Homotopy classes in Sobolev spaces

Haïm Brezis

Proceedings of the Conference held in Taiwan on the occasion of the 75th birthday of Louis Nirenberg

Let M and N be two compact Riemannian manifolds. One of the central questions in Topology is the study of homotopy classes of $C^0(M, N)$, i.e. the connected (or equivalently path-connected) components of the metric space $C^0(M, N)$. In other words, homotopy classes are the equivalence classes corresponding to the equivalence relation: $f \sim g$ if there exists a path $h(t) \in C^0([0, 1]; C^0(M, N))$ connecting f to g, i.e. $h(0) = f$ and $h(1) = g$. For example, when $M = N = S^n$, it is well-known that $f \sim g$ if and only if $\deg(f) = \deg(g)$.

Our aim is to present some new results from the paper H. Brezis – Y. Li [1] concerning the study of homotopy classes, when the space $C^0(M, N)$ is replaced by the scale of Sobolev spaces $W^{1,p}(M, N)$.

Throughout this note M and N are smooth, connected, compact, oriented Riemannian manifolds. We will always assume that $\partial N = \phi$ but M may or may not have a boundary; in particular the case where M is a domain in \mathbb{R}^N is of interest. The reader is encouraged to keep in mind elementary manifolds, such as spheres, balls and their products; the results are already of interest for such a simple situation.

Let us start with a simple observation about the scale $C^k(M, N)$ equipped with the metric
\[d(f, g) = \sum_{|\alpha| \leq k} \sup_{x \in M} d(D^\alpha f(x), D^\alpha g(x)). \]

In principle, for each k, one may introduce a new equivalence relation:
\[f \sim g \text{ in } C^k \iff f, g \text{ belong to the same path-connected component of } C^k \]
i.e. there exists a homotopy $h(t) \in C([0, 1], C^k(M, N))$ such that $h(0) = f$ and $h(1) = g$.

In fact such a notion has no interest because of the following "standard"

Lemma 1. Let $f, g \in C^k(M, N)$; then $f \sim g$ in C^k if and only if $f \sim g$ in C^0.

The proof consists of smoothing the given homotopy $h \in C([0, 1]; C^0(M, N))$. For this purpose we may assume that $N \subset \mathbb{R}^K$ is an isometric embedding. Then $\rho_\varepsilon \ast h$ does not take its values into N, but $\rho_\varepsilon \ast h$ is uniformly close to h as $\varepsilon \to 0$ (because h is continuous). And then one may project $\rho_\varepsilon \ast h$ back onto N for ε small.

As a consequence of Lemma 1 we see that the components of $C^k(M, N)$ shrink as k increase, but they "do not change their shape". By contrast, we will see that the situation is totally different in the scale of Sobolev spaces $W^{1,p}$.

1
Let $1 \leq p < \infty$ be a real number. Let M and N be as above and $N \subset \mathbb{R}^K$. The spaces $W^{1,p}(M, \mathbb{R})$ and $W^{1,p}(M, \mathbb{R}^K)$ are defined as usual and equipped with the standard norm $\|f\|_{W^{1,p}}$. Set

$$W^{1,p}(M, N) = \{ f \in W^{1,p}(M, \mathbb{R}^K); f(x) \in N \text{ a.e.} \},$$

equipped with the distance

$$d(f, g) = \|f - g\|_{W^{1,p}(M, \mathbb{R}^K)}.$$

As a metric space, $W^{1,p}(M, N)$ admits connected components and also path-connected components. We do not know whether they are the same. This boils down to

Open problem 1. Given $f \in W^{1,p}(M, N)$, can one find $\varepsilon > 0$ (depending on f) such that

$$d(g, f) < \varepsilon \quad \Rightarrow \quad g \sim f \text{ in } W^{1,p}?$$

Here we say that $g \sim f$ in $W^{1,p}$ if there is a path $h(t) \in C([0,1]; W^{1,p}(M, N))$ such that $h(0) = f$ and $h(1) = g$.

A simple but useful example is the case $M = N = S^2$ who’s study was initiated in Brezis–Coron [1].

