. The case N =2 will
be studied in Part D.
In Part B and C we need N > 3 while Part A holds for N > 2.

Part A: Choosing a “Good” Radius r,

Lemma II1.1. Let 0 <6 <5 and assume 0 <e<d> There exists some
constant K > 0 such that if u is a solution of (I111.1), then there exists some

ro € (¢'/2, 8), depending on u, € and 6, such that
1 (1—ul*)?
e Lro 262 < K7 |log 4|, (I1L.7)
(1— |u|2)2 1 oul?
<
I, [ s v, [an| |4 <Knllogdl,  @ILS)
and

E,(0,r)) E,(0, dry)

0< 2 (Gr)" 2 < Kn |log d|. (I11.9)
Proof. Choose an integer k such that
o\ ~k+D O\ —k+2)
gl/? (Z) <96, &? <Z> > 0. (I111.10)

For j=0, ..., k consider the intervals

_((%\” 1/2 o\t 1/2
1=((5) e (5) )

Clearly, these intervals are disjoint and J%_, I, = (¢'/% d). Hence, by
Corollary I1.1

2 [l

au

2 f (l_lulz) ]drSES(O’ 5)<E£(0, 1)

5N—2
<7 |logél,

where we have used the monotonicity formulas and (III.2) for the last
inequality. Since

1 |log &'?

k 12_ s
+ 2 |logd|
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we therefore deduce that there exists some j, € {0, ..., k} such that

[log €|
. < - < . .
L n 1 47 |log 9| (IIL.11)

Jo

Set 7, = (2 7°7") /% (II1.11) says that

- 112)2 P
J~ <}"N1_1~[B, (1 nguI) +rN1_2L ‘a—:

370

2
> <4 |logd|.

By the mean-value formula we then deduce that there exist some
ro € [27y, 7] such that (IIL.7) and (II.8) are satisfied. Finally, (IIL.9)
follows from (II1.8) and Lemma II.2.

Comment. Note that Lemma III.1 involves only scale invariant quanti-
ties. We will use heavily this fact in Step 3; we will apply the conclusions of
Step 2 (which is stated on B,) after a change of scale x — ryx.

Part B: -Energy Decay

This step is the heart of the proof: it is specific to complex-valued
Ginzburg-Landau equation. This is a new and basic estimate for the energy.

THEOREM 3. Let u be a solution of (I11.1) with R=1, then
1—lul?)2 i
A 6)<K{U ﬂ] E,0,1)
B &
1—lul?)2 2
+U w} +VE, (0, 1)}. (IIL.12)
B &

The starting point is the identity
4 |u? |Vul* =4 |ux Vu*+ |V |u’|% (I11.13)

which holds for any map from R to R¥; in the special case where k =2,
[u(x,)| # 0, we may write near x,

u(x) = p exp(ip),
and then
uxVu=p*Vop,

i.e., u X Vu plays the role of the gradient of the phase. The advantage of the
form (II1.13) is that u x Vu is always globally well defined, while the phase
need not to be well-defined when u vanishes somewhere.
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The conclusion of the theorem is an estimate for the energy on B;. The
difficult part is always the contribution of the phase, i.e., ux Vu. In this
part, we will make use of the following known estimates (see [Bethuel-
Brezis-Hélein 1, 2], [ Brezis]).

LemMma I11.2.  Assume u verifies (111.1) on B,. Then
K
lul < K, [Vu| < " in B,

Proof of Theorem 3. We divide the proof in several steps.

Step 1: Hodge—de Rham decomposition of u x Vu.
As in [ Bethuel-Brezis-Hélein 2], we observe that

div(ux Vu) =0 in By, (IIL.14)

thatis 3V, ax (ux 2 +) = 0; this holds because

N N
Y i<u>< %>= Y Ou x a—u+u><Au=u><Au=0,

= Ox; 0x = 0x;  Ox;

i

by (II1.1). In order to invoke Poincaré’s Lemma it is more convenient to
write (II1.14) using the formalism of differential forms (see Appendix). This
yields

d*(uxdu)=0 in B, (IIL.15)
where du=7Y_ 1ax “dx, and d* denotes the Hodge star operator,

d* = +% dx.
By the mean-value inequality, we may find some r, € [}, 1] such that

[ vur<s| vap,
0B, B
(I11.16)
[ a-mr<s| -2
0B, B
Let £ be the solution of the auxiliary Neumann problem

AE=0 in B,
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Note that & exists since div(ux Vu) =0 implies by integration L?Brl (ux
Vu)-n = 0. Moreover, we have

|Vul®
2

L, IV < K L < KE,(u).

1

Since ¢ is harmonic on B, , we have by standard elliptic estimates, for
0<o<ry,

f IV < KoV j IVE2 < KoY J 7 (IIL.17)
Bs B, B
By construction we verify that

div[ (u x Vu—V¢&) 1, 1=0, in 2'(RY),

where 1, denotes the characteristic function of the set 4. In the formalism
of differential forms this becomes

d*[(uxdu)—dE) 1, 1=0  in Z'(RY).

By classical Hodge theory (see Appendix, Proposition A.7) there exists
some 2- form ¢ on R such that ¢ € H;,(R") and

d*p = (uxdu—dé&) Ly, in RY, (I11.18)

dp=0 in2'(RY), (111.19)

IVollrwry < K,(IVidlos, 5 +IVElles, ), V1 < p < +o0,  (111.20)
|@(x)||x|¥ ! tends to zero at infinity. (II1.21)

We therefore have

uxdu=d*¢p+dé  inB

ry

(I11.22)

In order to bound the L*norm of u x du on B;, we turn next to estimates
for d*e.

Step 2: Improved estimates for Vo on B; when |u| ~ 1.
Let us first explain what is going on. Assume first that

|| = 1.
Then we claim

Ap=0  in Z(R"\aB,),
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recall that — A4 = d*d +dd*, so that, since dp = 0,
—Ap =dd*¢p =d[(ux du—d¢&) 1p, ] in R".
Therefore it suffices to check
duxdu)=0 on B, .

We have

duxdu) =7y +2(u, xu,)dx; ndx,

i<j

i.e., all the components of the form ¢ are harmonic on RV\ 0B, . Indeed,

If |u| = 1 and if u takes its values in R?, the vectors u,, and u,, are colinear,

so that

u, Xu, =0, Vi,j.

This would not be true if u takes its values in R*, k> 3. This is the only

place where we use the fact that u is complex-valued.
Since ¢ is harmonic, for 0 < ¢ < %,

[, Vol <ca¥ | Vol

"1

<oV j V2.
By

This shows that j 5, |Vo|* has a good decay as d goes to zero.

In our situation, u does not take its values in S'. Instead we play on the
“smallness” of the integral 5 {5 (1—|u|*)? i.e. |u| is close to 1, and we
propose to use this fact in order to control 535 |Vg|%. To make the estimate
precise it is convenient to introduce a “smooth” projection of # on St
Let 0 < f<j, to be determined later and let f: R* — (1,2;) be any

smooth function such that

1
f(t)=; if t=1-p
f(=1 if r<1-2p
lf'1<4 for any teR™.
Define on R? the function « as

{fz(lu(X)l) inB,
1

outside,

oa(x) =

(I11.23)
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so that
I<a—1<4p in R". (111.24)
Note that
S2ul) uxdu= f(lul) uxd(f(|ul) u),
hence

d(owx du) = d(f*(lul) uxdu) =d(f(ul) uxd(f(u)u)  inB,,

ie.,

d(axdu) = Y. 2(f (ul) w),, % (f () ), dx; nd;.

i<j
Now we turn to ¢. We have
d(ad*p) = 0, +w, + w; in 2'(RY),

where

o =1y dlowxdu)y =15 3 2(f(lu]) u),, x (f(ul) u),dx; ndx;,

i<j

@ = 0pp, f(lul) uxdundr,  (r=|x]),
wy; =d(—=1p ad)=d(lp (1-a)dl)—d(l d<)
=d(1;, (1-0) d&)+ 045, drndé= o, +o;,.

Here s, stands for the surface measure on 0B, . Finally we write

— Ao = dd*¢ = d(ad*¢) +d((1—a) d*p) in 2’

=w; + 0w, + ;5 +w,,
where
w, =d((1—a) d*p).
Set

¢i=G*wi’
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where G(x) = cy |x|*™" is the fundamental solution of —A4 in R¥. Since ¢
tends to zero at infinity by (IIL.21) and each ¢, tends to zero at infinity
(because each w; has compact support), we conclude that

4
=7 .
i=1

We now proceed to estimate separately each ¢; (we also make use of the
obvious notation @; = @; | + ¢ ,).

Estimate for ¢,. We have
f Vo P <Kp? Ll V2. (I1L.25)
Proof of (II1.25). We have
— A, = w, =d((1—a) d*p).
Multiplying by ¢, and integrating we obtain

[ IVou <t =all IVol.: Ve

and thus

[ IVoul? < KB IVt Vol

by (I1I1.17), (I11.20), (II1.24), which yields the result.

Estimate for ¢; ;. As above,

j NIV¢3,1|2<4ﬂ2f [Vul?. (I11.26)
R B

Estimate for ¢, and ¢; ,. Observe that ¢, and ¢, , are harmonic on B,
(recall that r, € (1/4,1/2)). By standard elliptic estimates for harmonic
functions (see, e.g., [ Bethuel-Brezis-Orlandi], Appendix),

|Vu|2>1/2,

L\ 2
Wos b <& ([, We7)"
"

Ve, "L“’(Bl/g) <K <L

1
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Therefore
f IV, » |2+ [V, |2 < KoY f Vul>, YO<o<li.  (I127)
Bs By

Estimate for ¢,. We start with the crucial observation that

L (I=fulD)” I *)?

|| < KB in B,. (T11.28)

Proof of (I1I1.28). 'We must distinguish the two regions
Vy={x€By;u(x)| >1-p}, Wy ={x € B;; lu(x)| <1—p}.

Recall that

g, Ao xdu) =1z 3, 20f(jul) u),, x (f(|ul) w),, dx; ndx;.

i<j

On ¥V we have f(|u(x)|) = ;5 and therefore

(f(lul) ), x (f(jul) w),, =0, for i#j.

On W, we have, by Lemma III.2

(Gl )| <

so that
K _K (1 Iulz)2
onl <3< < B -y < K S
which yields (I11.28).
The final crucial estimate is
K
llo, ||L°°([RN) < ﬁ_z E,(0,1). (IIL.29)

Indeed

0@ =] |N2@00@¢j o) 4,
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so that
K (I=|u()*)?
<= | 759
|1 (%) B ls, & x—yv 2 y
Assume |x| <r,. Since B, = B, ,(x) we have
(1=lu(p)*)?

ril <]

B & |x—y|N 2

Next we invoke the monotonicity formula (I.2) centered at the point x, to
assert that

J (I—u()*)?

1
dy<KE,| x,= |<KE,O0,1).
1/2(x) &’ |x_J’|N_2 ys < 2) ( )

Hence for every x € B,
|(p1 (X)l S Kﬂ_zES(Oa 1)

Recall that 4¢, = 0 outside B,

r o

so that by the maximum principle

o "L°°(IRN) = [lo, ||L°°(B,l) < Kﬂ_ZEg(O, 1),

which is (II1.29).
Going back to the equation

—Ap, = w, in RY,

we conclude

[ Vo< lpiley [ o,
R B,
so that

Iul )’

f |V¢1|2<Kﬁ‘4f a ~———>E(0,1). (I11.30)

Step 2 completed: The estimate for ¢. We are combining all the esti-
mates for ¢,, @,, @3 1, @3, and ¢,. This yields, for 0 <J < 1/8,

IMIZ)2

f Vol* < K(B*+ 6N)j \Vu|*+ KB~ j A=W g0, 1. aua
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Step 3: Improved estimates for V(|u|*) on B;. The equation for |u|* reads

21— [u)?) ul®
82

—A(1—|u®)+ =2 |Vul>

Multiplying by 1 —|u|* and integrating on B, we obtain

2(1—|u|»? |u|? u
J, w2 o [y e[ T
B, 3
From (III.16) we deduce
0 luf* (L= u)*\ 7 2
_yl?y ) < A B 2
I, -t < e[, SER) ([, )™
On the other hand
1_ 232
I, a-lywar<x [ pwaege] G
112)2
<Kp? J |Vu|?+ KB~ j ﬂ (I11.32)
By B &
Finally, we have
Iulz)2

J, W<k (], waep [ GRS

NREET
<K</3f \Vul>+ - j ad- '”'2) > (I11.33)

Step 4: The final estimate. Proof of Theorem 3 completed. We must
prove that Vo < 1/8,

E(0.5) <K< | @)/ 0, 1)
+K<L %)2/3”5”&(0, 1).

