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0. Introduction.

The original motivation of this work is the following. Consider the simple problem

—Au = a(z)u? x in Q
o ( ()2 + £

u=20 on 0f)

where  is a smooth bounded domain in RY, N > 3. If a(z) € LP(Q) and p > N/2,
then for any f € LP(2) with | f|, small, problem (0.1) has a unique small solution u
in W2?(Q). This is an easy consequence of the Inverse Function Theorem applied to
F(u) = —Au — a(x)u? which maps X = W?2P?(Q) N W, "(Q) into Y = LP(Q) (recall that
W2P(Q) c L>=(Q) by the Sobolev imbedding theorem), since its differential at 0, DF(0) =
—A is bijective.

As a special case suppose a(x) = |z|~% in a domain ) containing 0, with 0 < o < 2.
Then for any small constant ¢ the problem

2

U
—Au=——+4c¢ in O
(0.2) ||

u=>0 on 0f)

has a unique small solution.

The case o = 2 is interesting since a(x) = |z|~2 does not belong to L?(Q) for p > N/2.
One may then wonder what happens to the problem

U2
A= in Q
(0.3) YTEETe !
u=20 on Of)
1
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On the one hand, a formal computation suggests that since the linearized operator at 0
is —A, which is bijective, problem (0.3) has a solution for small ¢. On the other hand, the
F above does not map X = W2?(Q) N W,P(Q) into Y = LP(Q) for any 1 < p < co. One
may then try to construct other function spaces, for example weighted spaces, where the
Inverse Function Theorem might apply. This is doomed to fail. In fact, our main results
show that for any constant ¢ > 0 (no matter how small) problem (0.3) has no solution,

even in a weak sense. When ¢ < 0, problem (0.3) does, however, have a solution (see
Remark 1.4).

In Sections 1 and 4 we propose several notions of weak solutions and establish nonexis-
tence. A basic ingredient in Section 1 is the following:
2

Theorem 0.1. Assume 0 € Q. Ifu € Ll (Q), u >0 a.e. with # € L .(Q) is such that
x

2
(0.4) “Au>

e

in D'(Q2)

then u = 0.

The proof of Theorem 0.1 uses an adaptation of a method introduced in [4]. In Section 4
we prove a stronger result, namely:

Theorem 0.2. Assume 0 € Q. Ifu € L2 _(Q\{0}), u >0 a.e. is such that

loc
(0.5) —|z]PAu >u?  in D' (Q\{0})

then u = 0.

Theorem 0.2 is proved using appropriate powers of testing functions—an idea due to
Baras-Pierre [2]. As a consequence we obtain the nonexistence of local solutions (i.e.,
in any neighborhood of 0, without prescribing any boundary condition) for a very simple
nonlinear equation:

Theorem 0.3. Assume 0 € Q and ¢ > 0. There is no function u € L2 _(Q\{0}) satisfying

loc

(0.6) —|zPAu=u?+c in D' (Q\{0}).

In Section 3 we examine what happens to a natural approximation procedure of (0.3).
Consider for example the equation

min{u?,n} ,
Ay = DT Q, ¢>0,
(0.7) YRRt am e e

u=020 on Of).
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For any n there is a minimal solution w,. We prove that u,(z) — +oo for every z € Q

as n — 00, i.e., there is complete blow-up in the sense of Baras-Cohen [1]. Again, this
rules out any reasonable notion of weak solution for (0.3).

In Section 2 we extend the previous results to more general problems such as
—Au = a(x)g(u) + b(x)

assuming only that g > 0 on R, ¢ is nondecreasing on [0, c0) and
/ > ds -
=7 <o,
9(s)

/ |5|53312 -

The original motivation of our research came from observations made in [6] and [4].

with a € L (Q), a > 0 and

loc

For any N > 3 the problem

{ —Au=2(N —2)e* inB;={xeRY;|z| <1}
u=2~0 on 0B;

admits the weak solution u(x) = log(1/|z|?). It was observed in [6] that when N > 11 the
linearized operator at w namely

|2

is coercive and thus formally bijective; this is a simple consequence of Hardy’s inequality:

N —2)? V2
/|W|22( : ) /|x|2 Vo € HY(By)

N —2)?2
(note that % > 2(N —2) when N > 11). On the other hand the results of [4] show
that when N > 10 the perturbed problem

—Au=2(N —2)e" +¢ in By
u=2~0 on 0B;



4 HAIM BREZIS AND XAVIER CABRE

has no solution even in a weak sense and no matter how small ¢ is, provided ¢ > 0.

This strange “failure” of the Inverse Function Theorem is only apparent. As was pointed
out in [6] this just means that there is no functional setting in which it can be correctly
applied. We have tried here, in the spirit of Open Problem 6 in [6], to analyze the same
phenomenon for simple examples in low dimensions.

After our investigation was completed we learned about an interesting work of N. J.
Kalton and I. E. Verbitsky [8] (which was carried out independently of ours). Consider for
example the problem

08) { —Au = a(x)u® +c in Q

u=020 on Of

with a € LL (Q), a > 0 and ¢ a positive constant.

loc

Their result says that if (0.8) has a weak solution, then necessarily
(0.9) G(ad®) < Cs inQ

for some constant C, where G = (—A)~! (with zero boundary condition) and 6(z) =
dist(z,09). In particular, if 0 € Q and a(z) = 1/|z|?, then G(ad?) ~ |log|z|| as z — 0
and thus (0.9) fails; hence (0.8) has no weak solution.

We present in Section 5 a very simple proof of the main result of [8] using a variant of
the method developed in Section 1.

Finally, in Section 6 we present a parabolic analogue of Theorem 0.2. It extends, in
particular, a result of I. Peral and J. L. Vézquez [12]. Namely, the problem

uy — Au = 2(N — 2)e in By x (0,7)
u=20 on 0By x (0,T)

u(z,0) = ug

with ug > u = log(1/|z|?), uo # %, has no solution u > % even for small time: instanta-
neous and complete blow-up occurs.

The plan of the paper is the following:

(1) Proof of Theorem 0.1

(2) General nonlinearities

(3) Complete blow-up

(4) Very weak solutions. Proofs of Theorems 0.2 and 0.3
(5) Connection with a result of Kalton-Verbitsky

(6) Evolution equations
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Notation. Throughout this paper, Q is a bounded smooth domain of RY, N > 1, such
that 0 € Q2. We write
d(x) = dist(x, 092)

and L}(Q) = LY(Q, 6(z)dz). We denote by C5°(€2) the space of C* functions with compact
support in Q, and by D'(€Q) the space of distributions in Q. By C' we denote a positive
constant which may be different in each inequality.

1. Proof of Theorem 0.1.

In this section we prove Theorem 0.1 and its consequences. We first introduce some
terminology about weak solutions.

