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Section 1

The Lyapounov-Schmidt (L-S) procedure (see e.g. [N]) is a standard tool in
bifurcation theory for solving equations of the form

(1) F(z)=0
(1) Fz,\) = 0.

In (1), F' is, say, a smooth map from a neighbourhood of a point in a Banach space
X into another Y. In (1)’ F is defined for (z, A) in a neighbourhood in X x A, with
A a Banach space, the parameter space. In particular, the L-S procedure is useful
in obtaining a family of solutions.

This paper is concerned with finding a local family of solutions of equation (1),
and grew out of a recent result by V. Yudovich [Y1]. Throughout the paper, X and

Y are Banach spaces, F' is a smooth map from a neighbourhood U of the origin in
X into Y, with

F(0)=0.
We always assume

@) { X5 =ker F'(0) has a closed complementing

subspace X1, 1.e., X = X| & X».

) { Y1 = Range F’(0) is closed and has a closed

complementing space Y, in Y.
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26 HAIM BREZIS AND LOUIS NIRENBERG

In [Y1], Yudovich treated (1) and introduced the notion of a cosymmetry map
nof U into Y, the dual space to Y. Its existence ensures that (1) has a family of
solutions. Here is a result of [Y1]; the X and Y are asssumed to be Hilbert spaces
but the result extends unmediately to the following form.

THEOREM 1 (YuDOVICH). Let X,Y, F be as above, .e., (2) and (3) hold, and
assume a stronger form of (3):

(3)f Y) = Range F'(0) is closed and has codimension 1.
Assume that there 1s a continuous map n of U into Y*, n(0) # 0 and
(4) (n(x),F(z))=0 U,

A map with such properties is called a cosymmetry map. Then there is a smooth
map u of a ball B, (0) in Xs into Xy, with u(0) = 0, such that

Flu(z2) 4+ 22) =0, Va, € B,(0).

The proof is a simple application of L-S; for the convenience of the reader we
include 1t:

ProOOF. For z near the origin, by continuity of 7,

0= (n(z), F(xz)) = (n(0), F'(0)z) + o(||z)-

Consequently 7(0) annihilates RangeF’(0) = Y7. We may decompose Y as Y] @ Yy
where Y5 is spanned by a unit vector y2. Without loss of generality we may assume
that

(77(0)) y2> =1

For z near the origin in X,
t(z) :=(n(z),y2) 1s close to 1,
and
(x) = n(z) = t(x)n(0)
satisfies

(ﬁ(I), y2> =0.

We now carry out the L-S procedure. Let P be the projection of Y onto ¥;
along Y5. For x5 near the origin in X9, using the Implicit Function Theorem we
solve the equation

(5) PF(z;+x2) =0
for x; = u(zs) in Xy, with u(0) = 0, u smooth. Then, for z = x5 4 u(zx2),
necessarily,

F(z) = 7(z)y, with 7(0) = 0.
But

Consequently 7(z) = 0.

Theorem 1 extends to the case when, in place of (3), we have (see [Y4]):

(3)” Y1 = Range F’(0) is closed and has codimension k < oo
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A LYAPOUNOV-SCHMIDT PROCEDURE 27

provided there are k continuous maps ny,...,7% : U — Y*, which are linearly
independent at the origin, each satisfying (4). In [Y1}], Yudovich presents interesting
applications of Theorem 1 including one to a problem on filtration convection.
Papers [Y2], [Y3] contain further results while [Y4] contains extension (see there
for more references).

The aim of this paper is to prove a more general result than Theorem 1, The-
orem 2 below. The interest in this result is that in carrying out a L-S procedure,
we use a nonlinear operator in place of a linear projection operator. However, in
case Y is a Hilbert space, the standard L-S procedure applies, and the proof is then
very simple.

THEOREM 2. Let X, Y and F be as above and assume that (3)" holds. Assume
further that for some positive 8 < 1,
(6) dist(F(z), Y1) <0||F(z)|| Veel.

Then for some r > 0, there is a unique smooth map u of B2 = {z5 € Xo;||zo|| < 7}
into X1, with u(0) = 0, such that

(7 F(zy+u(zs)) =0 Vaq € B

REMARK. Unfortunately, assumption (6) is not invariant under passage to an
equivalent norm (even with another # < 1). But the conclusion of Theorem 2 is
stable under such a change. It would be good to have a better condition than (6).

We shall actually prove the theorem under a weaker condition than (3)”, namely

Y1 = Range F'(0) is closed, and, for any ¢ > 0,Y; admits a complementing
(3) { space Y5 and a Lipschitz continuous map @ : Y — Y; satisfying
lly2 = Q(y2)l] < (1 +¢) dist(y2, Y1) Vy2 € Ya.