Proof. Recall that

4 [u)? |Vu|* = 4 lux Vul>+ |V |u|3>,
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and thus
4|Vul> =4 Jux Vul* + |V |u|*]*+4(1 —|u|?) |Vu/|?
<8(IVol2+|VED) + |V |u?>+4(1—|u|?) [Vu|* by (IL22).
Combining (I11.31), (I11.17), (IT1.33), and (II1.32) we obtain

f |Vu|2<K<ﬁzf Vul>+ B f ¢! |u|)+5NI Vul?

+BE(0, 1)f —(1 ) >

which yields
J, e<k(pEnp], CEY L g f OO
+KoV Ll \ZR
Set

_r (=u)?
D: _'[Bl 82

and choose f = pl/¢, if p, < (3)°. We obtain
[ e <K@PEO, 1)+p)+Ks" [ [Vul
Bs B

If p, > (3)° the inequality is obvious, using only the first term on the right
hand side.

Part C: Proof of Theorem 2 Completed when N > 3
We start with a solution u, of (II.1) on B, satisfying the estimate
E.(0,1) <7 |loge| (I11.34)

Recall that in Part A we have exhibited some r, € (¢!/2, §), where ¢ is
fixed but to be determined later, such that

1 1_ 232
— j ( Slfl) < Ky |log 4, (I11.35)

E.(0, ro)_EE(O, ory)

< K |log 4. 111.36
ré\f 2 (57’0)N_2 ”log | ( )
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We apply Theorem 3 to the function u,(x) = u(r,x) on B,. The equation
for u, is

where &, = £. Note in particular that ¢, € (§, £'/?).
We apply Theorem 3 to u,, with the same & as above. Here E¥ denotes
the Ginzburg-Landau energy relative to u,.

(1—Juy ) >\ 172 (1—Juy ) >\
¥ ¥ _x 7
E%(0,6) < KE% (0, 1)<Ll % +K L;l :

&y

Np#
+KoVE7, (0, 1).
By scaling we have the identities
. e
Es#(oa 1) - Ee(oa 1)9

1 -
Ef#(O, 0) =—— E,(0, ory) = 8>"VE,(0, or,),
r

0

and

(1—lul?)® _ 1 J (1—u?)?
rf)\L2 B, &2 )

B &3

Going back to u, we find

! i o A\
e E0.0m) <KEO.m) (o [ O

0
Lo A=)\
+K< e M

o &

+KOVE, (0, ry). (II1.37)

Using (I11.36) and (I11.35) we obtain

E£(05 rO) < Es(oa 57’0) +K’7 |10g 5'

K
— (1 |log 3])**

K -
<5 .0, 1) log ) * +55

6N—2
+ KS8%E,(0, r,).
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Hence

- 1/3 1 1/3
(0. r) <1_K<M

K
2 +52)> < v (7 log )™

1/3N

Now we choose & =#'/*" if #'/*¥ > ¢?, ie. n> & (otherwise, see later),

then
E,(0, r))(1—Kn**" [log 5|) < K™ *?/*" [log n|*"°.
If # <7, (3, is an absolute constant) we have
E,(0, ry) < KypM+2P3N |log 5|3, (I1L.38)

In the case #<e&®, inequality (II1.38) still holds, as a consequence of
monotonicity and (IIL.34).
Finally, we invoke monotonicity once more to assert that, Vr <r,

E,(0,1) S E(0, 1) < Kn™ 7Y |log |/,

In particular, for r = ¢,
1 o
S| —lP? <0, 8) <K flogpPh. (I1L39)
eV ls,

We now conclude immediately with the help of the following lemma

Lemma II1.3. Let u be a solution of (I11.1) on B, with N = 2. Then

(N+2)

1—|u<0)|<1<< W[ -y )

Proof. Set k= |u(0)| and assume that k < 1 (otherwise there is nothing
to be proved). By Lemma III.2 we have

K 1-k
|u(x) —u(0)] < — |x| < ——,

& 2
e(l k) _

provided |x| <
cases.

=y. Therefore |u(x)| <'$* on B,. We distinguish two
Case 1. y<e. Then

J, A=ty <[ a—u?
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On the other hand
2y2 2 1-k\? N N+2
[ a—uP?>[ (-u)*> 1B, = Ke"(1-k)"*,
B, B, 2
by definition of y. Consequently
K
_ I \N+2 _1]12)2
(=BM < [ A=),

and the conclusion follows.

Case 2. y>=e. Then

1+k
) <=5 B,
2
and
1—k\?2
J, a=lpr= (15 ) 181
B, 2
Therefore

K
(1-" 2 <1=? <5 [ (A—lu)?,
g" Jp,

and the conclusion of the lemma follows.

Part D: Theorem 2 when N =2

As we have already mentioned, the statement of Theorem 2 when N
still holds for any solution u of (IIL.1) with values into R*, k > 2.
We start again with a solution u, of (II1.1), satisfying the estimate

E,(0,1)<n|logel|.
By Part A (with 6 =}), there exists some r, € (¢'/% }) such that
L[ -y <k
e’ Jg, =

In particular

1
5[ -y <k,

459

=2
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so that by Lemma III.3
1—[u(0)| < Kn'/*,

and the proof is complete. We emphasize that the two ingredients Part A
and Lemma II1.3 are valid for any solution with values into R*. It is only
Part B (and thus Part C) which requires the assumption k = 2.

Part E. Some additional remarks.

Remark II1.3. The conclusion of Theorem 2 fails when N >3 and
k=3.

First, we assume that N = 3 and k = 3. Let u, be a minimizer of E, on B,
with the boundary condition

ux)=x on 0B, .

( >
le

If the conclusion of Theorem 2 holds we would deduce that |u,|— 1
uniformly on B, ,,. On the other hand

Clearly

X 1 2
Es(us)<E£ Tl < 400,

x|} 2Js

u,(x) > uy(x) = |x?| strongly in H'(B,),

by Theorem 7.1 in [Brezis-Coron-Lieb] (see also [Lin 1]). In particular,
u, — u, strongly in H'(S,) for a.e. sphere S, = 0B,.

In view of the stability of the degree for maps h: S* — S? under strong
H' convergence (via the Kronecker representation formula as in [Schoen-
Uhlenbeck 2] or via VMO-degree as in [Brezis-Nirenberg]) we conclude
that for a.e. r € (0, 1/2)

deg(ﬁ S>—>1 as &¢—0.

s Or
e, |

This is impossible because

deg<|Z€|,S,>=0 forall re(0,1/2).
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In the general case, N >3 and k>3 we use the u, above considered as a
map from B, = RY with values in R¥, with u, independent of the variables
Xgy X5y eeer Xy

Remark I11.4. As we already mentioned in the Introduction, the
assumptions in Theorem 2 do not guarantee compactness of the sequence
{u,}, even in L, , even when N =3, as long as k> 2. The lack of com-
pactness is due to the phase. In [Brezis-Mironescu], the authors con-
structed a sequence u, of solutions of (III.1) satisfying

E,(u,) = o(|log &),

and u, has no subsequence converging a.e. on a set of positive measure. For
the convenience of the reader we recall the argument. Let

v, = exp(inx,) and &1 = Un|0B, -
Let u, , be a minimizer of E, in H :,n. Clearly
E,(u,,) < E,(v,) < Kn’. (I11.40)

On the other hand, by [Bethuel-Brezis-Hélein 1] we know that for each
fixed n, u,, tends to v, in L*(B,;) as ¢ —»0. We may then construct a
sequence &, — 0 such that

ae

]

1
—mhwsﬁ (I11.41)

and also

E, (u,,,) = o(|log,|).

It is well known that v, converges weakly o(L*®, L") to zero, and hence
u, ,— 0 weakly o(L>, L") by (IIL41).

We now argue by contradiction. Suppose that u, , converge a.e. to
a limit, say u, on a set 4 with meas(4) > 0. Necessarily =0 a.e. On
the other hand, |, ,|— 1 as n— co, uniformly. Hence |u|=1 a.e. on 4,
a contradiction.

In this example, the noncompactness of the sequence u, is “generated”
by the oscillations of the boundary conditions g,. The situation becomes
totally different if one prescribes further assumptions on the boundary
conditions g,. This is explained in Section VII.



462 BETHUEL, BREZIS, AND ORLANDI

I11.2. u-Ellipticity at the Boundary

We are going to extend, in this section, the result of Theorem 2 to the
case where Br(x,) intersects the boundary of Q. Throughout this section,
x, will be a point in 2, and R > 0 will be such that

0 < R<d} =dist(x,, X)% R<R,, (I11.42)

where R, is the constant in Lemma II.3 (monotonicity formula at the
boundary). We are going to prove

THEOREM 2bis. Let >0, x,€ 2 and R>0 verifying (I11.42). There
exist constants K >0, o> 0 depending only on N, and 0 < ¢, <1 depending
only on n, 2, M, and C, such that, if u, is a solution to (GL), verifying (H1)
and (H2) with

0 < ¢ <inf{ey, R*} (I11.43)

and
E,(u,) <7 |log 1% ‘ (I1L.44)

then
1—Ju(xo)| < K. (I11.45)

The proof of Theorem 2 bis follows the same arguments as the proof of
Theorem 2. For each part A, B, C we will briefly point out the modifica-
tion to be made.

Part A. Choosing a Good Radius

We have the following variant of Lemma III.1.

Lemma IIL1bis. Let 0 <0 < i and assume

R1

4
0D<e<eg Einf{R4, <%> ,e‘n}. (I11.46)

Let u, be a solution of (GL), verifying (H1), (H2), (I11.42), (I11.44). Then,
there exists some r, € (¢'/%, €'/*) such that

1 (1 |u|2)2
"01\’72 fé,o(x(,) & l l ( )

0 < E(x,, ro) — E(x,, 0ry) < Ky [log J). (111.48)
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Proof. The argument is similar to the proof of Lemma III.1. By
(I11.46), £'/* < R. Choose k € N such that

o\ &+ O\ —¢*+2)
gl/? <Z> <el? and  ¢g!/? <Z> >4 (111.49)

Consider for j=0, ..., k the intervals

(N7 i (O i
i=((8) (@) )

These intervals are disjoint and (J%_, I; = (¢'/% &'/*). Set

1 1 (1—=]u??
yj:jfj[mfi(xo) * J - }

N—-1 |« 2
By Corollary I1.2, we have

ou
on

r B, (x0) &

k
y; < K(E,(xo, /) +&"*)
=0

J

< K(Ee(xm -R) +R) < K(Es(x09 R)+-R1 )9

where we have invoked monotonicity again for the last inequalities. On the
other hand, by (I11.49),

1> llog &'l 1 |loge|
~ Jlogd| ~ 4llogd|

Therefore for some j, € {0, ..., k}

E R)+ R
7, <K [log J| <M>

|log |

&
<K |logé — | < Kn logd|,
ozl (n+52 = ) < K llog o

by (I11.44) and (II1.46). The proof is then completed as in Lemma III1.3.

Part B. 6-Energy Decay Near the Boundary
We have

THEOREM 3bis. Let u, be a solution to (GL), verifying (H1), (H2),
Xy € 2, and r > 0 such that, for d, = dist(x,, X),

r <inf{R,, d2}, (I11.50)

where R, is the constant in Lemma 11.3 (monotonicity formula).
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Then, for all 0 <6 < 1/4,

1 1—Ju?)2\1/2
Ee(xo, 67’) <C< ~— fv ( |;'4| ) > (Ee(xo, r)_,’_rN—l)
r B, (x) &

re(an],,, Y

r B, (xg) &€
+CON(E,(xo, 1) +rN 7). (I11.51)

For the proof, we follow the same steps and arguments as in the proof of
Theorem 3. We must however devote special care to the boundary condi-
tions: for that purpose, we will use the result of the Appendix (in particular
Propositions A.6 and A.7). Before we give the details of the modifications
to be made in the proof of Theorem 3, we recall the following basic esti-
mates (see [ Bethuel-Brezis-Hélein 1, 27),

— C _
u,| <1 on £, [V, | < T o Q, (IIL.52)

for any solution u, of (GL), verifying (H1) and (H2). In order to simplify
the presentation of the proof of Theorem 3 bis, we will assume throughout
that near x,, 0Q is flat (i.e. an (N —1)-dimensional hyperplane locally
near Xx;).