Definition 1.1. Let h(x,u) be a Caratheodory function in  x R, that is, h(z,u) is
measurable in x and continuous in u for a.e. z.
(a) We say that
—Au = h(z,u) in D'(Q)

(Q), h(z,u) € L () and — [ulp = [ h(z,u)p for any ¢ € C§°(Q).

loc

if ue L

loc

(b) We say that
—Au > h(z,u) in D'(Q)
if we L (),h(z,u) € L, .(Q) and — [uAp > [h(z,u)p for any ¢ € C5°(Q)
with ¢ > 0.

(c) We say that u is a weak solution of

—Au = h(z,u) in
u=20 on 0f)

if ue LYQ), h(z,u) € L§(Q) and — [, uA{ = [, h(z,u)¢ for any ¢ € C*(Q) with
¢ =0 on 01.

The following is the main result of this section; it is Theorem 0.1 of the Introduction.
u?

Theorem 1.2. Let N > 1 and u € Lj, () satisfy u> 0 a.e. in Q, —= € L (Q) and

2
(1.1) “Au> —— inD(Q).

]

Then u = 0.

This theorem easily implies two nonexistence results. The first one deals with the
following boundary value problem.
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Corollary 1.3. Let N > 1 and f € Li(2) satisfy f >0 a.e. and f #0. Then there is no
weak solution of

’LL2

(12) —Au = e + f(x) in Q

u=20 on 051,

i the sense of Definition 1.1.

Remark 1.4. When f = 0, problem (1.2) has u = 0 as the only weak solution; this follows
immediately from Theorem 1.2. When N > 3 and f € L'(Q) satisfies f < 0 and f # 0,
(1.2) has a weak solution u < 0, which is the unique solution among nonpositive functions.
This fact is a consequence of a more general result of Gallouét and Morel [7], which extends
work of Brezis and Strauss [5].

As a consequence of Theorem 1.2, we may write down a simple PDE without local
solutions, i.e., no solution exists in any neighborhood of 0. Here, we do not impose any
boundary condition.

Corollary 1.5. Let N > 3 and ¢ > 0 be any positive constant. Then there is no function
2

u such that # € L .(Q) and

(1.3) —Au = T in D' (Q).

Remark 1.6. In contrast with (1.3), the equation
2

u
(1.4) —Au = EE +c

has a weak solution in some neighborhood of 0, if N > 3 and ¢ > 0 is a constant. This
solution is nonpositive and can be obtained from the results of [7] as follows.

We introduce the new unknown v = —u — c|z|? so that (1.4) becomes
v2
(1.5) —Av+ BB +2cv = ¢(2N — 1) — A|z]? = g(x).
x

We solve (1.5) on Br with the boundary condition v = 0 on dBg. Note that g > 0 on
Bpr provided R is sufficiently small (R?> < (2N — 1)/c). The results of [7] give a unique
solution v > 0.

In Section 4 we will prove stronger nonexistence results for problems (1.2) and (1.3).

The proof of Theorem 1.2 is based on the following variant of Kato’s inequality [9].



SOME SIMPLE NONLINEAR PDE’S WITHOUT SOLUTIONS 7

Lemma 1.7. Let u € L}

loc

(Q) and f € LL_(Q) satisfy

loc
—Au>f in D' ().
Let ¢ : R — R be a C', concave function such that
0<¢' <C in R

for some constant C'. Then ¢(u) € Li () and

loc

—A¢(u) > ¢'(u)f in D' (Q).

The proof is standard, smoothing u and ¢ by convolution; see also Lemma 2 in [4].

The proof of Theorem 1.2 is a variant of a method introduced in [4]. Consider the

1
function ¢(s) = — — —. It is nonnegative, bounded, increasing and concave in the interval
s

(e,00),e > 0. Note that if u > ¢ satisfies

then

This will lead to a contradiction with the fact that ¢(u) is bounded. The details go as
follows.

Proof of Theorem 1.2. Suppose that u is as in the theorem, and that v # 0. Since
u>0,uZ0, —Au >0 in D'(Q) and Q is connected, we have that

u > € a.e. in By,

for some € > 0 and B,, = B,(0) with closure in 2. If N < 2, this is already a contradiction
with u?/|z|? € L (). Suppose N > 3. Let

loc

¢(s) =

1
— , fors>e,
€

W | =

1
and extend it by ¢(s) = 5_2(8 —¢) for s < e. Note that ¢ : R — R is O, concave and

1
0<¢' < = so that ¢ satisfies all the conditions of Lemma 1.7. Recall that u > ¢ in B,,

and consider
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1
It satisfies 0 < v < — in B,, and, by Lemma 1.7,
€

/ /
—Av 2 Qb (U)W = W in D (Bn)
H ! 1 ! € L'(B,) and
n — JE—
ence v N—20g|x| n) an
A L 10e L) >0 inD(B)
—Alv— og — in
N-2 %)= n
which implies
1 1 :
U—N_Qlogmz—c ll’an/Q
for some constant C' > 0. In particular, v(z) — 400 as  — 0, which is a contradiction
1
with the fact that v < - OJ

Remark 1.8. In the previous proof we could have used (in the spirit of [4]) the function

Moreover, 1 is bounded in [0, 00) and satisfies all the conditions of Lemma 1.7 in [0, 00).
2

U
In particular, —Au > —,u > 0, implies

2 2
, utw
~Aw 2 VGRS L
w2
and we can conclude as before, since — > ——=, for some constant v > 0, in a subdomain
22 |z

of Q.
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Analogous versions of the functions ¢ and v will appear, in Sections 2 and 5, when the
nonlinearity u? is replaced by more general nonlinearities g(u).

Finally, we use Theorem 1.2 to prove the nonexistence results of this section.

Proof of Corollary 1.3. Suppose that u is a weak solution of (1.2). Since fQ u(—A¢) > 0 for

any ¢ € C%(Q) with ¢ > 0in Q and ¢ = 0 on 99, we easily deduce u > 0 in Q. Moreover,
2

—Au > 2 _in D'(2). We obtain, by Theorem 1.2, v = 0. This is a contradiction with

]2
(1.2), since f # 0. O

Proof of Corollary 1.5. Suppose that u is a solution of (1.3) in D’(€2). Then —Au > #

in D'(B,), for some ball B, = B,(0) with closure in Q. As in the proof of Theorem 1.2,
we deduce that

1
w— - log— > —-C in B, /s,

N -2 ||
for some constant C'. In particular, v > 0 in B, for some small v > 0.

We therefore have

—~Au> — inD'(B,).
By Theorem 1.2, w = 0 in B,,, which is a contradiction with equation (1.3). OJ

2. General nonlinearities.

In this section we extend the previous nonexistence results to more general problems of
the form

—Au = a(x)g(u) + b(x).
We assume (here and throughout the rest of this section) that g : R — [0, 00) is continuous
on R, nondecreasing on [0,0), g(s) > 0 if s > 0, and

> ds
(2.1) —— < 00.