Condition (f’)) automatically holds in case Y 1s a Hilbert space: Y5 is then
Y+, and @Q is the orthogonal projection onto Y;. In addition, Lemma 1 below

asserts that {3) always holds if Y is closed and has finite codimension. We pose
the following

Question. Let Y be a Banach space with a direct sum decomposition ¥ = Y] @
Yy, Y1, Ys closed subspaces. For any given ¢ > 0, is there a Lipschitz map @ of Y3
into Y; satisfying

(8) lly2 = Q(y2)ll < (1 +¢) dist (y2, Y1) Vg2 €Y2?

LEMMA 1. The answer to the question is yes in case dim Yy = k < 00,

Proor. It suffices to construct @ on the unit sphere S in Y, with the property
(8). We may then extend @ to all of Y5 as homogeneous of degree one. For any
y2 € S, there is a vector g (y2) € Y7 such that
ly2 = g1 (y2)ll < (1 +¢) dist (y2, Y1)
By continuity there is a neighbourhood V of y» on S such that
ly = 91(g)ll < (1 +¢) dist (y, Y1) VyeV.
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28 HAIM BREZIS AND LOUIS NIRENBERG

Cover S by a finite number of such neighbourhoods V; of points y{;,j =1,...,N,
such that for every j, there exists y; € Y7 with the property that

lly =yl < (1 +¢€) dist (y,Y1) VyeV;.

For j=1,... N, let ¢; be a Lipschitz continuous partition of unity on S which is
subordinate to the V;. Then

QY) = Ze;(v)y;

has the desired property.

Section 2

To prove theorem 2 we use a convenient form of the Implicit Function theorem,

(IFT), in which X, A, Z are Banach spaces. Consider a map G of V = B, x B, in
X x A into Z, where

By ={ue X;||lz|| < a}, By={N€A;|lyl| <b}.
For every A in B, we wish to solve
©) G(u,\) =0,
for u in B,.

LEMMA 2. (IFT). Assume that there is a bounded linear injective map A of
Z nto X, and a positive constant v < 1 such that

1A(G (1, A) = G(v,A)) = (u = )[| <Allu = v

(10) for (u,A), (v,A) € V.

Assume also that
(11) IAG(0,M)]| < (1 =5)a VA€ B,.

Then, for every X in By, there is a unique solution u = u(\) of (9) in B,. If G is
continuous in 'V then u(A) is continuous. If, furthermore, G is uniformly Holder,
or Lipschitz continuous in A, t.e., for some k,a > 0,0 <1,

1G (v, A) = G(o, p)l| < KIIA = pll* for (v,A), (v, 1) €V,

then u(A) is Holder continuous in A\, with a as Holder exponent.

Lemma 2, which is taken from [B-N], is easily proved if one writes (9) in the
form
u=u—AG(u,A) =: Tx(u).
One checks that for A in By, T} is a contracting map of B, into itself, so that it has
a unique fixed point. The remaining part of the conclusion is also readily verified.
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A LYAPOUNOV-SCHMIDT PROCEDURE 29

ProoF oF THEOREM 2. In view of Lemma 1 it suffices to prove the theorem
using the assumption (3) in place of (3)”. Fix £ > 0 so that (1 +¢)0 < 1. Then,
choose Y5 and Q as in (3). Let P be the projection of Y onto Y; along Ys. For z;
in Xo,||z2|| small, we shall solve the following equation for x; = u(z2):

(12) G(z) = G(zy + z2) := PF(z) + Q[(I — P)F(x)] = 0.

G maps into Y;. As a map from X; into Y; the operator F’(0) has a bounded
inverse A = F’/(0)~*.

To solve (12) we use Lemma 2. Note that near the origin, G is Lipschitz
continuous. Now

(13) F(z) = F'(0)z + 0(l[«||*)

and, for z, 2’ near the origin,

(14) |F(z) = F(z') = F'(0)(z — 2")[| = 0(|||| + l|=']]) - l= — =],
so that

(15) (I = P)(F(z) = F(&)|| < Cllz = 2"[|([[|| + [|="l]).

It follows from (14) and (15) and the Lipschitz continuity of Q9, that for z;, 2}
near the origin in X, 2 near the origin in X5,

(16) [[A(G(z1+22) = G(2) +22)) = (21 = )| < Cller = 2| ([l + 1241l + ll=l])-

We now apply Lemma 2 with X; as X, X5 as A and Y; as Z. From (13)
and (16) we see that for 0 < a, b small, the conditions of the lemma are satisfied.
We conclude that there is a unique Lipschitz continuous solution z; = u(zs2) with
u(0) = 0, of G(z1 + z2) = 0—for every z, near the origin in X5.