Changing possibly the coordinates, we may write

X0 =(0,xy y) € RV X R*,

so that our assumption on Q2 can be rephrased as

I, = B,(x)) n 02 = R""'x {0}. (I11.53)
Finally, we will also assume throughout that
B, j5(x0) N 0Q # &, <i.e. Xox < %) (I11.54)

Otherwise, the proof of (IIL.51) is an easy consequence of Theorem 3.
Proof of Theorem 3bis (assuming (II1.53)).

Step 1: Hodge—de Rham decomposition of uxVu. Letr, e[r/4,r/2] be
such that

2< 2
r L Vul* < 8 L@, Va2,
(I11.55)
[ G-pP?<8[ (-uP)?
Sy B,
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where S, = S,(x,) =9B.(x,) " Q and B, = B.(x,) = B.(x,) N RY. Likewise,

consider
I, =B, (x)nd2cT,cRY'x {0},
so that

0B, (xp)=8, I, 8, nl,=g.

(Note that I, = B "' x {0}, where r; = r] —x} y; in particular r; >3r7.)

By (H2), |g.| =1 on I, and is smooth. Therefore we may write, on I

g = exp(i?,),

where ¥, is a smooth function defined on I, , so that

r

g xVg, =VY¥, onrl,,

where V denotes the tangential gradient.

On the other hand, since r, < r < d} (by assumption (II1.50)),

[Vg,| <

(v

Hence, since |Vg,| = |V¥,| on T,

12

onl,

x e
Jrn

o

(I11.56)

(111.57)

Next, we introduce the solution ¢ defined on E,l (x,) of the elliptic

problem
AE=0 in B, (x,)
o0& ou .
%—ux % onS,l(xO)
é = Yle on I-;"l (xo)-

(II1.58)

(The existence of ¢ is standard). As in Step 1 of the proof of Theorem 3, we

have

d*([uxdu—d&] 1, =0 in 2'(RY).

(I11.59)
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We may now invoke Proposition A.8 of the Appendix, to assert the
existence of a 2-form ¢, defined on RY, such that ¢ € H},.(RY),

d*p = [uxdu—d¢&] 1, in RY, (I11.60)

dp=0 in RY, (I11.61)

pr =0 on 0RY = RV~ x {0}, (I11.62)

IVl < Kp(||Vu||LP(1§,1 =) T ||Vf||u’(1§,1 o)) (II1.63)
Vi<p< +o0,

|p(x)| |x|V~! remains bounded as |x| - + o0 (|x| >r). (111.64)
We have therefore
uxdu=d*o+dé  in B, (x,). (I11.65)

In particular, since on I, (uxdu); = (g, xdg,)r =(d¥)+ =(d)+, we
conclude

(d*¢): =0  ondRY =R x{0}. (I11.66)

Step 2: Improved estimates for Vo on B;,(x,).
As in the proof of Theorem 3, we consider the function « defined on RY
by a(x) = (| f(Ju(x)|)])? on B, , and a(x) = 1 outside. Then, we have

d(ad*p) = 0, + 0, + w, in 2'(RY),

where

o1 =13 () 2, 20 (ul) w)e, x (f(|u]) w),, dx; Adx;,

i<j
W, = O-§,1(x0)f(|u|) uxdu/\dr’ (r = |x—x0|),
W, =d(1é,l(x0)(1—°‘) a’<‘§)+0'5r1 dr/\df—a',-,1 dxy ANdE

=w; T W3, +0; 3,
where ¢ stands for surface measure. Set also
w, =d((1-a) d*p),
so that

A(ﬂzwl+w2+W3+CO4.
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Fori=1,2,3, 4, consider the solution ¢, € H},.(RY) of the problem

A9, = v, in RIJ\:

(@)r =0, (d*¢)r =0 on ORY=RY'x{0} (IIL67)

lp;(x)| =0 as |x| > +oo.
Set @ = p—37_, ¢,. In view of the previous estimates,

AD =0 in R,

(D) =0, (d*d): =0 on 5Rf=RN_1><{0},

|®(x)| |x|¥ ! remains bounded as |x| - + o0,

so that, by Proposition A.3, @ =0, i.ec.

4
=) 0. (I11.68)
i=1

We now proceed to estimate &, and then each ¢, separately.

Estimate for £.  'We claim that

fv |Vé|2<c<j_ |Vu|2+rN—1> (I11.69)
B, (x0) By, (x0)

and that, for 0 <& <1,

f“ |V£|2<C5N<'[v |Vu|2+rN1>. (I1L.70)
Bs (xo) B, (xo)

Proof of (I11.69) and (II1.70). We may write & = &, +¢&,, where &, is the
solution of

45, =0 in érl (%)

0 .
&=¥, onl,, Z1_0 ong,,
on

and &, is the solution of

46, =0 in B, (x,)

0 0 .
&,=0  onl, 52=u><—u on S,

n’ on on v
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By standard estimates,

C
IVEillz=5 0y < sup [VE,I(x) < —%,
xe[‘,l \/;

so that for any 0 < 6 < 1 such that ér <r,,
L o IVEP <K VG e < C 0N (IIL.71)
or (X0
For &, we have, by (I11.55),

f, IV&I* < Kry f V>’ <K | [Vul’, (I11.72)
B, (x0) )

v (X0 B, (xo

and by standard elliptic estimates, for 0 < J < 1 such that or <r,,

[ valr<ka[ |ver
Bsr (x0)

B, (xo)

(I11.73)
f CVEP< KoY j v
Bs (x0) B, (x)

Combining (I11.71) and (II1.72) we obtain (II1.69). Likewise combining
(II1.71) and (I11.73), we obtain (IIL.70).

Estimate for |Vol|2gY). In view of (1I1.63) (for p=2) and (II1.69), we
are led to

f IVolP<cC j Va2 4741 ). (111.74)
R B, (xo)

Estimate for ¢,. 'We multiply the equation —Ag, = d((1—a) d*p) by o,
and integrate on RY. Since 1—a =0 on JRY, integration by parts and
computations similar to those for (III.25) and (III.74) yield

jRN |V¢4|2<C/32< jé( ) |Vu|2+rN1>. (I1L.75)

r (X0

Estimate for ¢;,. As in the proof of Theorem 3, we obtain, using
(I111.69),

f . Vos P < Cp? <j |Vu|2+rN—1>. (I11.76)
R+

B, (x0)



ASYMPTOTICS FOR GINZBURG-LANDAU 469

Estimate for ¢,, @3 5, and @5 ;. Using (II1.69), we obtain as in the proof
of Theorem 3, for 0 < J <1,

[ |V¢2|2+|V¢3,1|2+|V¢3,3|2sc5N<j,
Bs, (x0)

B, (x0)

|Vu|2+rN‘1>. (I11.77)

Estimate for ¢,. We observe first that, as a consequence of (III.52), the
same arguments as in the proof of Theorem 3 show that

-2

oy | <C /1—2 (1—[u??  in B.(x,). (IIL.78)
Next, we claim that

C
”(01 ”L"’(Ri’) < W (Eg(x, r) + rN‘l). (IH.79)

Proof of (I11.79). By Proposition A.3 of the Appendix, we have, for
every x € RY,

P <[, o)l dy = (] dy

C (1 —u(»)?)?
<_2 . 2 N—2
B*5 0y &% |x—yl

B, (x0) Ix yI

By the maximum principle, we deduce

||(P1||L°°(|RQ’)= sup |l (x)], (IT1.80)

xe B, (xo)

and, for x € B, (x,), B, (x,) < B, »(x),

c (1—|u(y)|2)2
< —— 111.81
|y (x)] < ﬁszr/z(X) & lx—y|" 2 dy ( )

By inequality (II1.5) of Corollary II.2, we have
(1—lu(y)»? - r
=S dy<C|E,|x,=
Ji?,/z(X) 82|X—y|N_2 y e | X ) +r

< C(E,(xo, 1) +7), (I11.82)

where we have used, for the last inequality, the fact that B . 2(x) < B.(x,).
Combining (I111.80), (IT1.81), and (I11.82) we deduce (I11.79).
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Finally, as in the proof of Theorem 3, we combine (II1.78) and (II1.79) to
obtain

cri A=y ]
2 -~ N-1
o Wor<gwml, S | Een e, anss

Step 2 completed. Combining the estimates for ¢, @,, @3 1, @32, @33,
and ¢, we are led to, for0<d < 1/4and 0 < f < 1/8,

o Vo <c@+on ([, wirer)
B, (x0)

B, (x0)

r &

Step 3: Estimate for V(|u|*). The same argument as in the proof of
Theorem 3 yields
1— 2y2
[ |V(|u|2)|2<0<ﬂ2 [ vur+p= ﬂ)
B, (x0) &

B, (x0) B, (x0)

. (IIL.85)

Step 4. Combining (II1.84) and (II1.85), we complete the proof of
Theorem 3 bis as in the proof of Theorem 3.

Part C. Proof of Theorem 2bis Completed when N = 3.

The argument is similar to Part C of the proof of Theorem 2. In Part A,
we found (provided & < ¢,) an r, € (¢'/?, ¢/*) such that (II1.47) and (II1.48)
hold. Applying Theorem 3 bis to x, and r = r,, we obtain

1 (1—ul?)*\'/2 _
Ee(x0’5r0)<c< N—ZJ.V 2 (Ee(anro)‘i""f)v 1)
r Bro(xo) &

1 1—|u|?)?\2/3
+C< N—2 j &) +C5N(Es(xo» ro)"‘rév_l)
r BYO(XO) &

< C(n [log )" (E.(%o, 19) +75 ")
+Crév*2(” |10g 5')2/3 +C6N(Es(x09 rO) +r0Nil):
where we have used (I11.47). Hence, by (II1.48),

E,(xo, ) < K11 |log 3]+ E,(x,, Ory)
< K7 |log 8|+ K>~ V(3 |log 6])*?
+C(6*(n [log 8])'7+6*)(E,(xo, o) +10)s
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and therefore
E, (X, r)[1=C(n"/? log 6]'* 6>~V +6°)1 < K>~ (57 |log 6))**+r, .
We choose J = 175. Then
N 2 N+2 23
E,(xo, r)[1=C(n?¥ [log )] < Ky 33 [log | ™"+ 1.
If # < 7, (1, some constant), then, since r, < &'/4,
- N+2
E(xo, 1)) <Kn 3 |logn|**+r,.
. Ni2 i
Set &, = inf{e,, Ky 37 |log 5|**}. If & < gy, then
- N+2
E(xo, 1) < K 3V |log |3,

and we conclude as in the proof of Theorem 3.

IV. INTERIOR H' ESTIMATES IMPLY C* BOUNDS

In this section, we assume that u, is a solution of

1
— Au, =pu8(l—|u£|2) in B, av.n
and that
1— 2)2
| v 2 ) Jf;l L <1, (IV.2)
B

for some (arbitrary) constant L, independent of ¢. The goal is to control all
the C* norms of u, in B, ,,, independently of «.

In the interesting situations where vorticity appears, estimate (IV.2) is
not satisfied in all of 2. However, away from a certain singular set &,
(IV.2) is valid, and u, is bounded in C* away from . The main result in
this Section, Theorem IV.1 below, will be used in Section VIII to establish
C* convergence of u, outside .

THEOREM IV.1. Assume u, verifies (IV.1) and (IV.2). Then for every
keN,

||us||c"(31/2) <G, Iv.3)

H l_lue|2

. <C,. (IV.4)

Cc¥B1/2)
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Proof. Letry>r,>r,>rye(1/2,7/8).
Step 1: |u,| - 1 uniformly on B, 3 as ¢ — 0.