1 9(s)
Power functions g(u) = u?, with p > 1 are examples of such nonlinearities. We suppose
that N > 3.

For the potential, a(x) we assume in this section that a € LL (), a > 0 in Q, and

loc
a(z)
2.2 / =
22) B, (0) |z |V =2

for some n > 0 small enough (or, equivalently, for any > 0 small). We then have the
following extensions of the results of Section 1.
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Theorem 2.1. Assume N > 3, (2.1) and (2.2).
(a) Let u >0 a.e. in Q) satisfy

—Au > a(x)g(u) in D' (Q).

Then u = 0.
(b) Let f € LX) satisfy f >0 a.e. and f #0. Then there is no weak solution of

{ —Au = a(x)g(u) + f(z) in Q
u=20 on 0L2.

(c) If b(x) satisfies the same conditions as a(x), then there is no weak solution of

—Au = a(z)g(u) +b(z) inD(Q).

This theorem is proved with the same method as in the previous section. We only need

1 1
to adapt two points. First, ¢(s) = P has to be replaced by a solution of
s

! _L i
qb(s)—g(S) fs>e,

where € > 0 is a constant.

We therefore define

Sodt .
qﬁ(s):/em if s > ¢,

which satisfies 0 < ¢ < [ % < 00 in [g,00) (by assumption (2.1)), ¢(e) = 0,¢'(e) = ﬁ)
¢is C!, concave (since ¢'(s) = ﬁ is nonincreasing) and 0 < ¢’ < ﬁ in [e, 00). Extending

o by ¢(s) = Tls) (s—e) for s < e, we obtain a function ¢ on all of R, satisfying the conditions

of Lemma 1.7 and with ¢ bounded from above.

To complete the proof of Theorem 2.1, we only need to consider a solution w € L{ (B,),
where B,, = B, (0) with closure in 2, of

—Aw = a(z) in D'(B,)
(a solution always exists since a € L'(B,)) and show that

(2.3) essinfw — 400 asn — +oo.
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For this purpose, we consider the convolution in B, w = a w?%, where C'y is chosen

such that —A(Cn|z|> ") = §. Then w — w is harmonic in B, and hence bounded in
B, /. In particular, it suffices to show (2.3) for w. But this is true since, for |z| < +,

_ Cna(y)
w\r) = 7(1
(@) /B y — a2
a(y)
>C d — +
- /B vz Y >~

nN-2

as n — oo, by (2.2).

3. Complete blow-up.

In Corollary 1.3 and Theorem 2.1 we have proved the nonexistence of weak solutions of
some problems of the form
{ —Au = a(x)g(u) + f(x) in

3.1
(3:1) u=020 on Of).

In this section we prove that, under the same assumptions on a(x), g(u) and f(x) made
in Section 2, approximate solutions of (3.1) blow up everywhere in €2, that is, there is
complete blow up. More precisely, we have the following.

Let g(u) and a(x) be as in Section 2. Suppose that f € Li(Q), f > 0 a.e. and f # 0.
Let (gn) be a sequence of nonnegative, bounded, nondecreasing and continuous functions
in [0,00) such that g, (u) increases pointwise to g(u). Let a,, and f,, be two sequences of
nonnegative bounded functions in €2, increasing pointwise to a and f, respectively.

Theorem 3.1. Under the above assumptions, let u, be the minimal nonnegative solution
of the approximate problem

{ —Au = ap(z)gn(u) + fo(z) in Q

3.2),
(3:2) u=0 on 0S).

Then, as n — +00,
U, ()

—n

d(x)

— 400 uniformly in Q.

In the proof of Theorem 3.1 we use two ingredients. First, the nonexistence result of
Theorem 2.1(b) (see also Corollary 1.3) and, second, the following estimate for the linear
Laplace equation. It asserts that, for some positive constant c,

(3.3) Glz,y) > cd(2)d(y) inQ x Q,

where G is the Green’s function of the Laplacian in 2 with zero Dirichlet condition. In an
equivalent way, we can state this lower bound on G as follows.
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Lemma 3.2. Suppose that h > 0 belongs to L>°(2). Let v be the solution of

{ —Av=~h mn )
v=20 on 0.
Then
v() /
3.4 —~=>c [ hd Vx €,
(34) 5w) = o

where ¢ > 0 is a constant depending only on ().

Estimate (3.3) was proved by Morel and Oswald [11] (in unpublished work), and by
Zhao [13] (in a stronger form). For the convenience of the reader we give a simple proof
of (3.3).

Proof of Lemma 3.2. We proceed in two steps.
Step 1. For any compact set K C €2, we first show

(3.5) v(z) > c/ hé Vo € K,
Q
where ¢ is a positive constant depending only on K and Q. To prove (3.5), let p =
dist(K, 092)/2, and take m balls of radius p such that
K C By(z1)U...UB,(xm,) C .
Let (1,...,(n be the solutions of

—AG = XB, (&) in 2
=0 on 0f),

where x4 denotes the characteristic function of A. The Hopf boundary lemma implies
that there is a constant ¢ > 0 such that

Ci(x) > cd(x) Vr € Q) V1l<i<m.

Here and in the rest of the proof, ¢ denotes various constants depending only on K and
Q2. Let now x € K, and take a ball B,(x;) containing x. Then B,(x;) C Bg,(x) C €, and
since —Awv > 0 in €2, we conclude

v(x)zf v:c/ UZC/ v
Bap(x) Bap(x) By ()
c/ v(—Ag) :c/ h¢;
Q Q
> c/ hd.
Q
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Step 2. Fix a smooth compact set K C Q. By (3.5), v > ¢ [, hd in K, so that it suffices
to prove (3.4) for x € Q\K.

Let w be the solution of
—Aw =0 in Q\K

w=20 on 0f)
w=1 on 0K.

The Hopf boundary lemma gives again
w(z) > cd(x) Ve € Q\K.

Since v is superharmonic and v > ¢ fQ hé on 0K, the maximum principle implies

(@) > ¢ (/Q hd) w(z)

> ¢ ( /Q hd) 5(z)  VreO\K.

This completes the proof. O

Proof of Theorem 3.1. Consider the approximate problem

(3.6)n

—Au = an(x)gn(u) + fn(x) in
{ u=0 on Of).

Since 0 < an(2)gn(s) + fu(z) < Cp in Q X [0,00) for some constant C,,, we have that C),z
is a supersolution of (3.6),, where

(3.7) { —-Az=1 in €2

z=0 on Of).

On the other hand, 0 is a subsolution of (3.6),,. We therefore obtain a minimal solution
u,, of (3.6),, by monotone iteration:

{ —Aumi1 = an(T)gn (Um) + fr(z) in €
Um4+1 =0 on 012,

starting with ug = 0. In particular, since a,(x)gn(s) + fn(x) increases with n, u,, ., is a
supersolution of (3.6),,, and hence
gn S gn—i—l'
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We claim that
/an(x)gn(gn)(S/ +oo asn / 4oo.
Q

Lemma 3.2 then gives

Uy () /" 400 uniformly in Q
o(x)

as n — 4o00; this proves Theorem 3.1. Thus, it only remains to show the claim. Suppose
not, that

(3.8) /Qan(as)gn(gn)é <C Vn.