Let us examine the space $W^{1,p}(S^2, S^2)$, $1 \leq p < \infty$, from the point of view of its components. One has to consider 3 different cases.

a) **Case $p > 2$.** It is not difficult to prove, following the same idea as in Lemma 1, and using the Sobolev imbedding,

Lemma 2. Let $f, g \in W^{1,p}(S^2, S^2)$; then $f \sim g$ in $W^{1,p}(S^2, S^2)$ if and only if $f \sim g$ in C^0. In particular, the homotopy classes of $W^{1,p}(S^2, S^2)$ can be classified using their standard degree.

b) **Case $p = 2$.** This is a very interesting case because it is a limiting case for the Sobolev imbedding. And $W^{1,2}$ is not contained in C^0, so that the standard notion of degree is not well-defined. One may nevertheless still define a degree. This was first done in Brezis–Coron [1] using the following strategy:

Step 1. If $f \in C^1(S^2, S^2)$ a well-know integral formula for computing the degree (going back to Kronecker) asserts that

$$\deg(f) = \frac{1}{4\pi} \int_{S^2} \det(\nabla f).$$

When $f \in W^{1,2}(S^2, S^2)$ the integral in (1) still makes sense because $\det(\nabla f)$ is a 2×2 determinant and $\nabla f \in L^2$. Unfortunately it is not clear that the right-hand side in (1) is an integer. For this purpose one relies on

Step 2. This is an important observation due to Schoen–Uhlenbeck [1]. If $f \in W^{1,2}(S^2, S^2)$, then $\rho_\varepsilon \ast f$ does not take its values into S^2. And $\rho_\varepsilon \ast f$ does not converge uniformly to f (as $\varepsilon \to 0$) (otherwise f would be continuous). However one can prove that $|(\rho_\varepsilon \ast f)(x)| \to 1$
uniformly in x. This is a consequence of the fact that $f \in VMO$ (see Brezis–Nirenberg [1]) which in turn follows from of Poincaré’s inequality

$$\int_B |f - \frac{1}{|B|^{1/2}} \int_B f| \leq \int_B |\nabla f|.$$

As a result one may consider

$$f_\varepsilon(x) = \frac{1}{4\pi} \int_{S^2} \det(\nabla f)$$

we conclude that

$$\int_{S^2} \det(\nabla f) \in \mathbb{Z}.$$

We now set, for every $f \in W^{1,2}$

$$deg(f) = \frac{1}{4\pi} \int_{S^2} \det(\nabla f).$$

It was later observed in Brezis–Nirenberg [1] that $deg(f)$ can still be defined for every $f \in W^{1,2}$ without using formula (1), only Step 2. Indeed, if $f \in W^{1,2}(S^2, S^2)$ consider f_ε as above (for $\varepsilon < \varepsilon_0$). Then $deg(f_\varepsilon)$ is independent of ε, for $\varepsilon \in (0, \varepsilon_0)$, because one may use ε itself as homotopy parameter (or connect f_{ε_1} and f_{ε_2} via the homotopy $h(t) = f_{\varepsilon_1 + (1-t)\varepsilon_2}$). We take as definition of $deg f$, the integer $deg(f_\varepsilon)$, (for $0 < \varepsilon < \varepsilon_0$).

Proposition 1. Assume $f, g \in W^{1,2}(S^2, S^2)$. Then $f \sim g$ in $W^{1,2}$ if and only if $deg(f) = deg(g)$. Consequently, $W^{1,2}(S^2, S^2)$ still admits infinitely many homotopy classes and they are classified using degree.

c) Case $p < 2$. This case was not considered in Brezis–Coron [1]. But in Brezis–Nirenberg [1] we observed that no degree theory (in some reasonable sense) could be defined. Indeed the identity map can be homotopied to a constant map! This is done as follows. Fix any point $a \in \mathbb{R}^3$ with $|a| = 2$. Consider the path

$$h(t)(x) = \frac{x - \frac{t}{|x|}a}{|x - ta|}, \quad t \in [0, 1], \quad x \in S^2.$$

Clearly h is smooth for $t \in [0, 1/2] \cup [1/2, 1]$ and $x \in S^2$. The only difficulty occurs at $t = 1/2$ because $a/2 \in S^2$. However it is not difficult to check that $h(1/2) \in W^{1,p}(S^2, S^2)$ for every $p < 2$ and moreover

$$h(t) \in C([0, 1]; W^{1,p}(S^2, S^2))$$
for every \(p < 2 \). Finally it is clear that \(h(1) \) has degree zero, and thus it can be homotoped to a constant in the \(C^0 \) sense (and thus in the \(C^1 \) sense by Lemma 1, and hence in the \(W^{1,p} \) sense). Putting all this together we see that \(h(0) = Id \) is homotopic to a constant in every \(W^{1,p} \), \(p < 2 \).