Proof. 1f x € B3 then B(x, 1/8) = B, and E,(x, 1/8) < L,, i.e.
E,(x,1/8)<8"L,.
Therefore by Theorem 2
|u,(X)| = 1 - K7,

where K and o depend only on N, and

N-2
1, = ﬁog ng ‘i (IV.5)
This completes the proof of Step 1.
Step 2: J-Energy decay.
Let x€ B; s and 0 <7 < 1/8. Then, forany 0 <5 <1/2,
E,(x,0r) < K(0*+0* M(e+nY)) E,(x, 1), (IV.6)

where 7, is defined in (IV.5). Here and below K denotes generic constants
depending only on N. In particular, there exists J, € (0, 1/2), &, > 0, such
that for e < ¢,, VO <r < 1/8,

Es(x’ 507') < %Ee(xs r)' (IV7)

Proof. We may always assume that ¢ is sufficiently small so that
|| >3 in Bys.
We then write
U, = p. eXp(i(Pe) in B7/8 H

and we may assume moreover

@, € [0, 27).
|B7/s| Bys

First, we turn to the contribution of the phase ¢,. We have

—A(D'S:—le((l—pg) Vgos) in B(X, r)CB7/8'



ASYMPTOTICS FOR GINZBURG-LANDAU 473

Let @, be the harmonic function defined on B(x, r) verifying @, = ¢, on
B(x, r). In particular, we have

[ ver<] vl (IV.8)
B(x,1) B(x,r)

and
[ Valr<ks[ VoP<KsM[ Vgl aV9)
B(x, or) B(x,r) B(x,r)

Multiplying the equation
_A((Ps_(ﬁe):_dw((l_ﬂf) V(pe) in B(x’ r)
by ¢, — @,, and integrating on B(x, r), we obtain
[ Ve—gor<kn:[ Vol (IV.10)
B(x, or) r)

B(x,

Combining (IV.9) and (IV.10), we are led to

[ Vel <K@ [ Val
B(x, or) B(x, 1)

We turn to p,. The same computations as in the proof of Theorem 3,
step 3, yield

1_ 2y2
IVpe|2+#<K(s+n:)j |V, |2 (IV.11)
€ B(x,r)

J‘B(x, r/2)

Combining (IV.10) and (IV.11) we derive (IV.6), and (IV.7) follows from
the fact that #, > 0 as ¢ > 0.

Step 3: There exists a constant C >0, and 6, € (0, 1) such that, for
&<g,

”ua”c“’gow,o) <C. (Iv.12)
Proof. Tterating (V.7) with r = 1/8, we obtain, for ¢ < &,
E(x, 06 D <BD*E,(x,}) <CH)Y,  VkeN.
For r e (0, 1/8), let k € N be such that 65*! < 87 < J§, i.e.

< |log 87

k< <k+1.
llog J|




474 BETHUEL, BREZIS, AND ORLANDI

By monotonicity, we have, for x € B,

E,(x,r) < E(x,65r) SC(3)**' = C exp((k+1) log ;)
< C exp(u, log(8r)) = C(8r)*

< Crho,

where u, = (log §)(log 6,) ™' > 0.
In particular, we have established that for some constants C >0, for
£<g,V0<r<1/8,

j Vi, |2 < CrV—2+1, (IV.13)
B(x,r)
In view of a classical theorem of Morrey (see, e.g., [ Giaquinta]), (IV.13)
implies (IV.12) with 8, = u, /2.
Step 4: There exists a constant C > 0 such that for ¢ < ¢,
llt,llcr-t05, 5 < C. (IV.14)
Proof. In view of (IV.12), we deduce that
||P§||c°'90(3,0) <C.
Since ¢, satisfies the equation
div(p? Vo) =0  inB,,

which is uniformly elliptic with C* % coefficient p2, it follows from Schauder
theory (see for instance [ Gilbarg-Trudinger ], Theorem 8.3.2) that

||(pellcl’g"(ﬂrl) <C "(ps”c"’%(s,o) <C,

by (IV.12).
From now on we proceed as in [ Bethuel-Brezis-Hélein 1].

Step 5: We have
1-p2<Ce® inB

ry

Proof. Set &, =1—p,. Then we have

1 .
_Aés+?ps(1+pe) ée =P |V(p8|2 m Bls
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thus
1 .
—Aé£+2—82 f£<C m Br|

by Step 4. Applying Lemma 2 in [ Bethuel-Brezis-Heélein 1] we deduce that
”és”Lw(B,z) <Cé’.

Step 6: We have

IVo.llcy, <C,
< 2

1= pellct, < Ce”.

Proof. The proof is by induction on k. For k=0, this is a consequence

of the estimates of Step 4 and 5. The passage from k to k+1 is done as in
step B6 of Lemma 2 in [ Bethuel-Brezis-Hélein 1].

CoRrROLLARY IV.1. Under the assumption of Theorem IV.1, we have, for
some sequence ¢, — 0,

. . k
us,, = Uy = eXp(lgo*) n Cloc(Bl)
for every k € N, where @, is some harmonic function. Moreover,

Iu *

|VU*|2 |V(P*|2 in Cloc(Bl)'

Remark IV.1. There is a version of Theorem IV.1 up to the boundary
0Q but only for C'* norms. C? convergence does not hold near the
boundary since du, =0 on 02 away from X, while its limit satisfies
— Auy, =y |Vi|? on Q\ &, (u, and & are defined in Section VIII). This
requires some work, the arguments are basically the same as Steps 1-4
above.

V. PROOF OF PROPOSITION 1

The proof of Proposition 1 relies in a crucial way on the subtle
Besicovitch Covering Theorem. We give first a statement of this theorem,
following the presentation of [ Giaquinta-Modica-Soucek], p. 30 (see also
[Giaquinta], [ Evans-Gariepy]).
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TueEOREM V.1 (Besicovitch Covering Theorem). Let E be a subset of RY
and let r: E — R be a positive bounded function defined on E. Then one can
choose an at most countable family of points A := {x;};.y in E such that

O EcU Blx;, r(x;))
(i) The balls B(x;, 1 r(x;)) are mutually disjoint

(iii)) The balls B(x;, r(x;)), x; € A can be distributed in {(N) families
B, of disjoint closed balls, where {(N) is a constant depending only on N.

Next we turn back to our situation. For 0 <e < 1, let u = ¢&'/8,
K, ={xeQ;dist(x, 2) > u},
and let E be the set
E=A4;nK,={xeQ;u(x)| <1-B, dist(x, 2) > ¢"/%}. V.1

We apply Theorem V.1 to the set E and take as function r the function
defined on K, in Proposition II.2.
Since E is bounded and

e?<r(x)<e',  VxekE,
the family A is bounded. Applying Theorem V.1, we obtain

PROPOSITION V.1. There exists a finite family A= {x;},<;<;, | € N, such
that

1

1
E=4;nK,c | B(x;, r(x,)), x, €E.
i=1

Moreover, the balls B; := B(x;, r(x;)) can be distributed in {(N) families
B, of disjoint balls. We have therefore

[€&))
E=4,nK,c | < U B’,) V.2)
i=1 \Bje%

We are now able to proceed to the proof of Proposition 1 (stated in the
Introduction).

Proof of Proposition 1 completed. One proceeds in several steps:
Step 1: We have

j wsc,*(é r§H>, (V.3)
ApnK, i=1

&

where the constant C is independent on ¢, and where r;, = r(x;).
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Proof. We deduce from (V.2) that

112)2 i —12)2
f (1 |;4|) <(3 j (1 |;4| ) .
AgnK, & i=1YB(xi,ri) €

In view of Proposition II.2 and the definition of r;, we have

1_ u2 2
f ( |Z| ) <Crl{v_2’
B(xi,ri) &

and the conclusion follows.
Step 2: Letxe Ay 0 K,. Then for any ¢'/><r<e'/,
E,(x,r)=CBY*r"?|loge. (V.4)

Proof. Letn=r*" Eﬁéz’e?- Since x € Ay, |u(x)| < 1—p.

On the other hand, by Theorem 3 bis

1-Kn* < |u(x)| <1-8,
hence
B<Kn*,

ie,n>Cp"* and

r*VE,(x,r) = CBV*

logf‘.
r

Since £'/2 < r < &'/* the conclusion follows.

Step 3: Upper bound for 3! _, r>”". Since in each family %,, for k=1
to {(N), the balls B; are disjoint we have

es(u): Z Ee(xi9 ri)'

‘[UBiegik B; B € By
By step 2
E,(x;, 1) = CB*r}* |log el

1271

and by (H1), for any k =1 to {(N)

[ ew<| e(w)y<M,llogsl.
U, e, Bi Q
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Hence
C Y. B |logel < M, [log &,
B; € By
so that for any k,
D plerV-2 < C.
B; € By

Thus, we obtain the upper bound

Z r 2 < CLUN) B (V.5)

Step 4. We have

j (l_ll’llz)zgcﬁ—l/a. (V6)
AgnK,

&

Proof. Combine (V.3) and (V.5).
Step 5: We have, for ¥, = Q\K,,

1— 2y2
[ %sae”sllogsl—»o as &—0. (vV.7)
ZI‘

Proof. For any x e Q\K,, dist(x, 2) <¢'/%. By standard covering, we
may find points z,;, fori =1, ..., g,, on X such that

B(z;, e )" B(z;, e =@ if i#], (V.8)
qe

U B(z;, 8% o K,. (V.9

i=1
It follows from (V.8) that the number of points z;, i.e. ¢, can be bounded as
0< g, KCr V=3 N-3(5), where r=¢!/%, (V.10)

and from (V.9) we deduce that

Je

u

(1—£|2u|2)2<4f eg(u)SCf E.(z, 80 (V.11)

On the other hand, by Lemma I1.4,

E,(z;, 16r) < M,r" 2 |log ¢|.
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Inserting this relation into (V.11), we obtain

1— 2)2
J, S < cariiogad

r V3N =2 log ¢, by (V.10)

<C
< Crlloge| = Ce'®|log ¢,

which yields the result.

Step 6: Proof of Proposition 1 completed. Combining (V.6) with (V.7)
we obtain (10) and complete the proof.

Remark V.1. Proposition 1 assumes that u, satisfies the boundary
condition u, = g, on 0Q2, with g, satisfying (H2). If we drop the boundary
condition, there will be an interior version of Proposition 1.

ProrosITION 1bis. Let u, be a solution of
1 5 .
—Au, == u,(1—|u,|*) in By.
&

For Be (3, 1), set

A, 5 =1{x€ Bz, |u(x)| < 1-B}.

1—|u,|»? E,(u,)\?
J ( |2 1) <Cﬂ< ( 8)) ,
aep & [log %I

where Cy depends only on f (and is independent of ¢).

Then

The proof of Proposition 1bis follows the same strategy as above—in
fact, it is even easier because it does not involve any boundary condition.

As a consequence of Proposition 1bis, we may approach the boundary of
£, and obtain the following

COROLLARY V.1. Let u, be a solution of
1 5 .
—Au£=?u8(1—|u8| ) in Q.

LetO<a<1,3 <f<1andlet

A, p={x € Q, dist(x, 0Q2) > &, |u,(x)| <1—p}.
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Then

(1—1u,|?? E,(u,)\?
f —3 <G ,
Ao p & |log ¢|

where C,, ) depends on Q, o, B but not on e.

We emphasize once more that there is no assumption involving the
boundary of Q.

VI. GLOBAL ESTIMATES INW "7 1< p<5

VI.1. Introduction

In this section our first aim will be to establish for 1 < p <3~ the bound
(7), that is

[, Wur<c,

for any solution u, to (GL), verifying (H1), (H2). As in [Bethuel-Brezis-
Hélein 2], Section X, this is the main ingredient (together with #-ellipticity)
in order to establish compactness properties of the set {u,}o<,<, of solu-
tions verifying (H1) and (H2).

As in Section III our starting point is once more the equation

d*(u,xdu)=0 inQ, (VL1)

and again we will use extensively Hodge-de Rham decompositions. An
important difference here is however that we must work on the whole
domain (instead of small balls) and that the boundary conditions on 0Q2
will be used in a fundamental way (actually, they must to be used in order
to establish (7), see remarks at the end of Section III).

Since our analysis involves many questions related to differential forms
(some of them not so widely well known, in particular those concerning
boundary conditions), we will collect in the Appendix some background
material, which we will use in later investigation.

V1.2. Linear Problems Associated to the Ginzburg—Landau System

Let u =u, be a solution of (GL), verifying (H1), (H2). In order to derive
(7) we write, as in Section III

4 |ul? |Vul> =4 |ux Vu]>+ |V |u’| (V1.2)
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and our first goal will be to prove for 1 < p <5
f luxVu|? <C,.
Q

To that aim, we write first a first-order system of equations for the
1-form

N

u
u=uxVu=) ux —dx;.
i=1 0x;

VI1.2.1. An Elliptic System of First-Order Equations

As in Section III, let 0<f<1/4 to be determined later, and let
f:R*—>[1,1/(1—p)] be a function verifying (I11.23), that is

f(t)=; it r>1-8

1.3
f=1 if t<1-2p (VL3)
lf'1<4 forany reR™.

In 2, let « be the function defined by
ax) = f(ju(x))) inQ, (VL.4)
so that, as already observed,
I1<a<144p in Q. (VL5)
On 2 we consider also the 2-form w defined by
d(oux du) =y, 2(f(lul) u),, x (f(lul) w),, dx; ndx;.
i<j
As in Section III we have
w(x)=0 if Ju(x)|>1-p (VL6)
and
L (1=u?)?
lo(x)| < KB ZT. (VL.7)

As an immediate, yet crucial consequence of Proposition 1, we obtain
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CoroLLARY VI.1. We have

ol = [ lo] <Kp?=C,. (VL)

Remark that Cy is a constant depending only on f, £, etc., but not on e.
At this stage we have now a system of two first-order equations for
U= uxdu, namely

d*u=0 in Q2
dlop) =w in Q,

(compare with Corollary A.1 and the remarks thereafter), where w is
bounded in L' uniformly in &. As we will see, this system, together with the
boundary condition u+ = ag x dg on 0L yields an L” bound for u. Perhaps
the simplest way to derive this result is to use a Hodge-de Rham decom-
position.