Then, multiplying (3.6),, by the solution z of (3.7), we see that

/gngc Vn
Q

(we have used that 0 < f, < f € L}(Q)). Hence, u, / u in L'(Q), for some u, by
monotone convergence.

Since g, is a nondecreasing function, a,g,(u,,) + f. increases to ag(u) + f a.e. in ;
(3.8) also gives
angn(gn) + fn / ag(u) + f in L%(Q)v

again by monotone convergence. We can now pass to the limit in the weak formulation of
(3.6),, (recall Definition 1.1(c)), and obtain that u is a weak solution of

{ —Au = a(x)g(u) + f(x) in Q
u=20 on 0f).
This is impossible by Theorem 2.1(b). O

4. Very weak solutions. Proofs of Theorems 0.2 and 0.3.

In this section we return to the study of equation

and its corresponding boundary value problem. We prove stronger versions of the nonexis-
tence results of Section 1 by considering a more general notion of solutions, which we call
very weak solutions. More precisely, we prove the following results.
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Theorem 4.1. Let N > 2 and u € L2 _(Q\{0}) satisfy u >0 a.e. in Q and

loc
(4.1) —|z]?Au > u? in D' (Q\{0}),

in the sense that — [ uA(|z|?@) > [u?p for any ¢ >0, ¢ € C§(Q\{0}).
Then u = 0.

Note that now we are testing (4.1) only against functions with compact support in €2
and vanishing in a neighborhood of 0. As a consequence of the previous theorem, we will
prove the following stronger version of Corollary 1.3.

Corollary 4.2. Let N > 2 and f € L{ (Q\{0}), f integrable near 9Q, f > 0 a.e. in Q,

loc
f £ 0. Then there is no very weak solution of

’LL2

(4.9) —Au = B + f(x) in Q

u=20 on 051,

in the sense that u € L2 _(Q\{0}), u and u? are integrable near 9 and

—/QuA(|$|2C) :/Qu2§+/ﬂf|w|2€“

for any ¢ € C%(Q), ¢ =0 on 9Q and { =0 in a neighborhood of 0.

Remark 4.3. Theorem 4.1 does not hold in dimension N = 1; a direct computation shows
that u(z) = |z|®, for any 0 < o < 1, satisfies (4.1) when (2 is a small interval containing 0.
Corollary 4.2 is also false in dimension N = 1; in fact, for any p > 1 and f € LP(—1,1),
small in LP, there exists a very weak solution u of (4.2) in Q = (—1,1) which is continuous
in [—1,1] and satisfies u(0) = 0. This solution w is defined in (0, 1) to be the solution of

(4.3) —u = W + f(x) in (0,1)

and similarly in (—1,0); we obtain in this way a very weak solution of (4.2)

Note that if || f||ze(0,1) is small then there is a solution u € C?(0,1) N C*([0,1]) of

(4.3). It can be obtained through the Inverse Function Theorem applied to the operator
2

—u” — #, which maps X = W?2?(0,1) ﬂWol’p(O, 1) into LP(0, 1); note that v € X implies
x

ﬁ € L>°(0,1) and u € C([0,1]).
x

We also extend the local nonexistence result of Corollary 1.5, now for all N > 1.
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Corollary 4.4. Let N > 1 and ¢ > 0 be any positive constant. Then there is no very
weak solution of

(4.4) —|zPAu=u?+c in D' (Q\{0}),

in the sense that u € L _(Q\{0}), and — [uA(|z|?¢) = [(u® + ¢)¢ for any function
¢ € Cg° (1\{0}).

The proofs of the results of this section consist of using appropriate powers of testing
functions; this is an idea due to Baras and Pierre [2] and employed in [2] for the study of
removable singularities of solutions of semilinear equations. In fact, the first step in our

proof of Theorem 4.1 will be to use equation (4.1) to show that |i € L% (Q); this can be
x

interpreted as a “removable singularity” result. The second step of the proof is to show
U

that —Au > — is satisfied in D’(£2). We may then conclude that u = 0 with the help of
x

Theorem 1.2. We present here an alternative proof of Theorem 1.2 based on multiplication
by a sequence of appropriate testing functions.

Proof of Theorem 4.1.

Step 1. We prove that ﬁ € L% (Q). For this purpose, let ¢, € C§°(Q2\{0}) be such that
x

0<¢n <1,

1
0 if |z| < —
n
= 2
Cn 1 if |z| > -,z €ew
n
¢ if z € Q\w,

where w is open, 0 € w, W C Q and ( is a fixed “tail” for all (,,. We take (,, such that if

1 2
— < |z| < — then
n n

Vin =46V,
ACE = ACEAG, + 12¢2 VG
and

[AG| < CGan?,
4

n

for some constant C' independent of n. Multiplying (4.1) by W yields
x

U2
WC‘?S—/UAC;‘;
<C / Lt

|z
{f<lz|<2}
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Using the Cauchy-Schwarz inequality, we obtain

U2 u
[iptisen [ faec

{L<|z|<2}
C 2 1/2
< — /“ ) yo
nz 1 |z|?

u?
[

Since N > 2 we deduce that
(p <C,

and hence — € L2 ().

|33| loc

For later purposes, let us retain two more consequences of the previous proof. First, we
did not use u > 0. Second, if carried out for N = 1, the proof gives

3/n u?
(4.5) / Yo <onto, (N=1).
2/n |3§'|

Step 2. We show that
(4.6) —Au > — in D'(Q).

Indeed, let ¢ € C3°(2), ¢ > 0, and 1, (x) = n (n|z|) be such that 0 <n; <1 and

(z) = 0 if |[z| <1
=0 if |z > 2.

Multiplying (4.1) by inn yields

|z|?
U2
/W‘;Onn S —/UA(SOW)-

If we show that, as n — oo,

(4.7) / V| [Viga] — 0
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and
(4.8) / wp| A — 0,

then we obtain — [uA(pn,) — — [ uAp and hence the statement of Step 2. To prove
(4.7) and (4.8), we use that o2 (€))—which we established in Step 1. Hence

|33| loc

/u|W||Vnn|§0n / u

{i<|z|<2}
|z
{f<|z|<2}

and
/u<,0|A77n| < C’n2/ u < C’n/ i
{5 <lzl<2} {L<lal<2} |7]

1/2
1 2
<(C— / _u2 — 0.
nz b\ J{icp<2y |2

Note that, as in Step 1, we have not used u > 0.