We went one step further in Brezis–Li [1] and proved

Theorem 1. The space \(W^{1,p}(S^2, S^2) \) is path-connected for every \(p < 2 \).

We now have a full picture for \(W^{1,p}(S^2, S^2) \). When \(p < 2 \), \(W^{1,p}(S^2, S^2) \) consists of one piece. At \(p = 2 \), \(W^{1,2}(S^2, S^2) \) splits into infinitely many pieces. As \(p \) increases from 2 to \(\infty \), these pieces “shrink” but do not change their shape.

Exactly the same type of conclusion holds for \(W^{1,p}(S^n, S^n) \). When \(p < n \), \(W^{1,p}(S^n, S^n) \) is path-connected. At \(p = n \), a degree theory is well-defined, and thus \(W^{1,n}(S^n, S^n) \) splits into infinitely many pieces. As \(p \) increases from \(n \) to \(\infty \), these pieces shrink without changing their shape.

At this stage, one would be inclined to believe that this is a general phenomenon. When \(p < \dim M \), \(W^{1,p}(M, N) \) is path-connected. As \(p \) increases from \(\dim M \) to \(\infty \), \(W^{1,p}(M, N) \) admits path-connected component similar to the ones of \(C^0(M, N) \) and they shrink without changing their shape. The second assertion (for \(p \geq \dim M \)) is indeed true. However the first assertion (for \(p < \dim M \)) is totally wrong. This was first pointed out in a very interesting paper of Rubinstein–Sternberg [1]. Namely, some “topology” still survives for \(W^{1,p}(M, N) \) even when \(p < \dim M \). In fact \(W^{1,p}(M, N) \), may have a very rich structure from the point of view of homotopy classes when \(p < \dim M \). I will present later some remark examples.

Theorem 2. (Rubinstein–Sternberg [1]). Let \(M = \Omega = S^1 \times D \) where \(D \) is the unit disc in \(\mathbb{R}^2 \), i.e. \(\Omega \) is a solid torus in \(\mathbb{R}^3 \). Let \(N = S^1 \). Then any \(f \in W^{1,2}(M, N) \) admits a well-defined degree (stable under \(W^{1,2} \) convergence).

More precisely write

\[
f(x, \lambda) : S^1 \times D \to S^1
\]

then

\[
\varphi(\lambda) = \deg f(\cdot, \lambda),
\]

which is well-defined for a.e. \(\lambda \in D \), (since \(f(\cdot, \lambda) \in W^{1,2}(S^1, S^2) \) for a.e. \(\lambda \in D \)) is in fact a constant (a.e).

Remark 1. Is is quite surprising that a degree may still be defined even though \(p = 2 < 3 = \dim M \). I should point out however that the same conclusion fails for \(p \in [1, 2) \). Note that when \(p \in [1, 2) \) \(\varphi(\lambda) \) is still well-defined for a.e. \(\lambda \in D \). However \(\varphi \) is not constant in general.

Remark 2. The conclusion that \(\varphi \) is a constant may be related to a variety of results which have emerged in recent years in the work of Bourgain–Brezis–Mironescu [1] [2] (see also Brezis [1]) about conditions implying that a given measurable function is constant. Here is such a typical result.
Theorem 3. Let $G \subset \mathbb{R}^N$ be a connected open set and let $\varphi : G \to \mathbb{Z}$ be a measurable function. Assume that
\[
\int_G \int_G \frac{|\varphi(\lambda) - \varphi(\mu)|^p}{|\lambda - \mu|^{N+1}} d\lambda d\mu < \infty
\]
(any $p \geq 1$). Then φ is a constant (a.e.).

Here is an extension of Theorem 2,

Theorem 4. (Brezis–Li–Mironescu–Nirenberg [1]). Let $M = \Omega = S^n \times \Lambda$, where $n \geq 1$, and $\Lambda \subset \mathbb{R}^k$ is any open connected set with $k \geq 1$.

If $p \geq n + 1$, any $f \in W^{1,p}(M,N)$ has a well-defined degree. More precisely, write
\[
f(x,\lambda) : S^n \times \Lambda \to S^n,
\]
then
\[
\varphi(\lambda) = \deg f(\cdot,\lambda),
\]
which is well-defined for a.e. $\lambda \in \Lambda$ (since $p > n$), is in fact a constant.