VI1.2.2. Hodge—de Rham Decomposition and Second Order Linear Elliptic
Equations

In view of Proposition A.7 of the Appendix (with / = 1), there is a func-
tion H defined on 2 and a 2-form & defined on £, such that

ou=dH +d*® in Q, (V1.9)
with
dd =0 in Q2
H=0  onoQ (VL10)

& =0 on 0Q.

We will show next that @ verifies an elliptic equation involving w.

LemMMmA VI.1. We have

—AD=w inQ
& =0 on 0Q (VIL.11)
(d*®); =4 on 09,

where A is the 1-form defined on 022 as

A=oagxdg. (VL.12)



ASYMPTOTICS FOR GINZBURG-LANDAU 483
Proof. Since —A=dd*+d*d, and since d® = 0 on £, it follows

—AD = dd*®+d*d® = dd*d
=d(au—dH) =d(ou) = o,

so that we obtain the first equation.
Since H =0 on 0Q, (dH)+ =0 on 022 and

(o) r = (dH) 7 +(d*®); = (d*D)+ on 02,

hence the third relation is established.

Remark VI.1. Note that at this stage we have not used the equation for
u, and in particular equation VI.11 for @ holds for any map u: 2 — R?
(provided it is sufficiently regular). Similar Hodge-de Rham decomposi-
tions will turn out to be useful for instance in evolution problems, as we
will show in forthcoming works. The time coordinate, in that case, must be
included with the space coordinates.

Remark V1.2. The boundary data g enters directly in the definition of @.

Remark VL.3. In the case where |u| > 1—f on Q, then we have A® =0
on £, that is

dd*®=0 in Q.

Applying Hodge-de Rham decomposition to d*® we may assert that there
exists some function ¢, defined on Q such that

do =d*®.
We then verify easiliy that for some constant C
u(x) = |ul exp(ip+C). (VI.13)
In the general case, however, ¥ must vanish, and w is not zero and repre-

sents, through Eq. (VI.11), the obstruction (in particular the topological
obstruction) to the lifting property (VI.13).

Remark V1.4, If N =2 and g, = g on 022 (with |g| = 1) then & becomes

D=0, dx, ndx,
@ =2(f(lu]) w)s, X (f(jul) w),, dx; Adx,.
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In this case the condition @ =0 is automatically verified and (VI.11)
becomes

— AP, =2(f(jul) W), x (f(ju) w),,  nQ, (VL14)
6322 =gxg,  onoQ. (VL15)

This type of equation and, in particular, the boundary condition (VI.15)
have been studied and used extensively in [ Bethuel-Brezis-Hélein 2]. This
shows in particular that the equation (VI.11) for the 2-form @ is the natural
extension to higher dimension of the elliptic problems involving the
function @, in case N = 2.

Next we derive the equation for the function H.

LemMMmA VI.2. The function H verifies the elliptic equation, with Dirichlet
boundary conditions

div(a"'VH) =d*(1—a™") d*® inQ
( )=d"(( ) d*®) (VL16)
H=0 on 09.
Proof. First note that by (VL.5)
— <alg
0< 1+4ﬁ\“ <1, (VI.17)

so that we may multiply (VI.9) to assert
uxdu=aoa"'dH+aoa' d*®.
Hence,
d*(uxdu) =d*(« ' dH) +d* (™! d*D)
=d*(a'dH)+d*(«' = 1) d*®),
and the conclusion follows by Eq. (VL.1).

Remark VL.5. Note that here Eq. (GL), (and its consequence (VI1.1))
enters in a crucial way in the derivation of (VI.16). Together with Proposi-
tion 1, it will actually be the only place where it will be used in order to
bound |lu x du|,» for 1 < p <.

V1.2.3. Bounds on |VH| s, VO .2, for 1 < p<+5

Since @ enters directly in the equations (VI.16) for H, whereas the
equation for @ involves only w and g, we will begin with estimates for &.
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PrOPOSITION VL1. We have, for 1 < p <+,
IVOr < Cy, s
where Cy , is a constant depending on B, p, 2, g but independent on &.
Proof. In view of Proposition A.2 of the Appendix, we have
VO r < C,(lwllr + llxg x dgll1),
and the conclusion follows from Corollary VI.1, together with the estimate
lag x dgll,r < C,

which is an easy consequence of (H2).
We next turn to the function H. This is the stage where we must make a
suitable choice for the parameter £.

PROPOSITION VI.2. Let 1<p<y~;. There is some 0<pf,<1/4
(depending possibly only on p and Q) and a constant C >0 (depending
possibly on p and Q2 but not on B,) such that, for 0 < f§ < f,

IVH | @) < CIBI VDo) < C -

Proof. We write the operator div(a"'V) as a perturbation of the
Laplacian, that is

div(a"'VH) = AH +div((a'=1) VH)  inQ.

Let 4,' denote the inverse of the Laplacian with Dirichlet boundary
condition on €, i.e.,

A7 W E(Q) - WP (Q)
fed7 f=w,
where w is the unique solution in W7(Q) of

dw=f in Q
w=0 on 0%2.

Since 1 < p < +o0, standard elliptic estimates show that 4;' is a continu-
ous linear operator from W ~"7(Q) to W7 (). Set

¥ = d*(1—o) d*P).
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By (VI1.5) we have
o' — 1] <48, (VL18)
so that, for some constant K,
||1P||W*"1’(g) <Kp ||V¢||LP(9)-
We now write (VI.16) as

AH =div(l—a")VH+g inQ
H=0 on 09,

which can be reformulated as
H = A7 (div(1 —a") VH) +7, (VL19)
where y e W 7(Q) is given by
y=45"(P).
Finally, we define the linear operator T: W7 (Q2) — Wy ?(Q) by
Tv=A;"(div(1—a™") Vv),

for any ve Wy?(R). Clearly T is continuous. Moreover, by (VI.18) we
have

ITI < K. (V1.20)
Equation (VI.19) can now be written as
(d—-T) H =y,
where Id denotes the identity map on W ;?(2). We choose f8, so small that
KBy <3,

where K is the constant in (VI.20). Therefore, for f < f,, Id—T is invert-
ible and

1 llyro < NAD=T) 7 17llw-»
S K |[#lly-1r < KB VP,

which completes the proof.
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V1.2.4. L* Estimates for luxdu|, 1 < p <+

Let 1 < p <+ be given, and choose B = f,, where f8, is the constant
introduced in the proof of Proposition VI.6. With this choice of S, the
function « is also determined. Since

uxdu=o"'dH+o ' d*®,

we deduce from the results of previous section,
ProPOSITION VI.3. Let 1<p <y~ be given. There is a constant K,

depending only on Q, p, Cy and K, such that for any solution u, of (GL),
verifying (H1), (H2) we have

fﬂ lu, x du,|” <K, .

VL.3. Estimates for |V |u,||, 1< p<?2

We follow here closely the argument of [Bethuel-Brezis-Hélein 2],
Lemma X.13. Let 1 < p <2 and set

p=lu,l.
The equation for p is

1 1
pP €

We are going to prove

PrOPOSITION VI.4. Let 1<p<2. There exists a constant K, and
0 < a < 1 depending only on p, 2, K,, C, such that, for 0 <e <1,

fg IVol? < K,e*.

Proof. We introduce the set
S={xeQ, p(x)>1-¢'?}
and the function

p=max{p, 1—p'?},
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so that p=p on S and
0<1-p<e? inQ. (VL.22)

We multiply (VI.21) by p—1 and integrate over Q:

e p=pYA=p) 1= du
= _— 1—
Lz Ve Vp+f:z &2 L) p? huxdu +jag on (1=7).
1
2gel?[ 2 2 1—2).
Jons VP18 [ sl Vul? [ 19 Jull(1 =)
From assumption (H1) we deduce that

1
j — lux Vu? < K [log e,
ap

whereas it follows from (H2) that 1—p(x) =0 if x € 022, dist(x, X) = ¢, so
that

[ Vil a-p<e”| IV
312} 0!

Q2 ndist(x, 2)<¢

< Ke'? meas{x € 09, dist(x, X) < ¢} < Ke® < K.

Here we have used the fact that

[Vl (x) < § Vx e Q.
Combining the previous relations we obtain

L IVp|? < Ke'/? [log é. (VL.23)
Finally, since by (H1)

[, (1=p?<Ke flog ]

and since (1—p?) > ¢'/? on 2\ S, we obtain

|2\ S| < Ke|log .
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Hence

/2
[ |Vp|ﬂ<<j |Vp|2) 0\ S|P
Qo\s Q

< K |log ¢|?/? |2\ S|}~/
< Ke'"??|loge|. (VL.25)

Combining (VI.24) with (VI.25) we deduce the result.

VIL.4. Proof of (7) Completed

Since we have now proved L? bounds for the gradient of the phase as
well as the gradient of the modulus, it suffices to combine the two estimates
to bound ||Vy||,.». More precisely, we have

|ua] [Vue] < e x V| +[Vp
We distinguish the cases |u| = 1/2 and |u| < 1/2. Recall that
A1/2 = {x € ‘Qa |u|(x) <% }:

so that

[Vl <2 |ux Vul+|Vp| in 2\ 4,),.

Hence, for 1 < p <+
oo IVl < Cyllux Vall, +IVplir) <K, (V126)
1/2

by Propositions VI.3 and V1.4, where K, depends only on p, 2, K,, C,. On
the other hand we have, by the bound

K
[Vul < e
(V1.27)

j IVulf’sKa’Pf (1—|u»)*< Ke*?,
A1) A2

1

where we have used Proposition 1 for the last inequality.
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Combining (V1.26) and (VI.27) we deduce
J [Vu,|? <K, for 1<p< —,
Q

that is, (7) is established.

VII. - REGULARITY

We first recall the main #-ellipticity assertion in Section III: if u, is a
solution of

1
—Aus=?u£(1—|us|2) in By (VIL.1)
and if

Es(ues R) < Mo

&€
log —
OgR

, (VIL2)

with 7, sufficiently small (depending only on N), then
lu,(x)| =5  in Bg,. (VIL3)

We emphasize once more that no boundary condition is assumed. We
also recall that in the absence of restrictions on the boundary condition,
there is no hope to infer from (VIIL.1) and (VIIL.2) (even with small #,) any
compactness for u,, e.g. in L' (see the example in [Brezis-Mironescu]
which is also described in Remark I11.4).

In the previous section, we established global W' ? estimates, 1 < p <
o, assuming u, = g, on 0L, where g, satisfies (H2). Here we will show
how to gain further regularity (uniformly in ¢) in the region where (VIL.2)
holds with #, sufficiently small. This gain is established in two steps. First,
we prove that (VIL.2) with small #, implies

- 3R
E, <u8, T) <C, independently of &, (VIL.4)

and (VIL.4) combined with the analysis in Section IV yields

”Vus”CO’“(B(xo,R/z)) <C,
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and even

"“e”c"(B(xo, R/ S C,

if B(x,, R) does not intersect the boundary 0Q.
Here is the main result in this section:

ProposiTiON VII.1. There exists constants n,>0, R, >0 depending
possibly on Q, X, M, Cy, but not on ¢, such that if u, is a solution of (GL),
verifying (H1) and (H2), and if x, € Q2 and R > 0 are such that

0 < R < R, dist¥(x,, %), (VIL5)
and
E,(x, R) <1 |log 1%‘ (VIL6)
then, for ¢ < R/ 16,
1 . 3R
4> 5. VxeB<xo,T>, (VIL7)
and
~ R
Es <x09 5) < C(x05 R)9 (VIIS)

where C(x,, R) is a constant depending on x,, R, Q, X, M, and C,, but not
on e.

Proof. Let K and a be the constants in Theorem 2 bis. Let #; > 0 be
such that

1-Kns =%.