Step 3. We show that uw = 0 (it is only here where we use v > 0). Let us suppose that
u Z 0. Then, since u > 0, —Au > 0 in D'(Q2) and Q is connected, we have that

u>¢e ae. in By,

for some € > 0 and B, = B,(0) with closure in 2. When N = 2 this is impossible since

“ > £ hear 0 and hence — ¢ L2 (Q)—a contradiction with Step 1.

z| || ||
When N > 3, we use that

loc

2 52 1 ) ,
—AU > = —A m lOg m in D (Bn)

and we conclude (as in the proof of Theorem 1.2) that
2

15
4. >
(4.9) Y=N 2

llog |z|| —C near 0



SOME SIMPLE NONLINEAR PDE’S WITHOUT SOLUTIONS 19

for some C' > 0.

Let us now choose a sequence of functions x,(z) = x1(n|z|) such that 0 < x,, <1 and

() { 1 if || <1/n
n\T) =
X 0 if |z > 2/n.

Mutiplying (4.6) by x2 yields

u? 4 4 2 2

{f<|z|<2}

u2 1/2
<2 4
TL/ | Xn = %_1 (/ |x|2Xn) 9

u? < C
B < T
But, using (4.9), we have

2 2
u- 4 2 2 | log n
/Wxn >c / n’|logn|® ~ 2

{=<lz|<i}

and therefore

which contradicts the previous statement. O

Finally we give the proofs of Corollaries 4.2 and 4.3.

Proof of Corollary 4.2. Recall that Steps 1 and 2 of the previous proof hold for any w
satisfying (4.1)—without the assumption v > 0. Therefore, since f > 0, Step 1 of the
proof of Theorem 4.1 gives

| | € LIOC(Q)

Moreover, proceeding as in Step 2 of the same proof, we see that

“fyrae= [ e

for any ¢ € C?(Q), ¢ = 0 on 9. In particular, — [ uA¢ > 0 if, in addition, ¢ > 0 in Q.
We conclude that v > 0 in Q. Theorem 4.1 implies that w = 0, which contradicts (4.2)
and f # 0. O
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Proof of Corollary 4.4. Suppose that u satisfies
—zfAu=u*4+c  in D'(Q\{0}).
The proof of Step 1 in Theorem 4.1 gives

1
This is impossible when N = 2, since W is not integrable near 0.
x

When N > 3 we get (as in the proof of Theorem 4.1, Step 2) that
—Au=—+ —= in D'(Q).
x

We now proceed as in the proof of Corollary 1.5 (i.e., we compare u with log ﬁ) We
obtain that v > 0 in a neighborhood of 0 and hence, by Theorem 4.1, v = 0. This is a
contradiction with equation (4.4).

We finally treat the case N = 1. We would have u € L2 (Q\{0}) and

loc

—2?%u” =u?+c in D'(Q\{0}).
In particular, u belongs to C2(0,a) for some a > 0. Integrating the inequality —u" > 93_62
in (s, g), we obtain

u'(s) > g -C.
for some constant C'. Integrating again yields
—u(s) > —clogs —C.

Thus

lu(s)| > cllogs| — C, near 0.
On the other hand, we recall (4.5):

3/n u?
/ Yds < Cn+C,
2/n S

which was proved in Step 1 of the proof of Theorem 4.1. Using |u(s)| > c|logs| — C, this
inequality yields
3/n ds

E|logn|2n:c|logn|2/ 5
6 2/n S

3/n u?
< 0/ Lds < Cn+C,
2/n S

which is a contradiction. O
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5. Connection with a result of Kalton-Verbitsky.
In this section we consider the problem (for v > 0)
—Au = a(x)uP + f(z) in Q
{ u=20 on 012,

where p > 1, a > 0 and f > 0 in Q. Recently, Kalton and Verbitsky [8] have found an
interesting necessary condition for the existence of a weak solution of (5.1). Their result
states that if (5.1) has a weak solution, then necessarily

(5.2) GaG(f)P) < CG(f) inQ

(5.1)

for some constant C, where G = (—A)~! (with zero Dirichlet boundary condition). In [§]
the authors also prove (5.2) for more general second-order elliptic operators.

In this section we give a simple proof of the necessary condition (5.2) (for the Laplacian)
using a refinement of the method that we have developed in Section 1. Our proof gives
(5.2) with constant C' = zﬁ' Next, we replace f(x) by Af(z) in (5.1) (where A > 0 is a
parameter) and we study the problem of existence of solution depending on the value of

A.

As pointed out in the Introduction, condition (5.2) easily implies some of our nonexis-
tence results. For instance, it gives the result of Theorem 2.1(b) when g(u) = u?, for some
p>1,and f € L, since in this case G(f) ~ §.

We recall that there is another necessary condition—due to Baras and Pierre [3]—for
the existence of a weak solution of (5.1). Its proof consists of multiplying (5.1) by test
functions and using Young’s inequality.

Throughout this section we assume that

(5.3) ac€ Ll (), a>0 ae.,a#0.
and
(5.4) feLi), f>0 ae,f#0.

A function v € L'(Q), u > 0 a.e. is a weak solution of (5.1) if au? € L}(Q) and (5.1) is
satisfied in the sense of Definition 1.1.(c). Finally, for h € L}(Q) we denote by G(h) the
unique function in L(Q) satisfying
—A(G(h))=h in
G(h)=0 on 0f)
again in the sense of Definition 1.1.(c)—see e.g. Lemma 1 of [4] for such result about the

linear Laplace equation. We now give a necessary condition and a sufficient condition for
the existence of a weak solution of (5.1).
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Theorem 5.1. Assume (5.3) and (5.4).

(a) If
(5.5) { —Au = a(x)u? + f(x) in Q

u=0 on 0S)
has a weak solution, then aG(f)P € L1(Q) and
GaG(f)P) 1

G(f) Sp—l in S

(b) If aG(f)P € L}(Q) and

G(aG(f)P) p—1\" 1 .
G(f) S( p ) p—1 in £,

then (5.5) has a weak solution u satisfying u < CG(f) in Q for some constant C.

The second result of this section is the following.
Theorem 5.2. Assume (5.3), (5.4) and
G(aG(f)")
G(f)
For X\ a positive parameter, consider the problem
{ —Au = a(x)uP + \f(x) in
u=20 on 0f).

Then there exists \* € (0,00) such that
(i) if 0 < A < A*, then (5.6)x has a weak solution uy satisfying

€ L>(9).

(5.6)x

Ux
G(f)
for some constant C'(\) depending on A.

(ii) if A = X*, then (5.6)x has a weak solution.
(iii) if A > A*, then (5.6)\ has no weak solution.

A<

< C(N),

Moreover,

o (5 s

G(aG(f)) 1

G(f)

L) P~

The main ingredient in the proof of the above theorems is the following.
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Lemma 5.3. Suppose u and v are C? functions in Q, and that v > 0. Let ¢ : R — R be
a C?, concave function. Then

—a e (3)] 24 (3) Caw+ [ (T) =50 (3)] 0.
If, in addition, —Av > 0 in Q, then

(5.8) “A [vqb (%)} > ¢ (%) [—Au+ Av] + ¢(1)(—Av).