Claim: © = o + u(x») satisfies F(z) = 0.
Proor. By (12),

= (- P)F(z) - Q[(I - P)F(z)].
Since (I — P)F(z) is in Y, it follows from (8), taking y» = (I — P)F(z), that

£ ()|l = I(1 = P)F(z) = Q[( — P)F(2)]||
< (1+¢) dist (I - P)F(z), Y1)
= (1 +¢) dist (F(z), Y1)

S(1+e)d|F()l| by (6).
Since (1 +¢€)f < 1, the claim follows.

Using a standard argument we now complete the proof of Theorem 2 by showing
that u(z2) is smooth. We know that u is Lipschitz continuous. If we perturb x5 by
¢ € X,, we have

Fzz+ & +u(xs +§)) — Faa +u(z2)) = 0.
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30 HAIM BREZIS AND LOUIS NIRENBERG

Thus, for z = zy + u(xs), if ||€]] is small,

( )€ +ulze + &) — u(xz)) = o(|[€]])-
Apply P, the projection operator of ¥ onto Y; along Y. Then, with

M(z) = PF’(x)|X1

we obtain
M(z)(u(zz + ) = u(z2)) = —PF'(z)¢ + o(|IE]]).

For  near the origin, M(z) is close to F/(O)IXI’ and so is invertible as a map from
Xy to Y1, and M (z)~! is smooth in z. Thus
ulez +€) — ules) = —M{2)" PF/ ()¢ + o{|E]).
It follows that u’(z2) exists and is given by
W (z9) = —M(z) ' PF'(z)
(17) = —M(zy + u(zs)) P PF (23 + u(zs)).

Thus v/(z2) is continous, in fact Lipschitz continuous, in z5. Consequently, the
right hand side of (17) is continuously differentiable in &, which means that u is in
C?—and so on.

O

Section 3

With the aid of Theorem 2 we now derive a result which is closer to Theorem
1 but which replaces the cosymmetry condition (4) by an inequality.

THEOREM 3. Let XY, F be as above and assume that (2) and (3)” hold. As-
sume that there exists a k-dimensional subspace L of Y* such that for some constant

o< 1/3,

(18) [(n, F(z))| < ol|F ()|l [Inll Yz eU, VnelL.

Then there is a smooth map u of a ball B,(0) C X, into Xy, with u(0) = 0, such
that

F(u(l‘z) + .1'2) =0 Ve € B,—(O).
The proof makes use of the following

LEMMA 3. Let Y be a Banach space and Yy a closed subspace of codimension
k < co. Assume that for some positive number § < 1,

L, v Y.
(19) ol < 5l lll ¥ e L, Ve v,

Suppose also that for some vector y € Y,
Vn € L.
(20) .9}l < 57 gllnll ol vn e

Then
d:= dist (y, Y1) <9yl
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A LYAPOUNOV-SCHMIDT PROCEDURE 31

Using Lemma 3 we first give the
ProOF oF THEOREM 3. We will prove that for § = T2—0_a < 1,
(21) dist (F(z),Y1) <0||F(z)|| VeeUl.

The desired conclusion then follows from Theorem 2.

For ||z|| small, we have, by (18): for every unit vector n € L,
|(n, F'(0)2)] < ol|F'(0)[| + O(|[|)-

Consequently

[, y0)l < ollyall Vo €Y1,
Le., (19) holds, since ¢ = /(2 + 6). By (18), (20) holds with y = F/(z). Lemma 3
then yields (21).

a

To prove Lemma 3 we rely on the following standard lemma, whose proof uses
Borsuk’s theorem (see e.g. Lemma 2.3 in [K]).

LEMMA 4. Let Y be a Banach space, and Y a closed linear subspace of finite
codimension k — 1. Let L be a linear subspace of Y* of dimension k. Then there s
a unit vector y* € L such that

(22) sup (y*,y) = L.

yey
llyli=1

Proor oF LEMMA 3. We may suppose that |y|| = 1 and that y ¢ Y;—
otherwise there i1s nothing to prove. Let Y be the space spanned by Y; and y; it
has codimension (k — 1). According to Lemma 4, there is a unit vector n € L such

that

(23) sup (n,z) =1
L
zl|=1

Any unit vector z in Y has the form
z=ay+y withy €Y.

Clearly, for d = dist (y, Y1),

lald = dist (z,Y7) < 1.
Furthermore, ||y1]| < 1+ |a]. Then, by (19) and (20),

(n,z) = (n,ay +y1)

< 551+ 2la).

Since this holds for any z in Y, it follows from (24) that

0 0 2
1< ——(142]a)) < —(1+ 2);
- 2+90 - 2+0 d”’
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32 HAIM BREZIS AND LOUIS NIRENBERG

this implies that d < 8.
a
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