The constant R, is choosen in such a way that, if x, and R satisfy (VIL.5),
then

R
7 <Inf{Ry, dist’(x, D)}, (VIL9)

for every x € B(x,, 3R), where R, is the constant in Lemma II.3.
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If x € B(x,, 2X), then B(x, %) = B(x,, R) and E,(x, ¥) < E,(x,, R), i.e.
E, <x, g) <4Y2E (x,, R).
If u, verifies (VIL.6), it follows that
E, <X, g) <4V %,

<2'4N_2;70<

log %‘ <4¥7n, <

4
log £‘+ [log 4|>

o 4e
R

>, (VIL10)

since ¢ < &. Choose 77, = 2-4"~?y,, so that (VIL.10) yields

~ R
Es xaz <771

In view of (VIL.9), we may now invoke Theorem 2 bis to assert that

1048
gR'

lu, ()] > 1K =3,

i.e. (VIL.7) is established. 5
We turn next to (VILS). Since |u,| > 1/2 on B(x,, 3X), we may write

. . x 3R
U, = p, CXp(l(pg) in B Xo05 T >

where p, =|u,|, and where the real-valued function ¢, is defined on
B(x,,3%) up to an integer multiple of 2z. We may therefore impose the
additional condition

1
m[é(m,ﬁ) (S [0, 27'[) WIIll)

By (7) in the Introduction we have, on the other hand,

N
f, ) Vo |7 +|Vp|”<C, Vi<p< o1’ (VIL12)

B(xo, T

where C, does not depend on . As already seen, ¢, verifies the equation

./ 3R
div(p2 Vp,)=0 inB (xo, T)’ (VIL13)
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which is uniformly elliptic on B(x,, k), since p?>1/4. We may now
invoke standard elliptic theory to assert, in view of (VIIL.11), (VII.12), and
the fact that

3R
V1 ,(x)] < C(xo, R) 0nB<xo,T>mOQ,

by (H2), that we have the stronger H' bound on the smaller domain
B(xO’% )

J i, 2, IVl < o, B, (VIL14)
B(xo,

where C(x,, R) denotes a constant depending on x,, R, 2, 2, M, C,, but
not on ¢&.
Finally, we turn to p,. recall that p, verifies the equation

1
—dp. +p, |V¢£|2=;pe(1—p§)- (VIL15)

Let { be a smooth function on RY such that supp { = B(x,, %), { >0, and
{=1o0n B(xo, ). We multiply equation (VIL 15) by (1—p,) ¢ and integrate
on B(x,, > ) (note that 1 —p, =0 on 02 N B(x,, °X)). We obtain

1
I, Sx)[w i —”f(s ) (145 )]c

<[\ IVRP L+l VI =p0). (VIL16)

XO 8

Therefore we deduce, by (VII.14) and (VII.12),

f IVp, |2+ L4 p)2<C(x0,R) (VIL17)
B(xp, 2)

Combining (VIL17) and (VIL14) we obtain (VILS).

VIII. CONVERGENCE OUTSIDE THE SINGULAR SET &

VIIL.1. Extraction of Subsequences: u, and u, Are Born!

In the previous sections, we established the following bound, for solu-
tions u, of (GL), verifying (H1) and (H2):

N

L <
L} Vul?<C,, forany 1<p< ——. (VIIL1)
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We emphasize once more that the constant C, depends on p, Q, X, C; and
M,, but is independent of ¢ and u,. By assumption (H1), we have the
obvious bound

(1) < M,, (VIIL.2)
2 |log ¢
whereas, by (H2), we have
N
f IVrgl”<C,, forany 1<p< —. (VIIL.3)
1) N-1
Set
_e(u,)

* " loge|’

In view of inequalities (VIIL.1) to (VIIL.3), given any sequence &, — 0, we
may extract a subsequence (still denoted ¢,), such that

N
u, —~u, InW-(Q), forany 1<p< o1 (VIIL4)

N
g, — & InWhP(0R), forany 1<p< o (VIIL.5)

and the convergence is in C'(K) for any compact subset K of 02\ X;
U, = U in the weak * topology of .#(Q)=[C(2)]*, (VIIL6)

in other words

[ @@~ ] mt WeC@.

Set & = supp Us.

In the above convergences, u, denotes a map belonging to W?(Q, S')
(ie. |us|=1 ae.), for any 1< p<4~;, g« belongs to W'2(0Q2,S") N
C'(0Q2\2Y), for any 1 < p <+~ and p, is a bounded positive measure on
Q. Note that by the trace theorem,

Uy = gy on 012, (VIIL.7)
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and passing to the limit in the equation
div(u,, x Vu, ) =0 in Q,
we deduce

div(u, x Vu,) =0 in Q. (VIIL.8)

VIIL.2. & has N —2 Hausdorff Dimension

The main result of this subsection is

THEOREM VIII.1. We have
HVN L)< +o0. (VIIL.9)
The main ingredient in the proof is the following

ProposiTioN VIIL.1. Letx, € Q, R> 0, such that0 < R < R, dist*(x,, X).
Assume

#a(B(xo, R)) <1oRY, (VIIL10)
where n, and R, are defined in Proposition VII.1. Then we have
. R . R _ _
y*<B<xO,E>>=O, ie. B<x0,3>c9\9’=9\supp,u*.
(VIIL.11)

Proof. 1t follows from (VIIL.10) that there exists some 7, € N such that
for n = n,

E, (x0, R) <1y , (VIIL12)

€
log %
og o
and therefore by Proposition VI.1 we obtain (for n > n,)
E, (xo, R) < C(xo, R). (VIIL13)

Dividing (VIIIL.13) by |log &,|, (VIII.11) follows.

Proof of Theorem VIII.1 completed. We must prove that there is a con-
stant C > 0 such that for any 6 > 0, & is covered by a finite number v; of
balls of radius d, such that

v 0N 1< C. (VIIL14)
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Let {x;},., be a family of points in Q such that
o 0 .,
B Xis 5 N B X5 = for i#j, (VIIL.15)
Q<) B(x;, ). (VIIL.16)
iel
In view of (VIIL.15), we have
#1 < Co", (VIIL.17)
where C depends on Q. Next let J < I be defined by
J = {l € Ia )u*(B(xt’ 25)) > ”06N72}5

where 7, is defined in Proposition VIIL.1. Since by (H1) 1,(Q) < M, and
since a point in Q may belong to at most K different balls B(x;, 2d) (where
K e N is a constant depending only on N), we have

#J < KM,6*". (VIIL18)

On the other hand we claim that

supp ux < () B(x;, 6). (VIIL.19)
ieJ
Indeed, if i ¢ J, then p,(B(x;, 29)) <7,0" "> and therefore by Proposition
VIII.1, we obtain u,(B(x;, 6)) =0, so that

B(x,,0) = Q\supp uy, for i¢J,

and (VIII.19) follows.

Combining (VIII.18) and (VIIIL.19), we obtain (VIII.14) with v; = #J and
the proof of Theorem VIII.1 is completed.

We close this subsection with an additional remark which will be crucial
in Section IX.

ProrosiTioN VIIL.2. For x € Q, the function

I CCN)

rN—2

is nondecreasing. Set

. B(x,r
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Then
O.(x) =1, forany xe & n Q.

Proof. The first assertion is a straightforward consequence of the
interior monotonicity formula, whereas the second assertion follows
directly from Proposition VIII.1.

VIIL.3. Convergence on Q\ &

In this subsection we prove

TueorReM VIIL.2. u, € C*(2\ %) and for every ball B(x, R) = Q\ & we
have u, = exp i@y, where @, is harmonic.
Moreover, for every compact subset K of Q,

U, — Uy inCKK), VkeN,
l_lue |2 2 . k
—=— = |V, inCK), VkeN.

n

Proof. Let xeQ and 6>0 such that B(x,20)=Q\% and 26 <
R, dist?*(x, ). Then u,(B(x, 26)) = 0 and by Proposition VII.1

E, (x,0)<C(x,0) VreN,
where C(x, d) is independent of ¢. By Corollary IV.1,
Uy = €XP iy in B(x, 0),
where ¢, is harmonic, and
U, — Uy in C¥ (B(x,d)), VkeN,
1|y, |*
1

- |Vu,|>  inCf (B(x,6)), VkeN.

n

The conclusion follows by a covering argument.

IX. PROPERTIES OF ¥ AND vy,

We finally complete the proof of Theorem 1 by the following result (see,
e.g., [Simon] for definitions of rectifiable set and stationary varifold).
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THEOREM IX.1. & is a countably #™ *-rectifiable set, and p, is a
stationary varifold in Q.

Remark IX.1. To be more precise, the statement of Theorem IX.1
means: & is rectifiable, and the varifold V, =V (¥, 0,) (see [Simon],
Chapter 4) is stationary.

Proof. Both statements are an immediate and direct consequence of the
analysis carried out in [ Ambrosio-Soner] in the parabolic case (any solu-
tion of (GL), is of course a stationary solution of the corresponding para-
bolic equation). In their proof, they made use of an additional assumption
on O, (Condition (1.4) there). This assumption is precisely the one estab-
lished in Proposition VIIL.2, and is therefore verified by solutions of (GL),
satisfying (H1) and (H2).

Comment. Here we sketch some of the main ideas in the proof in
[ Ambrosio-Soner], applied to the elliptic case considered here.
The starting point is the identity

f <ee(ug)5,»,»—a”” a”‘9>6Xi—0, VX e[Cl(R)]Y. (IX.1)

3% % ) ox

This classical identity (see, e.g., [Hélein]) expresses the fact that the stress
energy tensor field for solutions u, to the Ginzburg-Landau equation is
divergence free.

Set

1 Ou, Ou,
flog ¢ <es(”e) e ax,»>'

Note that ;; , is a symmetric matrix with trace larger than (N —2) u,, and
a little linear algebra shows that its eigenvalues are less or equal to ,.
Moreover,

Xij, e

oy < N, (IX.2)

ij, &
Extracting possibly a further subsequence from &, we may then assert that

®; ., = ®%; « in the sense of measures.

ij, &n
In view of (IX.2) we have |a;; «| < Ny, therefore we may write

o x(x) = A (x) ps for p, a.e. xe 8,
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where the matrix A4,,(x) is symmetric, with trace larger than N—2 and
eigenvalues less or equal to one. Passing to the limit in (IX.1) we obtain

jA,,(x) d,u*(x) 0 VXe[ClQ)I". (IX.3)

The crucial point is to show that the matrix 4,;(x) represents the orthogo-
nal projection on a (N —2)-dimensional subspace P, of R". By a blow-up
argument (see Theorem 3.8c), Lemma 3.9 and Remark 3.10 in [ Ambrosio-
Soner]), using the fact that @,(x)>#, on &, one concludes first that
A;;(x) has at least two eigenvalues equal to zero. Then, since as already
observed the trace of A4;;(x) has to be larger than N —2 and its eigenvalues
do not exceed 1, one deduces that 4,;(x) has precisely N —2 eigenvalues
equal to 1 and two eigenvalues equal to zero. This means that 4,;(x)
represent the orthogonal projection on the space P, spanned by the eigen-
vectors corresponding to the eigenvalue 1. Hence P, and u, define a vari-
fold V,. Formula (IX.3) asserts precisely that the first variation of V,
vanishes, i.e. V, is stationary.

Next we invoke a classical theorem in [Allard] (see also [Simon],
Theorem 42.4) which asserts that a varifold having locally bounded first
variation (in particular, a stationary varifold) and positive density is recti-
fiable. In our case the positive density of V, follows directly from Proposi-
tion VIIL.2. Therefore & is rectifiable, P, is the approximate tangent plane
to L atx,and V, =V (¥, 0,).

Remark 1X.2. Stationary varifolds are an extension of the notion of
minimal surfaces. However, unlike minimal surfaces, they might have
rather singular behavior. It is generally conjectured that for an m-dimen-
sional stationary varifold the singular set has null #” measure.

Remark 1X.3. In case u, is minimizing for the Ginzburg-Landau
energy it is proved that @, is an integer multiple of 7 and & is area-mini-
mizing (see [Lin-Riviére 1], [Sandier], [Jerrard-Soner], [Alberti-Baldo-
Orlandi]).

APPENDIX

A. Elliptic Problems Involving Differential Forms

A.1. Basic Definitions

We will follow here essentially the presentation of [Iwaniec, Scott,
Stroffolini] and [Giaquinta-Modica-Soucek]. Let N e N and /e N, we
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denote by A'RY the set of /-covectors on RY. If I = (i, ..., i;) is an ordered
l-uple, 1 <i, <i, < --- <i; <N, we set
dx; =dx; A - ndx;, .

i
The set A(I, N) of all distinct /-uples I yields a basis of A'R”", so that we
may write an element a of A'R” as
a= ) adx,
IeA(l,N)
where a; € R. A canonical scalar product on A'R” is defined as
a,b)= Y ab,.
IeA(l,N)
Recall also that the Hodge star operator *
*: A'RY > AVIRY
is the linear operator defined, for a € A'R” by
ane=Cka, @y dx A --- Adxy,
for any ¢ € AV 'R". In particular
*l=dx A Adxy *dx A Adxy =1
and
*ook = (—1) VD Id v (A1)
Since for @ and b in A'R”, {a, b)> = {(ka, %b) it follows that
ankxb=<La,bydx, A Adxy.