Proof. We simply compute and use that ¢” < 0 and v > 0. We have (using the notation
81‘1) = Ui)

~afw (D] ==X [# (2 o(2), + o ()],
o (B ()P () (2], o (2) )

z—i{cb’ (5) [ = 2o] o (2)mr o (£) (3), o)
(2) cauy+ 6 (2) 7 (2) T 26 (%) (~a0)

()04 ()7 ()

(B oo (2)- 20 (9] 20

which is the first inequality of the lemma. From this, we easily deduce the second inequality,
as follows. Since ¢ is concave, we have

¢(s) + (L= s)¢'(s) = ¢(1)  Vs€R.

o(3) =39 (5) 2= () + oty

multiplying this inequality by —Awv (which is nonnegative by assumption), we easily deduce
(5.8). O

Thus

To use the previous lemma, we will need (5.8) in its weak version for L! functions.
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Lemma 5.4. Let ¢ : R — R be a C', concave function with ¢' bounded. Let h and k
belong to LY(Q), with k >0, k # 0, and let u and v be the L*(Q) solutions of

—Au=nh in Q
{ u=20 on 0S)
and
—Av =k in Q
{ v=20 on 0S).
Then
(5.9) ~A oo (2)] 20 (5) (=) + oLk,

in the sense that vo (%) € LY(Q), ¢ (%) (h— k) + ¢(1)k € LY(Q) and

_/Qw (%) Agg/ﬂ{gb’ (%) (h—k)+¢>(1)k}<“

for all ¢ € C%(Q), ¢ >0, with ( =0 on O9.

Proof. We first point out that (5.8) holds when ¢ is C'' and concave—not necessarily C?.
This follows immediately from Lemma 5.3 convoluting ¢ with mollifiers.

We approximate h and k in L}(Q) by sequences (h,) and (k,), respectively, of C5°(Q)
functions and with k, > 0, k,, # 0. Let u,, v, be the solutions of

—Au,, = h, in
u, =0 on Of)
and
—Av, =k, in Q
v, =0 on Of).

It follows that u,, — w and v, — v in L'(Q) (for this, substract the equations for u, and
u, multiply by G(1) and integrate). Moreover, u,,,v, € C?(Q) and v, > 0, —Av, > 0 in
Q.

By (5.8) we have

~a o ()] 20 (22 (o = )+ 00k,

n Un
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Moreover, using that ¢’ is bounded, we see that

() o) ) st

(5.10) < C(lun| + |vnl)

u
for some constant C'. Hence, v,,¢ (—n) vanishes on 92 and thus

n

(5.11) ~ [ wno (“—) ac [ {¢>’ (“—) (e — o) +¢<1>kn} ¢

for all ¢ € C?(Q), ¢ >0in Q and ¢ = 0 on 9.

U Un
Note that v > 0 a.e. in 2, so that v¢ (—) is well defined a.e. Moreover, v, ¢ (—)
v n
U
converges a.e. to v¢ (—)—up to a subsequence. Since u, and v, converge in L!(Q),
v

they are dominated (also up to a subsequence) by an L!() function. Thus, by (5.10),
o) (Z—n) | is also dominated by an L' function (for a subsequence). We conclude that

n

Unh (Z—") v (9) in L1(Q).

n v
Passing to the limit in (5.11), we finally obtain (5.9) and the lemma. O

We write explicitly the concave functions ¢ that we use in this section. For Theorem 5.1
we will use

(5.12) B(s) = Sdtzi(p 1) for s > 1.

Lt p—1 sp—1

It satisfies
@' (s)sP =1 for s > 1,

and hence ¢ is concave and ¢’ is bounded in [1,00). Moreover,

6(1)=0  and oggb(s)g% for s> 1.

Since ¢'(1) = 1, we can extend ¢ by ¢(s) = s — 1 in (—o0, 1] obtaining a function ¢ that
satisfies the conditions of Lemma 5.4.
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Note that the functions ¢ above are analogous versions of the ones that we employed
in Sections 1 and 2, in the sense that they all satisfy ¢’(s)g(s) = 1 (in an appropriate
interval) where g is the nonlinearity.

In Theorem 5.2 we will be led to take ¢ (that we denote now by ) satisfying another
differential equation, namely: 1’(s)s? = 1(s)P. Precisely, we will take

(5.13) P(s) = i — fors>0.

(esP=l +1)p—1

It satisfies 1
P'(s) = - for s > 0.
(esP=1 +1)71

and hence
' (s)sP = 1(s)P for s > 0.

Note that 1) is concave and v’ is bounded in [0, c0);

@b(l):(lj_g)pTl and 0§@D(3)§(é)pTl for s > 0.

Extending 1 by 1(s) = s in (—o0, 0], we obtain a function ¢ which satisfies the conditions
(for ¢) of Lemma 5.4. Note that, for p = 2, 1) was already considered in Remark 1.8.

Proof of Theorem 5.1.
Part (a). Let u > 0 be a weak solution of

—Au = a(x)u? + f(x) in Q
{ u=0 on 0.
We consider
v=G(f);
note that, since a(x)u? > 0,
Y- % 59 im0
v G(f) ~

by the weak maximum principle (which is an easy consequence of the weak formulation of
Definition 1.1.(c) used here).

We take ¢, defined by (5.12), and apply Lemma 5.4 to obtain (we use u/v > 1 and the
properties of ¢(s) for s > 1)

“A [vqb (%)} > ¢ (%) (au? + f — f) + ¢(1)f
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in the weak sense of the lemma. In particular aG(f)? € L}(2), and (by the weak maximum
principle)

GaG(f) < v (=)

e

Part (a) is now proved.

Part (b). We assume that aG(f)? € L}(Q) and

1

GlaG(f)?) < (p ; 1)p :

It follows that the L!(€) function

satisfies

Therefore

in the weak sense. That is, @ is a weak supersolution of (5.5). On the other hand, 0
is a subsolution of the problem. It is then easy to obtain a weak solution u of (5.5) by
monotone iteration (see e.g. Lemma 3 of [4]). Moreover

~ p
G() i< LG,

This completes the proof of Theorem 5.1. 0J
Proof of Theorem 5.2. We assume that

G(aG(f)")

G € L>(Q);
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moreover, a Z 0 and f # 0 and hence

G(aG(f)")
G(f)

< Q.

0< My = H
Lee(€2)

Theorem 5.1 (applied with f replaced by Af) implies that if (5.6), has a weak solution,

then 1
NP Iv < ——.
p—1

The theorem also gives that if

_ p
N < (p 1) 1
P p—1

then (5.6)) has a weak solution. Hence, defining
A* = sup{A > 0; (5.6), has a weak solution},

we have 0 < \* < oo, and also estimate (5.7) of Theorem 5.2. Note that part (iii) of the
theorem is obvious.