Remark 3. Theorem 4 shows again that some topology still “persists” much below the critical Sobolev exponent $p = \dim M$. The condition $p \geq n + 1$ is usually much weaker than the condition $p \geq \dim M = n + k$, especially when k is large.

Going back to the study of the path-connected comments for $W^{1,p}(M,N)$, here is a complement to Theorem 4, which gives a complete classification of $W^{1,p}$ when the parameter space Λ is a ball.

Theorem 5. (Brezis–Li [1]). Let $M = \Omega = S^n \times \Lambda$ where $n \geq 1$ and Λ is the unit ball in \mathbb{R}^k (any $k \geq 1$). Let $f, g \in W^{1,p}(M,N)$. If $p \geq n + 1$, then $f \sim g$ in $W^{1,p}$ if and only if $\deg(f) = \deg(g)$ (where \deg is meant in the sense of Theorem 4). If $p < n + 1$, then $f \sim g$ in $W^{1,p}$, i.e. $W^{1,p}$ is path-connected.

At this stage we decide with Yanyan Li to initiate a general investigation of the homotopy classes of $W^{1,p}(M,N)$ for a general pair of manifolds M and N, and for a general $p \geq 1$.

Here is a first (somewhat surprising) result

Theorem 6. (Brezis–Li [1]) For any pair M and N with $\dim M \geq 2$ and for any $p \in [1,2)$, $W^{1,p}(M,N)$ is path-connected.

We also introduced in Brezis–Li [1] a concept which plays a very important role in describing the possible changes in homotopy classes for $W^{1,p}$ as p varies. Here it is.

Let $p > 1$. Let $0 < \varepsilon < p - 1$. Clearly
\[
W^{1,p+\varepsilon}(M,N) \subset W^{1,p-\varepsilon}(M,N).
\]
Given $f \in W^{1,p}(M,N)$, we denote by $[f]_p$ its homotopy class in $W^{1,p}$. We denote by $W^{1,p}/_p$ the quotient of $W^{1,p}$ by the equivalence relation $f \sim g$ (meaning $f \sim g$ in $W^{1,p}$).
Obviously, if \(f, g \in W^{1,p+\varepsilon} \) and \(f \sim g \) in \(W^{1,p+\varepsilon} \), then \(f \sim g \) in \(W^{1,p-\varepsilon} \). As a result we have a canonical map

\[
i_{p+\varepsilon,p-\varepsilon} : W^{1,p+\varepsilon} \rightarrow W^{1,p-\varepsilon}.
\]

Definition. We say that a change of topology occurs at \(p \) if for every \(\varepsilon \in (0, p-1) \), the map \(i_{p+\varepsilon,p-\varepsilon} \) is not bijective. We denote by \(CT(M,N) \) the set of \(p \)'s for which a change of topology occurs at \(p \).

If a change of topology occurs at \(p \), two things may happen, \(i_{p+\varepsilon,p-\varepsilon} \) is not injective or \(i_{p+\varepsilon,p-\varepsilon} \) is not surjective (or both!). Roughly speaking not injective means that there are 2 maps \(f, g \in W^{1,p+\varepsilon} \) such that \(f \) and \(g \) are not homotopic in \(W^{1,p+\varepsilon} \) while \(f \sim g \) in \(W^{1,p-\varepsilon} \).

In other words, one component of \(W^{1,q}(M,N) \) splits into two distinct components as \(q \) increases from \(p-\varepsilon \) to \(p+\varepsilon \). Another view point is to say that two distinct components of \(W^{1,q} \) have coalesced as \(q \) decreases from \(p+\varepsilon \) to \(p-\varepsilon \). This is a common situation, which we have already encountered above. For example a change of topology for \(W^{1,p}(S^2,S^2) \) occurs at \(p = 2 \), because \(i_{2+\varepsilon,2-\varepsilon} \) is not injective: any two maps \(f, g \in W^{1,2+\varepsilon} \) are homotopic in \(W^{1,2-\varepsilon} \), while they need not be in \(W^{1,2+\varepsilon} \) (unless their degree is the same).