We turn now to differential forms. Let © be a smooth domain in R”.
A differential /-form on Q is a distribution on Q with values in A'R”".
Therefore, every /-form w on 2 may be written as

ox)= Y o/x)dx, (A.2)

IeA(l, N)
where the coefficients w,; are distributions in 2'(22). We will denote
2'(A'Q) the set of I-forms. Similarly we denote C®(A'Q) (respectively,

C>(A'Q)) the set of [-forms with smooth (respectively, smooth with
compact support in Q) coefficients in €.
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If «, B are two I-forms in C(A'Q)we set

(o, B> = L} (%), B(x)D> dx, - dxy = L} A AKp. (A.3)

Clearly {, ) defines a scalar product on C?(A4'Q) and we extend its defini-
tion by density to various situations, for instance aeC*(A'Q), e
D'(A'Q)...

With these notations the exterior differential d: 2'(A'Q) - 2'(A'+'Q) is
expressed, if w is given by (A.2), by

N
do(x) =Y, < > dek/\dx,-l/\--'/\dx,-,)

k=1 \1<ij<--<ij<N 0xy,
If v, € 2'(4"Q) and w, € C*(A"2Q), then we have the Leibnitz rule
d(w; Awy) = dw, Aw, +(—1)" 0, Adw, . (A4

The formal adjoint of d, for the scalar product given by (A.3), is the
Hodge-codifferential d*, defined by

d* = (=) kdk: '(A''Q) - 2'(A'Q),
so that if x e C*(A'RY), B e CZ(A''RY)
{da, B> =<a, d*B). (A.5)
The operators d and d* enjoy the important properties
dod=0, d*od*=0.
The Laplace operator for forms 4 is defined as
—A=dd*+d*d: 2'(A'Q) - D' (A'Q).

If w is given by (A.2), then 4 expresses in cartesian coordinates

Aw = D Aw dx; A+ Adx (A.6)

1<ij<--- < <ii<N

iy iy i -

Finally, we define the gradient Vo of an /-form w by

0 0
Vo=(2 . 22 \cr94)7",
0x, Oxy
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where fori=1,..., N

ow 0w, .,
—= —dxil/\--~/\dxil.
0x; 1<ij<--<i<N 0x;

If « and f are in C*(A'Q) we set

(Va, VB = 2 <a°‘ aﬁ>

> Ox

If o and B belong to C2(A'Q) we deduce from (A.5) that

- <AOC, ﬁ> = <d0(, dﬂ> + <d*0(, d*ﬂ>9

whereas we deduce from (A.6) that

—<AOC, ﬁ>=_ZI: <Aa‘1’ ﬁ1>=ZI: <V0(1, Vﬂ1>=<VOC, Vﬂ>

Hence, we obtain

{da, dfy+<{d*a, d* Y ={Va, V). (A7)

A.2. Restrictions to the Boundary

Since 2 is assumed smooth, near every point x, € 022, we may construct
a local system of coordinates (X, ..., Xy) such that ¥y =0 on 922 and such
that the curves {% =¢;,i=1,..., N—1} are orthogonal to 0. Every dif-
ferential form w € C*(A'Q) can therefore be written, in a neighborhood of
Xy, a8

A - ANdX

o= Y @, ., dx; -

iy i1
1<ij<---<ii<N
We decompose w (in the neighborhood of x;) as
w=wt t+wy,

where

w+(x)= D @y, gy ARy A - AR

1<ij<---<ij<N

wy(x)= Y By o ARy A ARy
I<iy<---<i=N
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This decomposition does not depend on the specific choice of coordinates
(X4, ..., Xy). Note that on 0Q2

(dw); =d(w+),
and in particular, if w =0, then (dw) =0.

Orienting the surface 0Q2 according to the outward normal, Stokes
formula (i.e., integration by parts) gives

j do={ w-. (A.8)
Q 2

Next, we set
C%(A'Q)={we C™(A'Q), v =0o0n dQ}.

Using integration by parts one may prove that relation (A.6) extends to
forms in C%2 (A'Q), that is

LEMMA A.l. Let o and f be two I-forms in C% (A'Q). Then we have the
identity
da, dBy+<{d*a, d*f) = (Va, V). (A.9)

A straightforward, yet important, consequence of Lemma A.l is the
following:

COROLLARY A.l. Let we C(A'Q) such that w verifies the system of
first-order equations
do=0 inQ (A.10)
d*w=0 inQ (A.11)
wr =0 on 09Q.

Then w =0 in Q.

Remark A.1. Inthecase N=2,/=1 we have w = w, dx, + v, dx, and
(A.10), (A.11) become

dw, 0w, 0w, 0w,

2 220

ox, 0Ox, ox, | 0x,
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We recognize above the Cauchy—Riemann relation for @ = w, —iw,, that is
the previous relations can be rephrased as

0d

=0
0z

i.e., @ is holomorphic.

Remark A.2. In analogy with the previous situation, solutions to
(A.10) and (A.11) are called harmonic forms. Note that a harmonic form w
verifies 4w = 0, but the converse is not necessarily true, i.e. there are forms
verifying 4w = 0, but not (A.10) or (A.11).

A.3. Sobolev Spaces
Let 1 < p < +o00. Let w € 2'(A'Q) be an integrable form. For x € Q, set

|eo()]* = {oo(x), (x)) =; @7(x),

and let
LY (A'Q) = {we D'(A'Q),st. || e L (Q)},

equipped with the L? norm

ot = (J, o)

Similarly, we define the Sobolev space W 2(A'Q)
W (A'Q) = {we LY (A'Q), Vo € [LY(A'2)]1"},
equipped with the norm
leoll1.r = lleollfr + I Veoll o
Finally, we set
Wh2(A'Q) = {w e W"?(A'Q), v+ =0}.
The above spaces are all Banach spaces. For p =2 they are Hilbert spaces,

in particular W'2(A'Q) (respectively, W4*(A'Q)) is a Hilbert space for the
scalar product

o, fr1 =<, fy+<Va, VB).
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The standard density results of smooth functions in Sobolev spaces extend
to Sobolev spaces for forms, in particular we have

LEMMA A.2. C®(A'Q) (resp. C2(A'Q)) is dense in WhP(A'Q) (resp.
W (AQ))

Likewise, Poincaré inequality holds for the space W 7(A'Q). We have

Lemma A.3. If Q is bounded and smooth, then there exists a constant C,,
depending only on Q and p, such that for any w € W47 (A'Q),

lollr < C, Vool o - (A.13)
In particular, || || ; , defined by
loll+1,= Vol  YoeWi(A'Q)

defines a norm on W 7 (A'Q) which is equivalent to || ||, ,.
In the case p =2, since C% (A'Q) is dense in W42(A'Q), (A.9) still holds
for « and B in W%?(A'Q2) and therefore

IVallZ> = lldallZ> + ld*allz2,  Voe WH(A'Q). (A.14)

A.4. A Second Order Elliptic Equation: Existence, Uniqueness

In the next sections we will often have to deal with the following situa-
tion. Let 1<I/<N, we L¥(A'Q) and Ae L} (A'~'0Q). We consider the
elliptic problem

—Mp=w nQ (A.15)
vr =0 on 0Q (A.16)
@y =4 on Q (A.17)

Clearly, (A.16) corresponds to a Dirichlet type boundary condition,
whereas, as we will see in a moment, (A.17) corresponds to a Neumann-
type boundary condition.

First we will prove that this problem possesses a unique (weak) solution
(in W42(A'Q)). For this purpose, we first derive its variational formula-
tion.

LemmA A4. Assume u and A are smooth. Then y € C% ({1’.(_2) is a solu-
tion to (A.15), (A.16), (A.17) if and only if for any & € C% (A'Q) we have

dy, A& +<d™Y, d*E) = o, f>—fm ANCKY) T (A.18)
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Proof. As usual, we multiply Eq. (A.15) by ¢ and integrate by parts.
We give a few details of the computations in order to illustrate the different

operations we have introduced so far.
Since —A4 =dd*+d*d, we have to compute {dd*y, &> and {d*dy, &).
We have by (A.4)

Kdd*y, & = fﬂ dd*y A kE = fﬂ d(d* W A xE)— (=1)! d*Y Ad(*E).
By Stokes formula

[ d@yn*)=[ @yrxd)r = @) nx)-

= [ AnxO)-.

On the other hand, since % = (—1)"“~"1d,
j d*y Ad(kE) = (—1)/=D f d*y A kxd(kE)
Q Q

= (=)D [ Y Ax(=D)M e = (—1)' (a7,
Q
Combining the previous identities we obtain

dd™, & =<d™Y, d*f>+jm ANKE) 7.

Similarly, using the fact that £+ = 0 on 0Q2 we obtain

Kd*ay, & =<dy, dS),

and equality (A.18) follows.

In view of (A.18) and of the density of C% (A'Q) in W4*(A'Q) we will
say that y e W42(A'Q) is a weak solution of (A.15) to (A.17) if and only if
(A.18) holds for any ¢ e W4*(A'Q). Applying Riesz theorem together with
Lemma A.3 and equality (A.4) we obtain

PROPOSITION A.l1. Forany w e LY(A'Q), A € L}(A'~'0R) equation (A.15),
(A.16), (A.17) possesses a unique weak solution in W4*(A'Q).

In order to see that the standard elliptic theory (for functions) applies to
our problem, we will discuss in the next subsection the nature of the
boundary conditions (A.16), (A.17).
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A.5. Comments about the Boundary Conditions

In order to understand the nature of the boundary conditions we will
consider first the case where Q is locally a half space, ie., 2=RY =
RY~!'x [0,+00).

(A) The case Q=RY =R""'x[0,+00) = {xy =0} (locally). Let 1<
I<N-1 and let A(l, N) be the set of ordered [-uples. We decompose
A(I, N) into two disjoint subsets A'(/, N) and A*(/, N), where

A, N)=A(I, N-1)={(i, ..., i;) e A(I, N), i, < N—1}
and
A*(I, N)={(iy, ...,i;) € A(I, N), i, = N}
= {(il, cees il—ls N)a (il, cees il—l) € A(l_ 15 N— 1)}9
so that

AL, N) = A1, Ny U AX(I, N), A, N)n A%, N) = &.

For every /-form iy on Q we have in coordinates

= Z Y dx;.

IeA(l, N)
With these notations we obtain
Yr= Y WYidx, Yy= ) Yrdx.
IeA'U,N) IeA%1,N)
Condition (A.16) can therefore be rephrased as the Dirichlet condition
U (x)=0 ondQ, VIed'(,N),
or
Vi ., (x)=0 onoQ, if I1<ij<---<i,<N-1

Likewise we may express (A.17) in coordinates to obtain (the computations
are slightly more involved) the Neumann boundary condition

alPI’, N _ alpl’, N

Oxy on

—e A, ondQ, VI'eA(l-1,N—1),
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where ¢, = +1, that is

a‘/"l—'l—lN: +4,

an ]y ij—1 2 V1<il< e <i1—1<N_1‘

In other words, we see that each component y, verifies one of the standard
elliptic problems, namely —Ay, =0, in Q, Y, =0 on 08, if I € A'(I, N),
—MAY; =0, in Q,

oy
% =&, Ay on 022,
if I =(I', N) € A%(1, N). Hence standard elliptic estimates for the Laplacian
(with either Dirichlet or Neumann boundary conditions) apply to .

(B) The general case. 1In case Q is a smooth bounded domain, we may
reduce the study to the previous case introducing, locally near the bound-
ary, curvilinear coordinates as in Section A.2. The first step in this classical
construction is to cover  (which is compact) by a finite number m of balls
B, such that, for some number m, <m we are in one of the following
situations:

G) ifk<m,, B,cQ
(i) if k> my, B, n Q is diffeomorphic to B* = B;(0) n RY.