To prove part (i), we have to show that if 0 < A < p and (5.6),, has a weak solution u
then (5.6)) has a weak solution u) satisfying

(5.14) A<

For this purpose, we consider

v=G(uf) = pG(f),
and the function ¢ defined by (5.13) with ¢ > 0 chosen small enough such that

1 \7T
A< (1+5) 1= (1)p.

We apply Lemma 5.4 (with ¢ replaced by 1) to obtain

—-A [w (%)} > ) (%) (au? +pf —pf) +pL)uf

— vy (2) 4 p()s
ol ()] 4
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in the weak sense of the lemma. Hence v (E) is a weak supersolution of (5.6)y. Again
v

by monotone iteration we deduce that (5.6)) has a weak solution u) such that
ux < vt (3) < Cv = CuG(f).
v

This, together with the immediate bound uy > G(\f), gives (5.14) and proves (i).

It remains to show part (ii). For A\ < A\* we can take u) to be the minimal solution of
(5.6)x, i.e., the solution obtained by monotone iteration starting from the function 0. In
this manner, uy < u, if 0 < A < p < A\*. Hence, in order to obtain a weak solution of
(5.6) 2+, it suffices to show

(5.15) /Q la(@)a + Af(2)] 5 < C

for some constant C' independent of .

To prove (5.15) we proceed as follows. Since a > 0 and a # 0, there exists a constant
M € (0,00) such that

aM = X{a<M}@

satisfies 0 < apy < M and aps # 0 (here x{,<nry denotes the characteristic function of
{a < M}).

It is well-known that the problem

—Aw = aﬂpwl/p in O
(5.16) w >0 in Q
w=20 on Of)

has a unique solution w € W27 () (for any 1 < r < co) with w # 0. This solution can be
obtained for example by minimizing in H}(Q) the energy associated to (5.16):

1 p 1/
E(v) == Vol? — _/ Dot (p+1)/p’
(v) 5 /@' V| 1 QaM (v™)

which is a coercive functional, bounded from below, in H}(Q) (note that a}\ép € L>(Q)
1
and 1 < pt2 < 2). Note that FE(te1) < 0 for ¢ small, if 1 denotes the first eigenfunction
p
of —A. In particular, the minimizer w of F satisfies F(w) < 0, and thus w # 0. The
strong maximum principle then gives

(5.17) w>C§
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for some positive constant C'.

Since Aw € L*()) we can multiply (5.6), by w and integrate by parts. We also use
Young’s inequality—in the spirit of the ideas of Baras and Pierre [3]. We obtain

/Qauz;\w-i—/ﬂ)\fw:/QuA(—Aw)

:/aﬂpuxwl/z’g/al/puxwl/p
Q

Q
1 —1
< = / aulw + P—~ 1,

D Ja Db Ja

and therefore
/auf\w-ﬁ-/ AMw < C
Q Q

for some constant independent of A. Using (5.17), we conclude (5.15), and hence the proof
of part (ii). O

Remark 5.5. An analogous version of Theorem 5.2 also holds for the problem

{ —Au = Aa(z)uP + f(x)) in Q
u=20 on 0N2.

This follows from Theorem 5.2 rescaling the solution u, i.e., considering the problem for
au, for appropriate «.

Remark 5.6. In Theorem 5.2 we have shown that, for A < A\*, (5.6), has a weak solution
u) satisfying

Ux

G(f)

(5.18) e L(Q).

We point out that this property may not be true for the minimal solution obtained for
A = X*. To give an example of this, consider first the problem

(5.19), { —Av = Av + 1) in By = {Jz| <1} C RV

v=20 on 0Bj.

For N and p sufficiently large, (5.19), has

B(z) = || 7T — 1
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as weak solution for a certain parameter A > 0; moreover T is the pointwise, increasing
limit (as A \) of the classical minimal solutions vy of (5.19)y for A < A (see e.g. [6]).
Let us define

f:(ﬁ-i-l)p_ﬁp:

so that the problem
—Au = MuP + \f(x) in By

5.20

( ) { u=2~0 on 0B;

has © = T as weak solution for A = X. Note that (5.20), is of the form (5.6), considered
in Theorem 5.2. We claim that 7 is the minimal weak solution of (5.20)x. This is shown
as follows: for A < A, let u) be the minimal weak solution of (5.20)y. Since uy < T, we
have (ux + 1)P — v} < f, and hence uy is a weak supersolution of (5.19)x. Thus uy > vy,
and since vy /T as A 7 A, we conclude that T is the minimal weak solution of (5.20).

Finally, we have that

(%

(5.21) G

¢ LOO(Bl)v

since @ ~ ||~ 7T near 0 and G(f) < Clog ﬁ (note that f < p(¥+1)P~! = p|z|~2 in By).
This proves that (5.18) does not hold for A = X and, in particular, that A is the extremal

parameter \* for problem (5.20).
6. Evolution equations.

In section 4 we proved that u = 0 is the only nonnegative very weak supersolution of

2
U
—Au >

> W in D'(Q\{0}).
x
Here we prove an analogous result for the equation

2

w — Au > IZ? in D' ((Q\{0}) x (0,T)).

More precisely, we have the following parabolic analogue of Theorem 4.1.
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Theorem 6.1. Let N > 2, T > 0 and u € L2 _((Q\{0}) x (0,T)) satisfy u > 0 a.e. in
Qx(0,T) and

(6.1) 2] (uy — Au) > u? in D' ((Q\{0}) x (0,7)),

- [ [P o+ agaPoy = [[ue

for any ¢ >0, ¢ € C§((Q\{0}) x (0,T)).
Then u = 0.

in the sense that

As an immediate consequence of the theorem we obtain an extension of a result of Peral
and Vazquez (Theorem 7.1 of [12]). Here Q = By, the unit ball of RN, and N > 3. We

consider the function .

u(z) = log W,
which is a weak solution of

{ —Au=2(N —2)e” in By
0 on 6B1

Corollary 6.2. Let N >3,T >0 and u € L, _((B1\{0}) x (0,T)) be such that
e € LL ((B\{0}) x (0.7)),

u(z,t) > u(x) a.e. in By x (0,7,

and
(6.2) ug — Au =2(N —2)e*  in D'((B1\{0}) x (0,T))
in the sense that
// (pt + Ap) =2(N —2//6(,0
for any ¢ € Cg°((B1\{0}) x (0,T)).

Then u(x,t) = u(x).

Note again that we only assume equation (6.2) to be satisfied in the distributional sense
and away from {z = 0} x (0,7). In particular, given any uo(x) > u(z) a.e. in By, ug # 1,
and any T > 0, there is no weak solution u, with

u(z,t) >u(z) in By x (0,7T),
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of the problem
uy — Au = 2(N — 2)e in B; x (0,7)
(6.3) u = on 0By x (0,T)
u(z,0) = ug on B
(as stated in [12]).