On the other hand, the fact that \(i_{p+\varepsilon,p-\varepsilon} \) is not surjective means that a new component of \(W^{1,q} \) appears (out of nowhere!) as \(q \) decreases from \(p+\varepsilon \) to \(p-\varepsilon \). This situation is more unusual and it does not occur in the example \(W^{1,p}(S^n,S^n) \). It means that some map \(f \in W^{1,p-\varepsilon} \) cannot be homotopied in \(W^{1,p-\varepsilon} \) to any \(g \in W^{1,p+\varepsilon} \). In particular, such a map \(f \) cannot be smooth and it cannot be homotopied in \(W^{1,p-\varepsilon} \) to any smooth map –so it must have a rather “solid” singularity!

We may now reformulate Theorem 1 and Theorem 5 using the above notion.

Theorem 1’. We have \(CT(S^2,S^2) = \{2\} \) or more generally \(CT(S^n,S^n) = \{n\} \) for any \(n \geq 2 \).

Theorem 5’. We have \(CT(S^n \times \Lambda,S^n) = \{n+1\} \), where \(\Lambda \) is the unit ball in \(\mathbb{R}^k \) (any \(k \geq 1 \)).

We also observed in Brezis–Li [1] that a change in topology may occurs at several values of \(p \) – not just one, as in the above examples. Here is such a situation, with a “cascade of mergings”

Theorem 6. We have \(CT(S^1 \times S^2,S^1 \times S^2) = \{2,3\} \).

This is somewhat natural because we have here (at least), two invariants: write \(f = (f_1(x,y), f_2(x,y)) \) and set \(d_1 = \deg f_1(\cdot,y) \) and \(d_2 = \deg f_2(x,\cdot) \). Note that \(d_1 \) is well-defined and independent of \(y \in S^2 \) when \(f \in W^{1,p} \) and \(p \geq 2 \) (by Theorem 4), while \(d_2 \) is well-defined and independent of \(x \in S^1 \) only when \(p \geq 3 \) (again by Theorem 4). Some new invariants appear, as \(p \) increases from 1 to \(\infty \), when crossing the values \(p = 2 \) and \(p = 3 \).

We also made in Brezis–Li [1] two conjectures:
Conjecture 1. $CT(M, N)$ consists only of integers, i.e. change of topology for $W^{1,p}$ occurs only when p is an integer.

Conjecture 2. Any map $f \in W^{1,p}(M, N)$ can always be connected in $W^{1,p}$ to a smooth map (any p, any M, N).

They were both solved in a beautiful piece of work by Hang–Lin [1].

The answer to Conjecture 1 is positive:

Theorem 7. (Hang–Lin [1]) $CT(M, N)$ consists only of integers.

Theorem 7 is an immediate consequence of the following remarkable result which provides a “reduction” of the study of homotopy classes for $W^{1,p}$ to more classical concepts in Topology. Given $p \geq 2$, consider $M^{[p]-1}$ the $([p] - 1)$-skeleton of M.

Theorem 8. (Hang–Lin [1]) Let $f, g \in W^{1,p}(M, N)$. Then $f \sim g$ in $W^{1,p}$ if and only if $f|_{\Sigma} \sim g|_{\Sigma}$ in C^0 for a generic Σ in $M^{[p]-1}$.

Note that $\dim \Sigma \leq [p]-1$, and for a generic Σ, $f|_{\Sigma} \in W^{1,p}(\Sigma)$, while $p > \dim \Sigma$ (since $[p] \geq \dim \Sigma + 1$). Thus for a generic Σ, $f|_{\Sigma} \in C^0$, by the Sobolev imbedding.

Concerning Conjecture 2, we had presented in Brezis–Li [1] several cases where Conjecture 2 is true: for example when $\dim M = 2$ (any N), or $\dim M = 3$ and $\partial M \neq \emptyset$ any N), or $N = S^1$ (any M). However Hang-Lin [1] found some situations where Conjecture 2 fails.

Here is such an example:

Theorem 9. (Hang–Lin [1]) Let $M = \mathbb{RP}^3$ and $N = \mathbb{RP}^2$. Then $CT(M, N) = \{2, 3\}$. Moreover there are maps $f \in W^{1,p}(M, N)$, with $p \in (2, 3)$, such that f cannot be connected in $W^{1,p}$ to any smooth map.

References.

Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Boîte courrier 187
4 place Jussieu
75252 Paris cedex 05
email: brezis@ann.jussieu.fr, brezis@ccr.jussieu.fr