Next let {y;}1<x<m be a partition of unity subordinate to the covering
{Bi}1<k<m of 2, 1.e. such that y, € CZ(By,), x, =0 and

Y =1 Q.
k=1

In case (i), i.e. k>m, we may construct a C* diffeomorphism
¢,: B* - B, n 2 such that the following conditions hold
¢({xy =0} N B)) =0Q N B,,

(A.19)
¢ (0B, N {xy >0})=0B, N Q,

on{xy =0} N B, aqaﬂ,;(x) is orthogonal to 02 N B,,  (A.20)
N
6¢k(x)’ 06:(x) =0 on{xy =0} nsupp y; ViI<i<N-1,
Oxy ox;

(A.21)
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where <, > denotes the standard scalar product on R". This last relation
expresses the fact that the normal to 02 be pulled back by ¢, to a normal
vector on 0B™, on {xy =0} N supp y,.

Let Y, = y, ¥, so that yy =Y 7'_; ¥,. Note that

MW= o AW+ V- VY +y Ay,
ie.,
M = e+ V-V +y Ay, in Q.
We distinguish now the cases (i) and (ii).
Case (1), i.e., k<m,. We obtain the elliptic problem for

{A‘Pk = 10+ V- VY +ydy, inQ

A.22
v, =0 on 012, ( )

i.e., a standard Dirichlet problem.

Case (i), i.e., k>m,. Here the analysis is slightly more involved. We
consider the pull-back y/, on B* for y, by the diffeomorphism ¢,, that is

Vi =9¢r(p)  inB* (A.23)
Note that one recovers easily , from , by the inverse pull-back
Vi = @) W), (A.24)

so that, since ¢;' is smooth, any estimate on yJ, gives a similar estimate for
V., and we may work on B*. We consider also the pull-back g*= (gf.‘j),
1<i,j< N of the standard euclidean metric (J;;), 1 <i,j< N on B,nQ
by ¢, i.e.

¢ = <% %> in B

Y Ox;” 0x;
Let y* = (y§;) be the inverse matrix of (g};), and let
n* = |det(g})|-

The Laplace operator 4.+ with respect to the metrics g is defined as

0 0
18- (B vrecs,

i<j i ]
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that is, 4.« f is an elliptic operator of the second order in divergence form
with smooth coefficients.

We are now able to write the equations for .. As usual, we use coordi-
nates on B* and write

Vo= Y VY,dx, inB*
IeA(,N)
Then J, verifies
_Aglpl = [¢Z(ka+VXk VY + A1, in B*
Y, =0 on 0B* n {xy =0}

;=0 ifIeA(l, N—1)onB* n {xy =0} (A.25)
Ny
;’;W =epgul95(A)],  ifI'eA(—1,N—1),0on B* N {xy =0}.

N

Note that the last relation is in particular a consequence of (A.21), that is,
foreachI' e A(I-1,N—-1),I' =(iy, ..., i{;_;), wehave Vs =1, ..., [ —1,
gv=0,7,y=0 on suppy n{xy=0}

and

VNN =g17/}v~

We see that the system (A.25) is very similar to that studied in Section A 4.
Therefore standard elliptic estimates may be applied to assert higher
regularity results, for instance

LemMAa A.5. Let 1<p< +oo. If ueLP(A(Q), then y e W*?(4(Q)
and

Wllw2r < Cllpall e -

A.6. Estimates Involving L'-norms of the Data

We are going to establish in this Section, estimates a la Stampacchia for
problem (A.15), (A.16), (A.17) (similar estimates have been established in
[Baldo-Orlandi]). More precisely, we have the following

PrROPOSITION A.2. Let 1< p<yY;. There exists a constant C = C(p, Q)
depending only on p and Q such that, for any solution \y of problem (A.15),
(A.16), (A.17), we have

Wllwsr < CCp, D)(Nlulle (2)+ 114l (0£2)).
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The proof of Proposition A.2 involves a duality argument of
Stampacchia. More precisely, we are going to use in the proof the follow-
ing:

LeMMA A.6. Let q=2 and let h=(hy, ..., hy) € [LY(A'Q)]". Assume

moreover that h has compact support in Q. Let { e W%*(A'Q) be the weak
solution of

N
0 .
AC=i§1 a_xlhl in Q2

{r=0 on 0Q (A.26)
(d*)r =0 on 09,
that is { e W4(A'Q) is the unique solution to the variational problem
N 0
J, @ ao+ @ ae =[ hvo=[ T hy
VEe W RI(A'Q). (A.27)

Then { € W49(A'Q) and there exists a constant C(q, Q) such that

1Zllr-e < C(g. £2) |1Alls -

We postpone the proof of Lemma A.3 and show how it implies Proposi-
tion A.2.

Proof of Proposition A.2. Let ¢> N be such that %+$ =1, let E=
[C2(A'Q)]". By density of CX(A'Q) in LY(A'Q) and by duality we have

VWl =sup{ [, v he Bl =1} (429

For he E, ||h||;« =1, let { be the solution of (A.27) and take £ = as a test
function in (A.27). This yields

[, <k Vo> = <dL dpy+<d T dmp.

On the other hand, taking & = { as a test function in (A.18) we are led to

[ <at.apy+<at.ayy =] O+ ANKD-.
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Combining the two equations we obtain

|, V=] O+ AnGRD). (A.30)

Since ¢ > N, W"4(A'Q) < L*(A'Q), and
1€l < C Kl
It follows from Lemma A.3 that
Il 2@y < C |AllLoe) = C,

hence ||{]|;»o) < C. Going back to (A.30) this yields

[, <t V> < Clloliio + 1Al 120

Equality (A.29) yields then the conclusion.
Proof of Lemma A.6. Since g = 2, it follows from (A.27) that (A.26) has
a unique weak solution { € W42(A'Q) with

1€l 2 < C NAll2 < C 1Al (A.31)

We use next the construction introduced in Section A.5B to reduce the
problem to a standard elliptic equation. For 1 < k < m we set

Ck = Xsz
so that (A.31) implies
1Sl < C llAlle VI<k<m.

We distinguish next two cases.

Case 1. k<m,. We may write {, =%+, where (! is the solution of
the problem

N 0Oh

AL = a

Gk =Xk Z:l ox,

=0 on dB,,

in B,

and (; is the solution of

ACllc =V Vi +Ged e in By
(=0 on dB,.
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Standard elliptic estimates yield

IC%N, 4 < C llAlle

and

”Cllc”zz < ”Ck”l,z <C ”h”L"-

In the case ¢ < 2* = 2, we have W*? <, W4 and therefore we are led to
1Skl < C |1Alle (A.32)

If g > 2* we obtain the same conclusion using a bootstrap argument.

Case 2. k>m,. In this case we consider Z. = ¢*(,) and we write the
equations for {, (see (A.25)). Arguing as before we obtain

1Skl < C l1All.e,

Since ¢, = (¢~)* ({,) we deduce similarly the bound (A.32).
Since (A.32) holds for any k, the Lemma is established.

A.7. Elliptic problems on RY

Let RY = RY~!'x (0,+0). In the proof of Theorem 3 bis (y-ellipticity at
the boundary) we use the following

PropoSITION A.3. Let w e L'(A'RY) with compact support A" € RY. Let
¢ be a solution of

—dp=w in RY
¢+ =0 on R""'x {0}
d*$)+ =0  onR¥'x{0}.
Assume moreover that |¢(x)| — 0 as |x| = +o0. Then, for I € A'(I, N),
¢ =Gp *wy,
and for I € AX(l, N),
¢ =Gy *wy,

where G}, (respectively, G3,) denote the fundamental solution of — A on RY
with homogeneous Dirichlet (respectively, Neumann) boundary conditions on
ORY = R""'x (0, +0). In particular, Vx € RY,

ool <2e, [ 1AB)_g,

Nlx—yV 2
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A.8. Hodge—de Rham Decomposition

The Hodge-de Rham decomposition asserts that every /-form u on the
simply connected domain £ can be decomposed as

u=dH+d*®,

where H is a (I —1)-form on 2 and @ represents a (/+ 1)-form. In general
there is no uniqueness of such a decomposition. We may therefore impose
auxiliary conditions, in particular on the boundary. We have

PROPOSITION A4. Let 1 <p< 400, and pe L (A'Q). There exists a
unique H e Wh?(A'~'Q) and a unique ® € W1 ?(A'*'Q) such that

n=dH+d*® inQ,
d*H =0, dd=0 in Q, (A.33)
H; =0, b =0 on 09Q.

Moreover there exists a constant C > 0 such that
1 llgv-r + 1 Pllwrr < llell e -
Proof. (A) Existence. Let i be the solution of

—MAy=yu in Q
Yy =0 on 0Q
d@y): =0 on 0Q.

By Lemma A.5 we have y € W*2(A'Q). Set
H=d%
®=dy.

Since Ay =d(d*y)+d*(dy) = dH +d*® we verify that H and & satisfy
(A.33).

(B) Uniqueness. By linearity it suffices to verify that if H and @ verify
(A.33) with =0, then H =0, ® =0.
If 4 =0 we have

AH = d*dH = d*(dH +d*®) = d*u =0,
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so that A verifies
—4H =0 in Q
H: =0 on 0Q2
(d*H); =0 on 0Q.
Hence H = 0 by Proposition A.1. Similarly one proves that @ = 0.

A.9. Hodge—de Rham Decomposition on RY
In this subsection, we consider the case where u is in 2'(A'R") with
compact support " in RY, i.e. ue &'(A'R").
Consider the /-form y defined by
Yy=Gx*yu, (A.34)

where

1
G=cy x

w
is the fundamental solution of — 4 in RY. By construction, we have
—Ay=u, (A.35)
ie.,
d(d*y) +d*(dy) = .
We set as before
H=d%, D =dy in R”.

Note that, in view of (A.34), ¥, H, and @ are smooth on R¥\.#". We
obtain, therefore

PROPOSITION A.5. Let ue 2'(A'RY), with compact support A € RY.
Then there exist H e D'(A''RY), @ € '(A'*'RY), smooth on RY\ A" such
that

p=dH+d*®  inD'(A'R"),
d*H=0, db=0 in2'(A'RY).

Note that for the previous Hodge—-de Rham decomposition we have not
uniqueness, since ¥ is not the unique solution to (A.35).
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In order to obtain uniqueness we must impose conditions at infinity (i.e.,
as |x| » +o0) on H and @. Since in this paper we only have to deal with
functions, we restrict our attention to the case where u is a bounded
measure. We have

PROPOSITION A.6. Let pne2'(A'RY) be a bounded measure with
compact support A. Then there exists a uniqgue H € 9'(A'"'RY), a unique
@ e D'(A*'RY), smooth on RN\ A", such that

u=dH+d*® in 2'(A'RY),
d*H =0, dd=0 in 2'(A'RY),
and there exists R >0, K > 0, such that
IHX)| Ix"'<C, @) "<, for |x|>R. (A37)

Proof. Clearly H and &, given by (A.36), verify (A.37). For the
uniqueness it suffices to prove that the solution H,, @, to the homogeneous
problem

dHy+d*®, =0, d*H =0, and d® =01in RY,
verifying (A.37) are H, =0, @, = 0. In view of (A.38),
AH, =0, AD, =0,

and the conclusion is therefore a classical result for harmonic functions.
Finally, we have

PrOPOSITION A.7. Let e D'(A'RY) be a bounded measure with com-
pact support A", such that

d*u=0 in 2'(A'RM).
Then, there exists a unique @ € D'(A'*'RY), smooth on R¥\ A", such that
u=d*d in RY,
dd=0 in RY,
and
D) |x|Y ' >0  as|x| > +oo.

Proof. Tt suffices to check that H, @ given by Proposition A.4 are such
that H = 0: this is a consequence of the fact that AH = 0.
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For (A.40), note that, integrating (A.39), we obtain
L 1=0. (A.41)
R
On the other hand, by (A.36),

¢=d(G*,u)=d<z (G*u,)dx,)

oG
=§ E dx; ndx;.

j

The conclusion (A.40) then follows from the fact that |§§| |x|¥~! remains
bounded as |x| - + o0, combined with (A.41).

A.10. Hodge-de Rham Decomposition on RY

The previous results can be adapted with minor changes to the case
Q=RY=R"'x(0,+0). In Section III.2 (y-ellipticity at the boundary),
we use the following

ProOPOSITION A.8. Let pe 2'(A'RY) be a bounded measure on R with
compact support A" in RY. There exists a unique H € LL, (A" 'RY), a unique

loc

@ e L (A'RY), with |VH| € L*(RY), |V®| € L/ (RY), for any 1 < p <3,

loc

such that
u=dH+d*® in RY
d*H=0, do=0  inR"
H; =0, &:=0 ondR}=R""x{0}.
Moreover, He C*(RY\ "), ® e C*(RY\ ), and
H) X< C, @)l IxY'<C,  if Ix|>R,

where R is such that #" < By and C is some constant depending on L.
Ifd*u=0then H=0, ie., u=d*®.
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