A second consequence of Theorem 6.1 is the following nonexistence and complete blow-
up result. For any ug > 0,ug # 0 (say ug € C§°(Q2)) and for any T' > 0, the problem

2

ut—Au:gﬁ? in Q x (0,7)
(64) u=20 on 02 x (0,7
u(z,0) = ug on §)

has no weak solution (by Theorem 6.1). Using similar ideas as in the elliptic case (see
Section 3), we can prove that approximate solutions of (6.4) blow up completely. More pre-
cisely, let g, be a sequence of nonnegative, nondecreasing and globally Lipschitz functions
in [0,00) such that g,(u) increases pointwise to u?. Let a, be a sequence of nonnegative

: : : : . 1
bounded functions in (2, increasing pointwise to W
x

Theorem 6.3. Under the above assumptions, let u,, be the solution of

% — Aup = an () gn (un) in Q x (0,+00)
(6.5)n Up =0 on 0 x (0, +00)
un(x,0) = up on .

Then, for any 0 <e < T,

Up(x,t)

(6.6) o

— 400 uniformly in x € Q,t € [e,T]

as n — Q.

To prove Theorem 6.1 we adapt the method given in Section 4 for the elliptic case; it
consists of using appropriate powers of testing functions.

Proof of Theorem 6.1. We proceed as in the proof of Theorem 4.1; we use the same notation
as there. We also fix a cut-off function in time:

¥ € Ceo((0,1)), 0<¢ <1,
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with ¢ =1 in a given compact sub-interval of (0,7).
Step 1. We prove that U2

loc
Cu(2)9? () g
WY AP Gt vields

B
J[ it <= [[wache - [[uciw.

Let us denote by C' different constants independent of n, but that may depend on 2, T
and the cut-off 1. We have

_ / / W(ACHY? < Cn / / |Z—|Ci¢ +C,

{£<|z|<2}x(0,T)

B / / wChW?) < C / / TarCat

Hence we can conclude, as in section 4, that

/] %cﬁ;w? <c

(@ x (0,T)). For this purpose, we multiply (6.1) by

and

Thus — € L2 (Q x (0,T)).

|33| loc

Step 2. We show that
(6.7) up — Au> —  in D'(Q x (0,7)).

This is done exactly as in the proof of Theorem 4.1, where now ¢ = ¢(x,t) belongs to
C§e (2 x (0,7)).

Step 3. We finally prove u = 0. We suppose v # 0. Since u > 0, us — Au > 0 in
D' (2 x (0,T)) and Q is connected, we have that

u>¢e ae. in B, x (1,T),

for some 0 < 7 < T, ¢ > 0 and B, = B,(0) with closure in Q2. When N = 2 this is a
contradiction with —— € L2 (Q x (0,7)).

|33| loc
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When N > 3, (6.7) gives

1
log — in D' (B T)).
T3 o) DB, X ()

We deduce that

1
log —

(6.8) "

_N 5 - C il’an/QX(’T/,T)

forsome C >0and 7 <7 < T.

Following the proof of the Theorem 4.1, we now multiply (6.7) by x2(z)w?(t), with
a cut-off as in the beginning of this proof, and with ¢ = 1 in (7/,7") for some T" with
7' <T" < T. We have

//| R J[ s+ [ [t

(where we are integrating on {|x| < } x (0,T), since it contains the support of y*?).

/] %xw <ca[f T,

where C' is independent of n. From the Cauchy-Schwarz inequality, we deduce

2
ut 4 . C

J] s <

|logn|2

| |2 Xn¥” 2 aN—2

which contradicts the previous statement. This proves the theorem. O

Hence

But using (6.8), we have

Remark 6.4. Step 3 of the previous proof, (i.e., to show v = 0 from u > 0 and (6.7))
could have been done using a parabolic analogue of the method of Section 1. That is, one

considers
1 1
V= - — —
e u

in a subcylinder where v > . Then (with the aid of the parabolic Kato’s inequality) v
satisfies

— Av >
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which leads to contradiction since v is bounded.
Corollary 6.2 follows immediately from Theorem 6.1:

Proof of Corollary 6.2. Let u be as in the corollary. Consider v(x,t) = u(x,t) — u(z). It
satisfies, from our assumptions,

v>0 a.e. in By x (0,7).
Moreover, in the distributional sense D’ ((B1\{0}) x (0,7)),

vy — Av=uy — Au+ Au
=2(N —2)(e" —€“) = 2(N — 2)e" (e’ — 1)

since v > 0. Hence (N — 2)v > 0 satisfies (6.1). By Theorem 6.1 we deduce v = 0, that is
u = u. 0]
We finally give the proof of the complete blow-up result.

Proof of Theorem 6.3. We proceed in three steps. Recall that 0 < w,, < u,41, by the
maximum principle.

Step 1. We prove that, for any 7 > 0,

//angn(un)5—>+oo.
0o Jo

Suppose not, that fOT Jo angn(un)d < C for some 7 > 0. We multiply (6.5),, by the solution

of
{—Azzl in

z=0 on Of).

/OT/Qun-i—/Qun(x,T)z—/Quoz:/OT/Qangn(un)zSC

and, in particular
-
/ / u, < C.
0o Ja

We obtain
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Hence u,, and a,gn,(u,)d are bounded in L*(2 x (0,7)). By monotone convergence, we
obtain that u, — u in L(Q x (0,7)) with u satisfying the assumptions of Theorem 6.1.
By this theorem, u = 0. Thus u; = 0 and ug(z) = u1(x,0) = 0, a contradiction.

Step 2. We show that
/ Up(z,t)0(z)dr — +oo uniformly in t € [g,T].
Q

Indeed, let us multiply (6.5),, by efp, where ¢; is the first eigenfunction of —A in Q
with zero Dirichlet condition and Ay its corresponding eigenvalue. We then integrate in
space and time, to obtain

eAlT/un(-,T)gol—/uogplz/ /angn(un)gpleht.
Q Q 0 Jo

Hence, if 7 € [%,T],

e/2
/ Up(z, 7)o (x)dr > ce_AlT/ / A Gn (Up)d — +00
Q 0 Q

by Step 1.

Step 3. We finally prove (6.6). For this purpose, we use a parabolic analogue of Lemma
3.2 due to Martel (see Lemma 2 of [10]); it asserts that

() -pla) )
S el z()/ﬂw Vi eQ

for any 7 > 0, where ¢(7) > 0 is a constant depending on 7, and where T'(7) is the heat
semigroup at time 7. We apply this estimate with 7 = £/2, and obtain

Un(,1) 0(5/2)/ (@, t — )5(2)dz — 00
() Q 2
uniformly in ¢ € [¢,T] by Step 2, since t — % > % O
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